Healthy Obese Subjects Differ in Chronotype, Sleep Habits, and Adipose Tissue Fatty Acid Composition from Their Non-Healthy Counterparts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. MHO Characterization
2.3. Anthropometric Measurements and Body Composition
Computed Tomography (Population 2)
2.4. Lifestyle Factors (Population 1)
2.4.1. Composition of Food Intake and Eating Behavior
2.4.2. Physical Activity
2.4.3. Sleep Timing and Individual Chronotype
2.4.4. Other Lifestyle Factors
2.5. Adipose Tissue Characteristics (Population 2)
2.5.1. Morphometric Characteristics
2.5.2. Fatty Acid Composition
2.6. Biochemical Determinations
2.7. Statistical Analysis
3. Results
3.1. Anthropometric and Body Composition Characteristics of MHO and MUO Subjects
3.2. Lifestyle Factors
3.3. Adipose Tissue Characteristics (Population 2)
3.3.1. Morphology
3.3.2. Fatty Acid Composition
3.4. Biochemical Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, L.A.; O’Connell, J.M.; Kwasnik, A.K.; Cawood, T.J.; O’Farrelly, C.; O’Shea, D.B. Are Natural Killer Cells Protecting the Metabolically Healthy Obese Patient? Obesity (Silver Spring) 2009, 17, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Karelis, A.D.; Brochu, M.; Rabasa-Lhoret, R. Can We Identify Metabolically Healthy but Obese Individuals (MHO)? Diabetes Metab. 2004, 30, 569–572. [Google Scholar] [CrossRef]
- Camhi, S.M.; Crouter, S.E.; Hayman, L.L.; Must, A.; Lichtenstein, A.H. Lifestyle Behaviors in Metabolically Healthy and Unhealthy Overweight and Obese Women: A Preliminary Study. PLoS ONE 2015, 10, e0138548. [Google Scholar] [CrossRef] [PubMed]
- Slagter, S.N.; Corpeleijn, E.; van der Klauw, M.M.; Sijtsma, A.; Swart-Busscher, L.G.; Perenboom, C.W.M.; de Vries, J.H.M.; Feskens, E.J.M.; Wolffenbuttel, B.H.R.; Kromhout, D.; et al. Dietary Patterns and Physical Activity in the Metabolically (Un)Healthy Obese: The Dutch Lifelines Cohort Study. Nutr. J. 2018, 17, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanagasabai, T.; Dhanoa, R.; Kuk, J.L.; Ardern, C.I. Association between Sleep Habits and Metabolically Healthy Obesity in Adults: A Cross-Sectional Study. J. Obes. 2017, 2017, 5272984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaulet, M.; Gómez-Abellán, P. Chronobiology and Obesity. Nutr. Hosp. 2013, 28 (Suppl. S5), 114–120. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, S.M.T.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal Timing Regulates the Human Circadian System. Curr. Biol. 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef] [Green Version]
- Garaulet, M.; Gómez-Abellán, P.; Alburquerque-Béjar, J.J.; Lee, Y.-C.; Ordovás, J.M.; Scheer, F.A. Timing of Food Intake Predicts Weight Loss Effectiveness. Int. J. Obes. Lond. 2013, 37, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Garaulet, M.; Ortega, F.B.; Ruiz, J.R.; Rey-López, J.P.; Béghin, L.; Manios, Y.; Cuenca-García, M.; Plada, M.; Diethelm, K.; Kafatos, A.; et al. Short Sleep Duration Is Associated with Increased Obesity Markers in European Adolescents: Effect of Physical Activity and Dietary Habits. The HELENA Study. Int. J. Obes. Lond. 2011, 35, 1308–1317. [Google Scholar] [CrossRef] [Green Version]
- Smiley, A.; King, D.; Bidulescu, A. The Association between Sleep Duration and Metabolic Syndrome: The NHANES 2013/2014. Nutrients 2019, 11, 2582. [Google Scholar] [CrossRef] [Green Version]
- Allam-Ndoul, B.; Guénard, F.; Barbier, O.; Vohl, M.-C. Effect of N-3 Fatty Acids on the Expression of Inflammatory Genes in THP-1 Macrophages. Lipids Health Dis. 2016, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perreault, M.; Zulyniak, M.A.; Badoud, F.; Stephenson, S.; Badawi, A.; Buchholz, A.; Mutch, D.M. A Distinct Fatty Acid Profile Underlies the Reduced Inflammatory State of Metabolically Healthy Obese Individuals. PLoS ONE 2014, 9, e88539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, C.M.; Belsham, D.D. Palmitate Attenuates Insulin Signaling and Induces Endoplasmic Reticulum Stress and Apoptosis in Hypothalamic Neurons: Rescue of Resistance and Apoptosis through Adenosine 5’ Monophosphate-Activated Protein Kinase Activation. Endocrinology 2010, 151, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Hankinson, A.L.; Daviglus, M.L.; Van Horn, L.; Chan, Q.; Brown, I.; Holmes, E.; Elliott, P.; Stamler, J. Diet Composition and Activity Level of at Risk and Metabolically Healthy Obese American Adults. Obesity (Silver Spring) 2013, 21, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Srdić, B.; Stokić, E.; Korać, A.; Ukropina, M.; Veličković, K.; Breberina, M. Morphological Characteristics of Abdominal Adipose Tissue in Normal-Weight and Obese Women of Different Metabolic Profiles. Exp. Clin. Endocrinol. Diabetes 2010, 118, 713–718. [Google Scholar] [CrossRef]
- O’Connell, J.; Lynch, L.; Cawood, T.J.; Kwasnik, A.; Nolan, N.; Geoghegan, J.; McCormick, A.; O’Farrelly, C.; O’Shea, D. The Relationship of Omental and Subcutaneous Adipocyte Size to Metabolic Disease in Severe Obesity. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Torres-Castillo, N.; Silva-Gómez, J.A.; Campos-Perez, W.; Barron-Cabrera, E.; Hernandez-Cañaveral, I.; Garcia-Cazarin, M.; Marquez-Sandoval, Y.; Gonzalez-Becerra, K.; Barron-Gallardo, C.; Martinez-Lopez, E. High Dietary ω-6:ω-3 PUFA Ratio Is Positively Associated with Excessive Adiposity and Waist Circumference. Obes. Facts 2018, 11, 344–353. [Google Scholar] [CrossRef]
- Phillips, C.M.; Dillon, C.; Harrington, J.M.; McCarthy, V.J.C.; Kearney, P.M.; Fitzgerald, A.P.; Perry, I.J. Defining Metabolically Healthy Obesity: Role of Dietary and Lifestyle Factors. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaulet, M.; Pérez-Llamas, F.; Zamora, S.; Javier Tébar, F. Estudio comparativo del tipo de obesidad en mujeres pre y posmenopáusicas: Relación con el tamaño adipocitario, la composición de la grasa y diferentes variables endocrinas, metabólicas, nutricionales y psicológicas. Med. Clin. 2002, 118, 281–286. [Google Scholar] [CrossRef]
- Sjöström, L.; Björntorp, P.; Vrána, J. Microscopic Fat Cell Size Measurements on Frozen-Cut Adipose Tissue in Comparison with Automatic Determinations of Osmium-Fixed Fat Cells. J. Lipid Res. 1971, 12, 521–530. [Google Scholar] [PubMed]
- Moreiras Tuni, O.; Carbajal, A. Tablas de Composición de Los Alimentos, 16th ed.; Pirámide: Madrid, Spain, 2013. [Google Scholar]
- Knoops, K.T.B.; Groot de, L.C.; Fidanza, F.; Alberti-Fidanza, A.; Kromhout, D.; van Staveren, W.A. Comparison of Three Different Dietary Scores in Relation to 10-Year Mortality in Elderly European Subjects: The HALE Project. Eur. J. Clin. Nutr. 2006, 60, 746–755. [Google Scholar] [CrossRef] [Green Version]
- Corbalán-Tutau, M.D.; Morales, E.; Baraza, J.C.; Canteras, M.; Garaulet, M. Major Barriers to Weight Loss in Patients Attending a Mediterranean Diet-Based Behavioural Therapy: The Garaulet Method. Rev. Esp. Obes. 2009, 7, 144–154. [Google Scholar]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Vera, B.; Dashti, H.S.; Gómez-Abellán, P.; Hernández-Martínez, A.M.; Esteban, A.; Scheer, F.A.J.L.; Saxena, R.; Garaulet, M. Modifiable Lifestyle Behaviors, but Not a Genetic Risk Score, Associate with Metabolic Syndrome in Evening Chronotypes. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Horne, J.A.; Ostberg, O. A Self-Assessment Questionnaire to Determine Morningness-Eveningness in Human Circadian Rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar]
- Björntorp, P. Effects of Age, Sex, and Clinical Conditions on Adipose Tissue Cellularity in Man. Metab. Clin. Exp. 1974, 23, 1091–1102. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Brochu, M.; Tchernof, A.; Dionne, I.J.; Sites, C.K.; Eltabbakh, G.H.; Sims, E.A.; Poehlman, E.T. What Are the Physical Characteristics Associated with a Normal Metabolic Profile despite a High Level of Obesity in Postmenopausal Women? J. Clin. Endocrinol. Metab. 2001, 86, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- BioRender. Available online: https://app.biorender.com/ (accessed on 29 December 2020).
- Baehr, E.K.; Revelle, W.; Eastman, C.I. Individual Differences in the Phase and Amplitude of the Human Circadian Temperature Rhythm: With an Emphasis on Morningness-Eveningness. J. Sleep Res. 2000, 9, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lozano, T.; Vidal, J.; de Hollanda, A.; Canteras, M.; Garaulet, M.; Izquierdo-Pulido, M. Evening Chronotype Associates with Obesity in Severely Obese Subjects: Interaction with CLOCK 3111T/C. Int. J. Obes. 2016, 40, 1550–1557. [Google Scholar] [CrossRef]
- Yu, J.H.; Yun, C.-H.; Ahn, J.H.; Suh, S.; Cho, H.J.; Lee, S.K.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Choi, K.M.; et al. Evening Chronotype Is Associated with Metabolic Disorders and Body Composition in Middle-Aged Adults. J. Clin. Endocrinol. Metab. 2015, 100, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Ogata, H.; Hatamoto, Y.; Goto, Y.; Tajiri, E.; Yoshimura, E.; Kiyono, K.; Uehara, Y.; Kawanaka, K.; Omi, N.; Tanaka, H. Association between Breakfast Skipping and Postprandial Hyperglycaemia after Lunch in Healthy Young Individuals. Br. J. Nutr. 2019, 122, 431–440. [Google Scholar] [CrossRef]
- Kobayashi, F.; Ogata, H.; Omi, N.; Nagasaka, S.; Yamaguchi, S.; Hibi, M.; Tokuyama, K. Effect of Breakfast Skipping on Diurnal Variation of Energy Metabolism and Blood Glucose. Obes. Res. Clin. Pract. 2014, 8, e201–e298. [Google Scholar] [CrossRef]
- Yildiran, H.; Mercanligil, S.M. Does Increasing Meal Frequency Improve Weight Loss and Some Biochemical Parameters in Overweight/Obese Females? Nutr. Hosp. 2019, 36, 66–72. [Google Scholar] [CrossRef]
- Ha, K.; Song, Y. Associations of Meal Timing and Frequency with Obesity and Metabolic Syndrome among Korean Adults. Nutrients 2019, 11, 2437. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Yang, M.; Bao, Y.; Li, H.; Shan, Z.; Zhang, B.; Liu, J.; Lv, Q.; Wu, O.; Zhu, Y.; et al. Prevalence and Determinants of Metabolic Health in Subjects with Obesity in Chinese Population. Int. J. Environ. Res. Public Health 2015, 12, 13662–13677. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-N.; Song, S.-W. Associations between Macronutrient Intakes and Obesity/Metabolic Risk Phenotypes: Findings of the Korean National Health and Nutrition Examination Survey. Nutrients 2019, 11, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Johnson, S.; Gong, Y.; Polk, S.; Divall, S.; Radovick, S.; Moon, M.; Paige, D.; Hong, X.; Caruso, D.; et al. Weight Gain in Infancy and Overweight or Obesity in Childhood across the Gestational Spectrum: A Prospective Birth Cohort Study. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, M.; Beall, M.; Ross, M.G. Developmental Origins of Obesity: Programmed Adipogenesis. Curr. Diab. Rep. 2013, 13, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Morante, J.J.; Larqué, E.; Luján, J.A.; Zamora, S.; Garaulet, M. N-6 from Different Sources Protect from Metabolic Alterations to Obese Patients: A Factor Analysis. Obesity (Silver Spring) 2009, 17, 452–459. [Google Scholar] [CrossRef]
- Garaulet, M.; Hernandez-Morante, J.J.; Lujan, J.; Tebar, F.J.; Zamora, S. Relationship between Fat Cell Size and Number and Fatty Acid Composition in Adipose Tissue from Different Fat Depots in Overweight/Obese Humans. Int. J. Obes. 2006, 30, 899–905. [Google Scholar] [CrossRef] [Green Version]
- Itariu, B.K.; Zeyda, M.; Hochbrugger, E.E.; Neuhofer, A.; Prager, G.; Schindler, K.; Bohdjalian, A.; Mascher, D.; Vangala, S.; Schranz, M.; et al. Long-Chain n-3 PUFAs Reduce Adipose Tissue and Systemic Inflammation in Severely Obese Nondiabetic Patients: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2012, 96, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Tate, G.; Mandell, B.F.; Laposata, M.; Ohliger, D.; Baker, D.G.; Schumacher, H.R.; Zurier, R.B. Suppression of Acute and Chronic Inflammation by Dietary Gamma Linolenic Acid. J. Rheumatol. 1989, 16, 729–734. [Google Scholar]
- Tate, G.A.; Mandell, B.F.; Karmali, R.A.; Laposata, M.; Baker, D.G.; Schumacher, H.R.; Zurier, R.B. Suppression of Monosodium Urate Crystal-Induced Acute Inflammation by Diets Enriched with Gamma-Linolenic Acid and Eicosapentaenoic Acid. Arthritis Rheum. 1988, 31, 1543–1551. [Google Scholar] [CrossRef]
- Barchetta, I.; Cimini, F.A.; Ciccarelli, G.; Baroni, M.G.; Cavallo, M.G. Sick Fat: The Good and the Bad of Old and New Circulating Markers of Adipose Tissue Inflammation. J. Endocrinol. Investig. 2019, 42, 1257–1272. [Google Scholar] [CrossRef]
- Kang, J.X.; Weylandt, K.H. Modulation of Inflammatory Cytokines by Omega-3 Fatty Acids. Subcell. Biochem. 2008, 49, 133–143. [Google Scholar] [CrossRef]
- Gasteyger, C.; Tremblay, A. Metabolic Impact of Body Fat Distribution. J. Endocrinol. Investig. 2002, 25, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.N.; Kim, S.P.; Catalano, K.J.; Hsu, I.R.; Chiu, J.D.; Kabir, M.; Hucking, K.; Ader, M. Why Visceral Fat Is Bad: Mechanisms of the Metabolic Syndrome. Obesity (Silver Spring) 2006, 14 (Suppl. S1), 16S–19S. [Google Scholar] [CrossRef] [PubMed]
- Skurk, T.; Alberti-Huber, C.; Herder, C.; Hauner, H. Relationship between Adipocyte Size and Adipokine Expression and Secretion. J. Clin. Endocrinol. Metab. 2007, 92, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Goossens, G.H. The Role of Adipose Tissue Dysfunction in the Pathogenesis of Obesity-Related Insulin Resistance. Physiol. Behav. 2008, 94, 206–218. [Google Scholar] [CrossRef]
- Jacobsson, B.; Smith, U. Effect of Cell Size on Lipolysis and Antilipolytic Action of Insulin in Human Fat Cells. J. Lipid Res. 1972, 13, 651–656. [Google Scholar]
- Böhm, A.; Halama, A.; Meile, T.; Zdichavsky, M.; Lehmann, R.; Weigert, C.; Fritsche, A.; Stefan, N.; Königsrainer, A.; Häring, H.-U.; et al. Metabolic Signatures of Cultured Human Adipocytes from Metabolically Healthy versus Unhealthy Obese Individuals. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Kavanagh, K.; Espeland, M.A.; Sutton-Tyrrell, K.; Barinas-Mitchell, E.; El Khoudary, S.R.; Wildman, R.P. Liver Fat and SHBG Affect Insulin Resistance in Midlife Women: The Study of Women’s Health Across the Nation (SWAN). Obesity (Silver Spring) 2013, 21, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Ford, E.S.; Li, B.; Giles, W.H.; Liu, S. Association of Testosterone and Sex Hormone-Binding Globulin with Metabolic Syndrome and Insulin Resistance in Men. Diabetes Care 2010, 33, 1618–1624. [Google Scholar] [CrossRef] [Green Version]
- Onat, A.; Hergenç, G.; Karabulut, A.; Albayrak, S.; Can, G.; Kaya, Z. Serum Sex Hormone-Binding Globulin, a Determinant of Cardiometabolic Disorders Independent of Abdominal Obesity and Insulin Resistance in Elderly Men and Women. Metab. Clin. Exp. 2007, 56, 1356–1362. [Google Scholar] [CrossRef]
- Desmeules, A.; Couillard, C.; Tchernof, A.; Bergeron, J.; Rankinen, T.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Wilmore, J.H.; Després, J.-P.; et al. Post-Heparin Lipolytic Enzyme Activities, Sex Hormones and Sex Hormone-Binding Globulin (SHBG) in Men and Women: The HERITAGE Family Study. Atherosclerosis 2003, 171, 343–350. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, N.; Sun, G.; Guo, X.; Yu, S.; Yang, H.; Zheng, L.; Sun, Y. Metabolically Healthy Obesity Also Has Risk for Hyperuricemia among Chinese General Population: A Cross-Sectional Study. Obes. Res. Clin. Pract. 2016, 10 (Suppl. S1), S84–S95. [Google Scholar] [CrossRef] [PubMed]
- Aldhoon-Hainerová, I.; Hainer, V.; Zamrazilová, H. Impact of Dietary Intake, Lifestyle and Biochemical Factors on Metabolic Health in Obese Adolescents. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Rocha, E.P.A.A.; Vogel, M.; Stanik, J.; Pietzner, D.; Willenberg, A.; Körner, A.; Kiess, W. Serum Uric Acid Levels as an Indicator for Metabolically Unhealthy Obesity in Children and Adolescents. Horm. Res. Paediatr. 2018, 90, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | MHO n = 429 | MUO n = 429 | p-Value |
---|---|---|---|
Anthropometrics and clinical parameters | |||
Sex (% F) 1 | 64.60 | 64.60 | 1.000 |
Age (y) | 44.33 ± 0.63 | 44.84 ± 0.62 | 0.569 |
BMI (kg/m2) | 34.52 ± 0.23 | 34.69 ± 0.23 | 0.587 |
Height (m) | 1.65 ± 0.01 | 1.66 ± 0.01 | 0.311 |
Weight (kg) | 94.33 ± 0.83 | 95.63 ± 0.82 | 0.265 |
BFP (%) | 38.56 ± 0.34 | 39.35 ± 0.34 | 0.101 |
Waist (cm) | 110.30 ± 0.62 | 112.89 ± 0.61 | 0.003 |
Hip (cm) | 118.84 ± 0.48 | 117.50 ± 0.47 | 0.046 |
WHR | 0.93 ± 0.01 | 0.96 ± 0.01 | <0.001 |
Parameters used in the definition of MHO and MUO | |||
Triglycerides (mg/dL) | 97.80 ± 3.01 | 169.10 ± 2.96 | <0.001 |
HDL-C (mg/dL) | 55.66 ± 0.64 | 45.96 ± 0.63 | <0.001 |
Glucose (mg/dL) | 85.17 ± 1.02 | 102.94 ± 1.00 | <0.001 |
Insulin (µUI/mL) | 7.18 ± 0.38 | 14.02 ± 0.37 | <0.001 |
HOMA-IR | 1.52 ± 0.11 | 3.61 ± 0.11 | <0.001 |
Other biochemical parameters | |||
Total cholesterol (mg/dL) | 197.06 ± 2.00 | 198.48 ± 1.97 | 0.613 |
LDL-C (mg/dL) | 122.01 ± 1.72 | 119.89 ± 1.70 | 0.380 |
Uric acid (mg/dL) | 5.19 ± 0.08 | 5.72 ± 0.08 | <0.001 |
Urea (mg/dL) | 39.90 ± 0.87 | 39.05 ± 0.86 | 0.491 |
Variables | MHO n = 19 | MUO n = 53 | p-Value |
---|---|---|---|
Anthropometrics and clinical parameters | |||
Sex (% F) 1 | 68.40 | 64.20 | 0.787 |
Age (y) | 54.84 ± 11.20 | 52.92 ± 14.48 | 0.603 |
BMI (kg/m2) | 32.11 ± 3.65 | 32.83 ± 3.85 | 0.481 |
Height (m) | 1.58 ± 0.09 | 1.59 ± 0.10 | 0.732 |
Weight (kg) | 79.97 ± 12.12 | 82.68 ± 13.30 | 0.438 |
BFP (%) | 36.49 ± 7.32 | 34.48 ± 8.83 | 0.451 |
Waist (cm) | 106.67 ± 10.20 | 111.17 ± 11.58 | 0.147 |
Hip (cm) | 110.61 ± 8.10 | 109.88 ± 10.80 | 0.792 |
WHR | 0.96 ± 0.06 | 1.02 ± 0.10 | 0.042 |
VA/SA | 0.49 ± 0.37 | 0.69 ± 0.45 | 0.088 |
SA/VA | 2.97 ± 1.71 | 2.37 ± 1.99 | 0.254 |
Parameters used in the definition of MHO and MUO | |||
Triglycerides (mg/dL) | 116.21 ± 40.90 | 187.09 ± 88.24 | <0.001 |
HDL-C (mg/dL) | 60.89 ± 14.69 | 43.00 ± 12.70 | <0.001 |
Glucose (mg/dL) | 86.84 ± 6.32 | 127.06 ± 67.10 | <0.001 |
Insulin (µUI/mL) | 11.52 ± 7.24 | 17.40 ± 10.45 | 0.027 |
HOMA-IR | 2.47 ± 1.51 | 6.27 ± 7.91 | 0.001 |
Other biochemical parameters | |||
Total cholesterol (mg/dL) | 218.16 ± 47.82 | 210.40 ± 47.20 | 0.542 |
LDL-C (mg/dL) | 130.42 ± 37.02 | 127.74 ± 38.37 | 0.803 |
Uric acid (mg/dL) | 4.87 ± 1.57 | 5.09 ± 1.40 | 0.573 |
Urea (mg/dL) | 30.74 ± 8.04 | 32.34 ± 13.71 | 0.633 |
MHO VS. MUO | |||
---|---|---|---|
Eating Behaviour | OR | 95% (CI) | p-Value |
Have a complete breakfast 1 | |||
Yes | 1.59 | (1.07–2.36) | 0.023 |
Without stress-related eating 2 | |||
No | 1.15 | (0.70–1.87) | 0.588 |
Sometimes | 1.96 | (1.12–3.43) | 0.018 |
Adherence to dietary rules 3 | |||
Yes | 1.48 | (1.03–2.15) | 0.037 |
Snacking 4 | |||
No | 2.09 | (1.10–3.99) | 0.024 |
Dietary Intake | Mean ± SEM | Mean ± SEM | p-Value |
Number of meals | 4.10 ± 0.05 | 3.93 ± 0.05 | 0.008 |
Food timing (hour) | |||
Breakfast | 8.42 ± 0.06 | 8.50 ± 0.06 | 0.359 |
Lunch | 14.56 ± 0.04 | 14.57 ± 0.03 | 0.865 |
Dinner | 21.37 ± 0.04 | 21.37 ± 0.04 | 0.971 |
Number of food groups portions | |||
Bread | 5.51 ± 0.21 | 5.90 ± 0.21 | 0.184 |
Fruits | 1.52 ± 0.08 | 1.30 ± 0.07 | 0.043 |
Vegetables | 1.84 ± 0.09 | 1.74 ± 0.09 | 0.464 |
Proteins | 7.28 ± 0.21 | 7.24 ± 0.20 | 0.913 |
Milk | 1.39 ± 0.06 | 1.32 ± 0.06 | 0.376 |
Fat | 4.93 ± 0.16 | 4.80 ± 0.16 | 0.552 |
Extra calories | 338 ± 20 | 340 ± 20 | 0.941 |
Mediterranean Diet Score | 3.44 ± 0.09 | 3.48 ± 0.09 | 0.758 |
Physical Activity | OR | 95% (CI) | p-Value |
Timing 5 | |||
Morning | 1.54 | (1.09–2.18) | 0.014 |
Mean ± SEM | Mean ± SEM | p-Value | |
Level (METs) | 3866 ± 401 | 3493 ± 407 | 0.515 |
Chronotype and Sleep Habits | OR | 95% (CI) | p-Value |
Bed timing 6 | |||
Early (8:30–10:30 pm) | 2.11 | (1.02–4.36) | 0.043 |
Mean ± SEM | Mean ± SEM | p-Value | |
Chronotype Score | 51.30 ± 0.76 | 50.83 ± 0.78 | 0.664 |
Others | OR | 95% (CI) | p-Value |
Smoking 7 | |||
No | 1.74 | (1.21–2.51) | 0.003 |
Psyche profile 8 | |||
Non-bulimic impulse | 1.07 | (0.23–4.92) | 0.930 |
Non-depressant | 2.64 | (0.71–9.86) | 0.148 |
Non-anxious | 0.73 | (0.53–1.03) | 0.071 |
No obesity 9 | |||
Infancy | 2.07 | (1.12–3.83) | 0.020 |
Childhood | 1.39 | (0.73–2.64) | 0.315 |
Adolescence | 1.16 | (0.64–2.10) | 0.636 |
Adulthood | 1.45 | (0.88–2.38) | 0.145 |
Mean ± SEM | Mean ± SEM | p-Value | |
Weight at Birth (kg) | 3.80 ± 0.17 | 3.81 ± 0.16 | 0.992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Castillo, N.; Martinez-Lopez, E.; Vizmanos-Lamotte, B.; Garaulet, M. Healthy Obese Subjects Differ in Chronotype, Sleep Habits, and Adipose Tissue Fatty Acid Composition from Their Non-Healthy Counterparts. Nutrients 2021, 13, 119. https://doi.org/10.3390/nu13010119
Torres-Castillo N, Martinez-Lopez E, Vizmanos-Lamotte B, Garaulet M. Healthy Obese Subjects Differ in Chronotype, Sleep Habits, and Adipose Tissue Fatty Acid Composition from Their Non-Healthy Counterparts. Nutrients. 2021; 13(1):119. https://doi.org/10.3390/nu13010119
Chicago/Turabian StyleTorres-Castillo, Nathaly, Erika Martinez-Lopez, Barbara Vizmanos-Lamotte, and Marta Garaulet. 2021. "Healthy Obese Subjects Differ in Chronotype, Sleep Habits, and Adipose Tissue Fatty Acid Composition from Their Non-Healthy Counterparts" Nutrients 13, no. 1: 119. https://doi.org/10.3390/nu13010119
APA StyleTorres-Castillo, N., Martinez-Lopez, E., Vizmanos-Lamotte, B., & Garaulet, M. (2021). Healthy Obese Subjects Differ in Chronotype, Sleep Habits, and Adipose Tissue Fatty Acid Composition from Their Non-Healthy Counterparts. Nutrients, 13(1), 119. https://doi.org/10.3390/nu13010119