Protein-Rich Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid Profile of Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Protein-Rich Flours from Quinoa and Buckwheat
2.2. Chemical Composition of Protein-Rich Flours
2.3. In Vivo Experiment
2.4. Sample Collection and Basic Analyses
2.5. RNA Isolation and Quantitative RT-PCR
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Filho, A.M.; Pirozi, M.R.; Borges, J.T.; Pinheiro-Sant’Ana, H.M.; Chaves, J.B.; Coimbra, J.S. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017, 8, 1618–1630. [Google Scholar] [CrossRef] [PubMed]
- Sytar, O.; Brestic, M.; Zivcak, M.; Tran, L.S. The contribution of buckwheat genetic resources to health and dietary diversity. Curr. Genom. 2016, 3, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Comino, I.; Moreno-Mde, L.; Real, A.; Rodríguez-Herrera, A.; Barro, F.; Sousa, C. The gluten-free diet: Testing alternative cereals tolerated by celiac patients. Nutrients 2013, 10, 4250–4268. [Google Scholar] [CrossRef] [PubMed]
- Blaut, M. Relationship of prebiotics and food to intestinal microflora. Eur. J. Nutr. 2002, 41, 11–16. [Google Scholar] [CrossRef]
- Bilić-Šobot, D.; Kubale, V.; Škrlep, M.; Čandek-Potokar, M.; Prevolnik Povše, M.; Fazarinc, G.; Škorjanc, D. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs. Arch. Anim. Nutr. 2016, 5, 378–388. [Google Scholar] [CrossRef]
- Zevallos, V.F.; Raker, V.; Tenzer, S.; Jimenez-Calvente, C.; Ashfaq-Khan, M.; Rüssel, N.; Pickert, G.; Schild, H.; Steinbrink, K.; Schuppan, D. Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 2017, 5, 1100–1113. [Google Scholar] [CrossRef]
- Guo, G.; Lv, D.; Yan, X.; Subburaj, S.; Ge, P.; Li, X.; Hu, Y.; Yan, Y. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC Plant Biol. 2012, 12, 147. [Google Scholar] [CrossRef]
- Salazar, F.; Awuah, D.; Negm, O.H.; Shakib, F.; Ghaemmaghami, A.M. The role of indoleamine 2,3-dioxygenase-aryl hydrocarbon receptor pathway in the TLR4-induced tolerogenic phenotype in human DCs. Sci. Rep. 2017, 7, 43337. [Google Scholar] [CrossRef]
- Tanos, R.; Patel, R.D.; Murray, I.A.; Smith, P.B.; Patterson, A.D.; Perdew, G.H. Aryl hydrocarbon receptor regulates the cholesterol biosynthetic pathway in a dioxin response element-independent manner. Hepatology 2012, 6, 1994–2004. [Google Scholar] [CrossRef]
- Laparra, J.; Fotschki, B.; Haros, C. Immunonutritional consequences of different serine-type protease inhibitors in a C57BL/6 hepatocarcinoma model. Oncotarget 2019, 7, 760–772. [Google Scholar] [CrossRef]
- Laparra, J.M.; Haros, C.M. Plant seed protease inhibitors differentially affect innate immunity in a tumor microenvironment to control hepatocarcinoma. Food Funct. 2019, 7, 4210–4219. [Google Scholar] [CrossRef]
- Bai, C.Z.; Feng, M.L.; Hao, X.L.; Zhao, Z.J.; Li, Y.Y.; Wang, Z.H. Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo. Mol. Med. Rep. 2015, 2, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Baptista, A.P.; Tamoutounour, S.; Zhuang, L.; Bouladoux, N.; Martins, A.J.; Huang, Y.; Gerner, M.Y.; Belkaid, Y.; Germain, R.N. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 2018, 554, 255–259. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Valcárcel-Yamani, B.; Lannes, S.C.S. Application of quinoa (Chenopodium Quinoa Willd.) and amaranth (Amaranthus Spp.) and their influence in the nutritional value of cereal based food. Food Pub. Health 2012, 2, 265–275. [Google Scholar]
- Wronkowska, M.; Piskuła, K.M.; Zieliński, H. Effect of roasting time of buckwheat groats on the formation of Maillard reaction products and antioxidant capacity. Food Chem. 2016, 196, 355–358. [Google Scholar]
- Pendl, R.; Bauer, M.; Caviezel, R.; Schulthess, P. Determination of total fat in foods and feeds by the caviezel method, based on a gas chromatographic technique. J. AOAC Int. 1998, 81, 907–917. [Google Scholar] [CrossRef]
- Amarowicz, R.; Raab, B. Antioxidative activity of leguminous seed extracts evaluated by chemiluminescence methods. Z. Nat. C 1997, 52, 709–712. [Google Scholar] [CrossRef]
- Amarowicz, R.; Wanasundara, U.N.; Karamać, M.; Shahidi, F. Antioxidant activity of ethanolic extract of mustard seed. Nahr. Food 1996, 40, 261–263. [Google Scholar] [CrossRef]
- Price, M.L.; van Scoyoc, S.; Butler, L.G. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Kakade, M.D.; Rackis, J.J.; McGhee, J.E.; Puski, G. Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. Cereal Chem. 1974, 51, 376–382. [Google Scholar]
- Reeves, P.G. Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr. 1997, 127, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Fotschki, B.; Jurgoński, A.; Fotschki, J.; Majewski, M.; Ognik, K.; Juśkiewicz, J. Dietary chicory inulin-rich meal exerts greater healing effects than fructooligosaccharide preparation in rats with trinitrobenzenesulfonic acid-induced necrotic colitis. Pol. J. Food Nutr. Sci. 2019, 69, 147–155. [Google Scholar] [CrossRef]
- Żary-Sikorska, E.; Fotschki, B.; Fotschki, J.; Wiczkowski, W.; Juśkiewicz, J. Preparations from purple carrots containing anthocyanins improved intestine microbial activity, serum lipid profile and antioxidant status in rats. J. Funct. Foods 2019, 60, 103442. [Google Scholar] [CrossRef]
- Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; et al. Crosstalk between microbiota derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015, 17, 662–671. [Google Scholar] [CrossRef]
- Bäckhed, F.; Manchester, J.K.; Semenkovich, C.F.; Gordon, J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 2007, 104, 979–984. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.V.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef]
- Mota, C.; Santos, M.; Mauro, R.; Samman, N.; Matos, A.S.; Torres, D.; Castanheira, I. Protein content and amino acids profile of pseudocereals. Food Chem. 2016, 15, 55–61. [Google Scholar] [CrossRef]
- Cirkovic Velickovicand, T.D.; Stanic-Vucinic, D.J. The role of dietary phenolic compounds in protein digestion and processing technologiesto improve their antinutritive properties. Compr. Rev. Food Sci. Food Saf. 2018, 17, 82–103. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Qiu, B.; Fan, S.; Ding, H.; Liu, Z. Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran Sulfate sodium in C57BL/6 mice. Sci. Rep. 2018, 8, 14916. [Google Scholar] [CrossRef]
- Bifari, F.; Ruocco, C.; Decimo, I.; Fumagalli, G.; Valerio, A.; Nisoli, E. Amino acid supplements and metabolic health: A potential interplay between intestinal microbiota and systems control. Genes Nutr. 2017, 12, 27. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Priebe, M.G.; Vonk, R.J.; Welling, G.W. Identification of bacteria with β-galactosidase activity in faeces from lactase non-persistent subjects. FEMS Microbiol. Ecol. 2005, 54, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Arboleya, S.; Watkins, C.; Stanton, C.; Ross, R.P. Gut bifidobacteria populations in human health and aging. Front. Microbiol. 2016, 7, 1204. [Google Scholar] [CrossRef]
- Neis, E.P.; Dejong, C.H.; Rensen, S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015, 4, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tomé, D. Re-print of “Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host”. Pharmacol. Res. 2013, 1, 114–126. [Google Scholar] [CrossRef]
- Barker, H.A. Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem. 1981, 50, 23–40. [Google Scholar] [CrossRef]
- Rivière, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef]
- Giménez-Bastida, J.A.; Zieliński, H. Buckwheat as a functional food and its effects on health. J. Agric. Food Chem. 2015, 63, 7896–7913. [Google Scholar] [CrossRef]
- Gullón, B.; Gullón, P.; Tavaria, F.K.; Yáñez, R. Assessment of the prebiotic effect of quinoa and amaranth in the human intestinal ecosystem. Food Funct. 2016, 7, 3782–3788. [Google Scholar] [CrossRef]
- Hara, H.; Haga, S.; Aoyama, Y.; Kiriyama, S. Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J. Nutr. 1999, 5, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, L.; Martin-Gallausiaux, C.; Bourhis, J.M.; Béguet-Crespel, F.; Blottière, H.M.; Lapaque, N. Identification of the novel role of butyrate as AhR ligand in human intestinal epithelial cells. Sci. Rep. 2019, 1, 643. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.; Badger, T.M.; Ronis, M.J. Rats fed soy protein isolate (SPI) have impaired hepatic CYP1A1 induction by polycyclic aromatic hydrocarbons as a result of interference with aryl hydrocarbon receptor signaling. Toxicol. Appl. Pharmacol. 2008, 2, 275–283. [Google Scholar] [CrossRef]
- Seth, R.K.; Kimono, D.; Alhasson, F.; Sarkar, S.; Albadrani, M.; Lasley, S.K.; Horner, R.; Janulewicz, P.; Nagarkatti, M.; Nagarkatti, P.; et al. Increased butyrate priming in the gut stalls microbiome associated-gastrointestinal inflammation and hepatic metabolic reprogramming in a mouse model of Gulf War Illness. Toxicol. Appl. Pharmacol. 2018, 350, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Park, K.T.; Yun, C.H.; Bae, C.S.; Ahn, T. Decreased level of albumin in peripheral blood mononuclear cells of streptozotocin-induced diabetic rats. J. Vet. Med. Sci. 2014, 8, 1087–1092. [Google Scholar] [CrossRef]
- Pinno, J.; Bongartz, H.; Klepsch, O.; Wundrack, N.; Poli, V.; Schaper, F.; Dittrich, A. Interleukin-6 influences stress-signalling by reducing the expression of the mTOR-inhibitor REDD1 in a STAT3-dependent manner. Cell. Signal. 2016, 8, 907–916. [Google Scholar] [CrossRef]
Ingredient (%) | Groups | |||
---|---|---|---|---|
C | CS | BK | QU | |
Casein | 11.15 | |||
D,L-methionine | 0.20 | |||
Soya protein isolate | 10.8 | |||
Buckwheat protein-rich flour | 41.32 | |||
Quinoa protein-rich flour | 28.01 | |||
Cellulose 1 | 8 | 8 | 8 | 8 |
Soya oil | 8 | 8 | 8 | 8 |
Mineral mix 2 | 3.5 | 3.5 | 3.5 | 3.5 |
Vitamin mix 2 | 1 | 1 | 1 | 1 |
Choline chloride | 0.2 | 0.2 | 0.2 | 0.2 |
Cholesterol | 0.3 | 0.3 | 0.3 | 0.3 |
Sucrose | 5 | 5 | 5 | 5 |
Corn starch | 62.65 | 63.2 | 32.68 | 45.99 |
Calculated calorie per kg of diet | 3880 | 3880 | 3776 | 3986 |
Buckwheat (BK) | Quinoa (QU) | |
---|---|---|
DM (%) | 92.5 | 94.9 |
Ash (%) | 3.05 | 3.6 |
Protein (%) | 24.2 | 35.7 |
Fat (%) | 3.4 | 14.7 |
Carbohydrates a (%) | 61.85 | 40.9 |
Antinutrients | ||
Tannins (mg/g) | 13.9 | 0.0 |
Phenolics (mg/g) | 7.41 | 2.05 |
Phytic acid (mg/g) | 15.9 | 8.3 |
TIAs (IU/mg) | 13.3 | 0.4 |
Parameters | Groups | ANOVA p Value | |||
---|---|---|---|---|---|
C | CS | BK | QU | ||
Diet intake (g/14 days) | 258 ± 2.90 a | 231 ± 11.730 b | 265 ± 6.48 a | 242 ± 9.84 a,b | <0.05 |
Calorie intake (kcal/14 days) | 1001 ± 11 a | 896 ± 45 b | 999 ± 24 a | 964 ± 39 a,b | <0.05 |
Feed efficiency ratio (g/g) * | 0.32 ± 0.02 a | 0.15 ± 0.02 b | 0.26 ± 0.02 a | 0.25 ± 0.02 a | <0.001 |
BV (%) | 75.3 ± 2.64 a | 44.2 ± 2.20 c | 61.8 ± 0.538 a,b | 55.6 ± 0.901 b,c | <0.001 |
Initial body weight (g) | 170 ± 11.6 | 170 ± 11.9 | 169 ± 11.6 | 170 ± 11.9 | NS |
Final body weight (g) | 253 ± 8.21 a | 206 ± 10.3 b | 238 ± 7.97 a | 232 ± 9.97 a,b | 0.01 |
Body weight gain (g) | 83.5 ± 8.23 a | 35.4 ± 6.30 c | 68.7 ± 6.17 a,b | 61.8 ± 6.21 b | <0.001 |
Liver (g/100 g BW) | 4.79 ± 0.175 a | 3.68 ± 0.150 b | 4.00 ± 0.071 b | 3.79 ± 0.085 b | <0.001 |
Hepatosomatic index (%) ** | 1.98 ± 0.11 a | 1.90 ± 0.08 a | 1.69 ± 0.06 b | 1.64 ± 0.07 b | <0.05 |
Kidneys (g/100 g BW) | 0.699 ± 0.019 | 0.746 ± 0.025 | 0.758 ± 0.015 | 0.741 ± 0.017 | NS |
Caecum | |||||
Tissue (g/100 g BW) | 0.195 ± 0.004 b | 0.262 ± 0.014 a | 0.261 ± 0.017 a | 0.314 ± 0.021 a | 0.001 |
Digesta (g/100 g BW) | 0.614 ± 0.036 b | 0.828 ± 0.032 a | 0.861 ± 0.037 a | 0.777 ± 0.059 a | 0.005 |
Ammonia (mg/g) | 0.244 ± 0.017 | 0.228 ± 0.028 | 0.216 ± 0.011 | 0.185 ± 0.008 | NS |
pH | 7.69 ± 0.032 a | 7.56 ± 0.039 a | 7.38 ± 0.055 b | 7.28 ± 0.059 b | <0.001 |
Colon | |||||
Tissue (g/100 g BW) | 0.376 ± 0.025 | 0.412 ± 0.010 | 0.373 ± 0.014 | 0.430 ± 0.017 | 0.072 |
Digesta (g/100 g BW) | 0.443 ± 0.055 b | 0.671 ± 0.041 a | 0.490 ± 0.037 b | 0.470 ± 0.065 b | <0.05 |
pH | 7.80 ± 0.150 | 7.71 ± 0.134 | 7.41 ± 0.181 | 7.39 ± 0.118 | NS |
Parameters | Groups | ANOVA p Value | |||
---|---|---|---|---|---|
C | CS | BK | QU | ||
Microbial enzymatic activity (µmol/h/g digesta) | |||||
α-Glucosidase | 10.7 ± 0.620 b | 12.3 ± 1.32 b | 20.6 ± 1.72 a | 21.0 ± 2.36 a | <0.001 |
β-Glucosidase | 1.95 ± 0.253 d | 6.98 ± 0.749 c | 10.4 ± 0.926 b | 14.31.92 a | <0.001 |
α-Galactosidase | 7.61 ± 0.749 b | 10.9 ± 1.73 b | 24.9 ± 2.22 a | 29.6 ± 2.72 a | <0.001 |
β-Galactosidase | 21.2 ± 2.21 c | 29.6 ± 2.54 b,c | 39.7 ± 4.27 a,b | 60.0 ± 4.29 a | <0.001 |
β-Glu curonidase | 8.97 ± 1.05 c | 39.6 ± 5.87 a | 22.0 ± 2.54 b | 42.0 ± 3.82 a | <0.001 |
SCFA, (μmol/g digesta) | |||||
Acetate | 37.9 ± 2.55 b | 43.0 ± 2.17 b | 58.0 ± 4.81 a | 47.7 ± 4.00 b | <0.005 |
Propionate | 8.42 ± 0.651 | 9.51 ± 0.562 | 10.3 ± 0.530 | 9.48 ± 0.217 | NS |
Isobutyrate | 0.811 ± 0.059 | 0.941 ± 0.078 | 0.947 ± 0.070 | 0.890 ± 0.060 | NS |
Butyrate | 6.49 ± 0.826 b | 7.14 ± 1.17 b | 12.2 ± 0.926 a | 12.1 ± 1.80 a | <0.005 |
Isovalerate | 0.922 ± 0.067 | 1.13 ± 0.116 | 1.06 ± 0.073 | 0.923 ± 0.091 | NS |
Valerate | 0.887 ± 0.096 | 1.01 ± 0.061 | 0.889 ± 0.054 | 0.843 ± 0.052 | NS |
PSCFA | 2.62 ± 0.214 | 3.08 ± 0.234 | 2.90 ± 0.180 | 2.66 ± 0.180 | NS |
SCFA total | 55.4 ± 4.02 c | 62.7 ± 2.65 b,c | 83.4 ± 5.58 a | 71.9 ± 5.38 a,b | <0.005 |
Parameters | Groups | ANOVA p Value | |||
---|---|---|---|---|---|
C | CS | BK | QU | ||
TG (mmol/L) | 3.16 ± 0.470 a | 1.25 ± 0.178 b | 1.68 ± 0.095 a,b | 1.38 ± 0.133 b | <0.005 |
TC (mmol/L) | 2.80 ± 0.111 a | 2.41 ± 0.106 b | 2.08 ± 0.103 c | 1.92 ± 0.097 c | <0.001 |
HDL (mmol/L) | 0.714 ± 0.027 | 0.906 ± 0.087 | 0.859 ± 0.107 | 0.894 ± 0.047 | NS |
LDL (mmol/L) | 0.524 ± 0.035 a | 0.349 ± 0.040 b | 0.187 ± 0.022 c | 0.217 ± 0.021 c | <0.001 |
Parameters | Groups | ANOVA p Value | |||
---|---|---|---|---|---|
C | CS | BK | QU | ||
AST (U/L) | 63.5 ± 3.27 | 62.0 ± 0.933 | 61.4 ± 2.70 | 57.2 ± 2.33 | NS |
ALT (U/L) | 18.9 ± 1.14 c | 20.5 ± 2.23 b,c | 24.6 ± 1.49 a,b | 26.4 ± 1.95 a | <0.05 |
ALP (U/L) | 310 ± 27.0 b | 408 ± 18.4 a | 367 ± 24.2 ab | 451 ± 40.8 a | <0.05 |
Albumin (µmol/L) | 400 ± 5.03 a | 371 ± 5.53 b | 388 ± 6.57 a | 367 ± 3.73 b | 0.001 |
Uric acid (µmol/L) | 16.6 ± 1.94 | 20.7 ± 2.91 | 14.9 ± 1.84 | 16.0 ± 2.23 | NS |
Creatinine (µmol/L) | 15.9 ± 2.51 | 17.4 ± 1.82 | 11.9 ± 1.61 | 14.4 ± 1.93 | NS |
IL-6 (pg/mL) | 201 ± 1.50 b | 216 ± 8.00 a,b | 204 ± 5.55 a,b | 230 ± 7.54 a | <0.05 |
IL-10 (pg/mL) | 48.7 ± 2.18 | 48.5 ± 2.84 | 53.0 ± 2.71 | 54.6 ± 2.01 | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Amarowicz, R.; Opyd, P.; Bez, J.; Muranyi, I.; Lykke Petersen, I.; Laparra Llopis, M. Protein-Rich Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid Profile of Rats. Nutrients 2020, 12, 2781. https://doi.org/10.3390/nu12092781
Fotschki B, Juśkiewicz J, Jurgoński A, Amarowicz R, Opyd P, Bez J, Muranyi I, Lykke Petersen I, Laparra Llopis M. Protein-Rich Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid Profile of Rats. Nutrients. 2020; 12(9):2781. https://doi.org/10.3390/nu12092781
Chicago/Turabian StyleFotschki, Bartosz, Jerzy Juśkiewicz, Adam Jurgoński, Ryszard Amarowicz, Paulina Opyd, Jürgen Bez, Isabel Muranyi, Iben Lykke Petersen, and Moisés Laparra Llopis. 2020. "Protein-Rich Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid Profile of Rats" Nutrients 12, no. 9: 2781. https://doi.org/10.3390/nu12092781
APA StyleFotschki, B., Juśkiewicz, J., Jurgoński, A., Amarowicz, R., Opyd, P., Bez, J., Muranyi, I., Lykke Petersen, I., & Laparra Llopis, M. (2020). Protein-Rich Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid Profile of Rats. Nutrients, 12(9), 2781. https://doi.org/10.3390/nu12092781