Effect of Dairy Protein Intake on Muscle Mass among Korean Adults: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Dairy Consumption
2.3. Covariates
2.4. Assessment of Body Composition
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Rom, O.; Kaisari, S.; Aizenbud, D.; Reznick, A.Z. Lifestyle and sarcopenia-etiology, prevention, and treatment. Rambam Maimonides Med. J. 2012, 3, e0024. [Google Scholar] [CrossRef]
- Beard, J.; Officer, A.; Cassels, A. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013, 3, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Burton, L.A.; Sumukadas, D. Optimal management of sarcopenia. Clin. Interv. Aging 2010, 5, 217–228. [Google Scholar] [PubMed] [Green Version]
- Beasley, J.M.; Shikany, J.M.; Thomson, C.A. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr. Clin. Pract. 2013, 28, 684–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulmi, J.J.; Lockwood, C.M.; Stout, J.R. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr. Metab. 2010, 7, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.Y.; Zhang, L.; He, K.; Qin, L.Q. Dairy consumption and risk of breast cancer: A meta-analysis of prospective cohort studies. Breast Cancer Res. Treat. 2011, 127, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Andersson, S.-O.; Johansson, J.-E.; Wolk, A. Cultured milk, yogurt, and dairy intake in relation to bladder cancer risk in a prospective study of Swedish women and men. Am. J. Clin. Nutr. 2008, 88, 1083–1087. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; Avezum, A.; et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2018, 392, 2288–2297. [Google Scholar] [CrossRef]
- Shin, S.; Lee, H.W.; Kim, C.E.; Lim, J.; Lee, J.K.; Kang, D. Association between milk consumption and Metabolic Syndrome among Korean adults: Results from the health examinees study. Nutrients 2017, 9, 1102. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kim, J. Dairy consumption is associated with a lower incidence of the metabolic syndrome in middle-aged and older Korean adults: The Korean Genome and Epidemiology Study (KoGES). Br. J. Nutr. 2017, 117, 148–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesse-Guyot, E.; Assmann, K.; Andreeva, V.; Ferry, M.; Hercberg, S.; Galan, P. Consumption of dairy products and cognitive functioning: Findings from the SU. VI. MAX 2 study. J. Nutr. Health Aging 2016, 20, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Triana, F.; Verdejo-Bravo, C.; Fernandez-Perez, C.; Martin-Sanchez, F.J. Effect of milk and other dairy products on the risk of frailty, sarcopenia, and cognitive performance decline in the elderly: A systematic review. Adv. Nutr. 2019, 10, S105–S119. [Google Scholar] [CrossRef]
- Hess, J.M.; Jonnalagadda, S.S.; Slavin, J.L. Dairy Foods: Current evidence of their effects on bone, cardiometabolic, cognitive, and digestive health. Compr. Rev. Food Sci. Food Saf. 2016, 15, 251–268. [Google Scholar] [CrossRef]
- Sato, Y.; Iki, M.; Fujita, Y.; Tamaki, J.; Kouda, K.; Yura, A.; Moon, J.S.; Winzenrieth, R.; Iwaki, H.; Ishizuka, R.; et al. Greater milk intake is associated with lower bone turnover, higher bone density, and higher bone microarchitecture index in a population of elderly Japanese men with relatively low dietary calcium intake: Fujiwara-kyo osteoporosis risk in men (FORMEN) study. Osteoporos. Int. 2015, 26, 1585–1594. [Google Scholar] [PubMed]
- Sahni, S.; Tucker, K.L.; Kiel, D.P.; Quach, L.; Casey, V.A.; Hannan, M.T. Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: The Framingham Offspring Study. Arch. Osteoporos. 2013, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Bonjour, J.-P.; Kraenzlin, M.; Levasseur, R.; Warren, M.; Whiting, S. Dairy in adulthood: From foods to nutrient interactions on bone and skeletal muscle health. J. Am. Coll. Nutr. 2013, 32, 251–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.; Hong, K.; Kang, S.W.; Joung, H. A milk and cereal dietary pattern is associated with a reduced likelihood of having a low bone mineral density of the lumbar spine in Korean adolescents. Nutr. Res. 2013, 33, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Stevens, J.; Cai, J.; Haines, P.S. Dairy, fruit, and vegetable intakes and functional limitations and disability in a biracial cohort: The Atherosclerosis Risk in Communities Study. Am. J. Clin. Nutr. 2005, 81, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Machado-Fragua, M.D.; Struijk, E.A.; Caballero, F.F.; Ortola, R.; Lana, A.; Banegas, J.R.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Dairy consumption and risk of falls in 2 European cohorts of older adults. Clin. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hanach, N.I.; McCullough, F.; Avery, A. The Impact of Dairy Protein Intake on Muscle Mass, Muscle Strength, and Physical Performance in Middle-Aged to Older Adults with or without Existing Sarcopenia: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radavelli-Bagatini, S.; Zhu, K.; Lewis, J.R.; Dhaliwal, S.S.; Prince, R.L. Association of dairy intake with body composition and physical function in older community-dwelling women. J. Acad. Nutr. Diet. 2013, 113, 1669–1674. [Google Scholar] [CrossRef]
- Alexandrov, N.V.; Eelderink, C.; Singh-Povel, C.M.; Navis, G.J.; Bakker, S.J.L.; Corpeleijn, E. Dietary protein sources and muscle mass over the life course: The lifelines cohort study. Nutrients 2018, 10, 1471. [Google Scholar] [CrossRef] [Green Version]
- Alemán-Mateo, H.; Macías, L.; Esparza-Romero, J.; Astiazaran-García, H.; Blancas, A.L. Physiological effects beyond the significant gain in muscle mass in sarcopenic elderly men: Evidence from a randomized clinical trial using a protein-rich food. Clin. Interv. Aging 2012, 7, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Björkman, M.P.; Pilvi, T.; Kekkonen, R.; Korpela, R.; Tilvis, R. Similar effects of leucine rich and regular dairy products on muscle mass and functions of older polymyalgia rheumatica patients: A randomized crossover trial. J. Nutr. Health Aging 2011, 15, 462–467. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, H.S.; Kim, H.; Kwon, Y.J.; Lee, J.W. Association of milk consumption frequency on muscle mass and strength: An analysis of three representative Korean population studies. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- DeSalvo, K.B.; Olson, R.; Casavale, K.O. Dietary guidelines for Americans. JAMA 2016, 315, 457–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, M.J.; Rasmussen, B.B. Leucine-enriched nutrients and the regulation of mTOR signalling and human skeletal muscle protein synthesis. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 222–226. [Google Scholar] [CrossRef]
- Phillips, S.M.; Tang, J.E.; Moore, D.R. The role of milk-and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J. Am. Coll. Nutr. 2009, 28, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, C.; Santarpia, L.; Buonifacio, M.; Nardelli, A.; Caldara, A.R.; Silvestri, E.; Contaldo, F.; Pasanisi, F. European food-based dietary guidelines: A comparison and update. Nutrition 2015, 31, 908–915. [Google Scholar] [CrossRef]
- Chaltiel, D.; Adjibade, M.; Deschamps, V.; Touvier, M.; Hercberg, S.; Julia, C.; Kesse-Guyot, E. Programme national nutrition sante-guidelines score 2 (PNNS-GS2): Development and validation of a diet quality score reflecting the 2017 French dietary guidelines. Br. J. Nutr. 2019, 122, 331–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshiike, N.; Hayashi, F.; Takemi, Y.; Mizoguchi, K.; Seino, F. A new food guide in Japan: The Japanese food guide spinning top. Nutr. Rev. 2007, 65, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare; The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2015; The Korean Nutrition Society: Seoul, Korea, 2015.
- Jun, S.; Ha, K.; Chung, S.; Joung, H. Meat and milk intake in the rice-based Korean diet: Impact on cancer and metabolic syndrome. Proc. Nutr. Soc. 2016, 75, 374–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korea Centers for Disease Control and Prevention. Korea Health Statistics 2015; Ministry of Health and Welfare: Sejong, Korea, 2016.
- Michaelsson, K.; Wolk, A.; Langenskiold, S.; Basu, S.; Warensjo Lemming, E.; Melhus, H.; Byberg, L. Milk intake and risk of mortality and fractures in women and men: Cohort studies. BMJ 2014, 349, g6015. [Google Scholar] [CrossRef] [Green Version]
- So, E.; Choi, S.K.; Joung, H. Impact of dietary protein intake and obesity on lean mass in middle-aged individuals after a 12-year follow-up: The Korean Genome and Epidemiology Study (KoGES). Br. J. Nutr. 2019, 122, 322–330. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef]
- The Korean Nutrition Society. Food composition table. In Recommended Dietary Allowances for Koreans, 7th ed.; The Korean Nutrition Society: Seoul, Korea, 2000. [Google Scholar]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1435–1445. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S516. [Google Scholar] [CrossRef] [Green Version]
- Clarys, J.; Martin, A.; Drinkwater, D. Gross tissue weights in the human body by cadaver dissection. Hum. Biol. 1984, 459–473. [Google Scholar]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Lee, Y.; Chung, Y.S.; Lee, D.J.; Joo, N.S.; Hong, D.; Song, G.; Kim, H.J.; Choi, Y.J.; Kim, K.M. Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean national health and nutritional examination surveys. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef] [PubMed]
- Bartali, B.; Curto, T.; Maserejian, N.; Araujo, A. Intake of antioxidants and subsequent decline in physical function in a racially/ethnically diverse population. J. Nutr. Health Aging 2015, 19, 542–547. [Google Scholar] [CrossRef]
- Aleman-Mateo, H.; Carreon, V.R.; Macias, L.; Astiazaran-Garcia, H.; Gallegos-Aguilar, A.C.; Enriquez, J.R. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: A single-blind randomized clinical trial. Clin. Interv. Aging 2014, 9, 1517–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abargouei, A.S.; Janghorbani, M.; Salehi-Marzijarani, M.; Esmaillzadeh, A. Effect of dairy consumption on weight and body composition in adults: A systematic review and meta-analysis of randomized controlled clinical trials. Int. J. Obes. 2012, 36, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Verdijk, L.B.; Jonkers, R.A.; Gleeson, B.G.; Beelen, M.; Meijer, K.; Savelberg, H.H.; Wodzig, W.K.; Dendale, P.; van Loon, L.J. Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am. J. Clin. Nutr. 2009, 89, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Tieland, M.; van de Rest, O.; Dirks, M.L.; van der Zwaluw, N.; Mensink, M.; van Loon, L.J.; de Groot, L.C. Protein supplementation improves physical performance in frail elderly people: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2012, 13, 720–726. [Google Scholar] [CrossRef]
- Campbell, W.W.; Leidy, H.J. Dietary protein and resistance training effects on muscle and body composition in older persons. J. Am. Coll. Nutr. 2007, 26, 696S–703S. [Google Scholar] [CrossRef]
- Wolfe, R.R. Update on protein intake: Importance of milk proteins for health status of the elderly. Nutr. Rev. 2015, 73 (Suppl. S1), 41–47. [Google Scholar] [CrossRef]
- Fulgoni, V.L., 3rd; Keast, D.R.; Auestad, N.; Quann, E.E. Nutrients from dairy foods are difficult to replace in diets of Americans: Food pattern modeling and an analyses of the National health and nutrition examination survey 2003–2006. Nutr. Res. 2011, 31, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kim, S.Y.; Wang, Y.; Lee, S.J.; Oh, K.; Sohn, C.Y.; Moon, Y.M.; Jee, S.H. Preservation of a traditional Korean dietary pattern and emergence of a fruit and dairy dietary pattern among adults in South Korea: Secular transitions in dietary patterns of a prospective study from 1998 to 2010. Nutr. Res. 2014, 34, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Park, H.A. Adequacy of Protein Intake among Korean Elderly: An Analysis of the 2013–2014 Korea National Health and Nutrition Examination Survey Data. Korean J. Family Med. 2018, 39, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Oh, C.; No, J. Advantage of dairy for improving aging muscle. J. Obes. Metab. Syndr. 2019, 28, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Lana, A.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Dairy consumption and risk of frailty in older adults: A prospective cohort study. J. Am. Geriatr. Soc. 2015, 63, 1852–1860. [Google Scholar] [CrossRef]
- Zemel, M.; Richards, J.; Mathis, S.; Milstead, A.; Gebhardt, L.; Silver, E. Dairy augmentation of total and central fat loss in obese subjects. Int. J. Obes. 2005, 29, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.-I.; Ha, Y.-C.; Lee, Y.-K.; Yoo, M.-J.; Koo, K.-H. High prevalence of sarcopenia among binge drinking elderly women: A nationwide population-based study. BMC Geriatr. 2017, 17, 114. [Google Scholar] [CrossRef]
- Kim, K.M.; Jang, H.C.; Lim, S. Differences among skeletal muscle mass indices derived from height-,weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J. Intern. Med. 2016, 31, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Liochev, S.I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 2013, 60, 1–4. [Google Scholar] [CrossRef]
- Kim, J.-S.; Wilson, J.M.; Lee, S.-R. Dietary implications on mechanisms of sarcopenia: Roles of protein, amino acids and antioxidants. J. Nutr. Biochem. 2010, 21, 1–13. [Google Scholar] [CrossRef]
- Chaput, J.; Lord, C.; Cloutier, M.; Aubertin-Leheudre, M. Relationship between antioxidant intakes and class I sarcopenia in elderly men and women. J. Nutr. Health Aging 2007, 11, 363. [Google Scholar] [PubMed]
Men (n = 2096) | Women (n = 2316) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | T1 | T2 | T3 | p for Trend b | T1 | T2 | T3 | p for Trend | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
Age (years) | 50.9 | 8.2 | 49.1 | 7.5 | 50.4 | 7.9 | <0.001 | 52.8 | 9.0 | 49.4 | 7.9 | 50.6 | 8.1 | <0.001 |
Residence area (% urban) | 58.9 | 70.8 | 74.9 | <0.001 | 42.8 | 68.8 | 69.4 | <0.001 | ||||||
Education (% ≥College) | 18.8 | 27.8 | 29.8 | <0.001 | 3.7 | 10.0 | 10.1 | <0.001 | ||||||
Household income (% ≥3,000,000 KRW) | 22.0 | 29.9 | 30.6 | <0.001 | 10.7 | 20.6 | 19.5 | <0.001 | ||||||
Marital status (% married) | 96.9 | 96.8 | 97.3 | 0.640 | 86.1 | 90.1 | 87.6 | 0.380 | ||||||
Dental health status (% poor) | 39.9 | 37.2 | 38.8 | 0.677 | 45.8 | 39.0 | 40.9 | 0.051 | ||||||
Chronic disease (% yes) | 1.8 | 1.0 | 1.4 | 0.499 | 6.8 | 4.0 | 3.0 | <0.001 | ||||||
Physical activity (METs-hours/day) | 23.9 | 15.5 | 21.8 | 13.4 | 22.5 | 13.4 | 0.020 | 24.4 | 15.1 | 20.9 | 12.9 | 21.7 | 13.1 | 0.021 |
Alcohol consumption (% yes) | 72.3 | 76.4 | 72.8 | 0.819 | 22.7 | 26.8 | 29.5 | 0.002 | ||||||
Smoking (% yes) | 50.0 | 43.8 | 40.1 | <0.001 | 2.9 | 1.6 | 2.5 | 0.633 | ||||||
BMI (kg/m2) | 24.4 | 2.8 | 24.5 | 2.8 | 24.3 | 2.6 | 0.321 | 24.8 | 3.0 | 24.7 | 2.9 | 24.4 | 2.9 | 0.356 |
Fat mass (kg) | 15.1 | 4.7 | 15.2 | 4.5 | 14.7 | 4.4 | 0.069 | 18.7 | 4.9 | 18.6 | 4.5 | 18.4 | 4.6 | 0.024 |
Lean mass (kg) | 52.9 | 6.4 | 53.9 | 6.1 | 53.2 | 5.9 | 0.010 | 39.9 | 4.6 | 40.5 | 4.2 | 40.1 | 4.1 | 0.218 |
SMI (%) | 40.6 | 2.6 | 40.7 | 2.4 | 40.9 | 2.4 | 0.068 | 35.6 | 2.6 | 35.8 | 2.4 | 35.8 | 2.6 | <0.001 |
Variables | Men (n = 2096) | Women (n = 2316) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | p for Trend | T1 | T2 | T3 | p for Trend | |||||||
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | |||
Energy (kcal/day) | 1852.5 | 20.5 | 2008.3 | 20.8 | 2171.0 | 20.5 | <0.001 | 1714.7 | 20.9 | 1861.2 | 21.3 | 2049.8 | 21.0 | <0.001 |
Macronutrients (% of energy) | ||||||||||||||
Fat | 13.9 | 0.2 | 16.1 | 0.2 | 17.3 | 0.2 | <0.001 | 11.1 | 0.2 | 14.1 | 0.2 | 16.1 | 0.2 | <0.001 |
Carbohydrates | 71.6 | 0.2 | 68.9 | 0.2 | 67.5 | 0.2 | <0.001 | 75.1 | 0.2 | 71.4 | 0.2 | 69.0 | 0.2 | <0.001 |
Protein | 13.1 | 0.1 | 13.9 | 0.1 | 14.3 | 0.1 | <0.001 | 12.5 | 0.1 | 13.6 | 0.1 | 14.1 | 0.1 | <0.001 |
Protein (g/day) | 61.1 | 0.9 | 70.0 | 0.9 | 77.9 | 0.9 | <0.001 | 53.7 | 0.8 | 63.3 | 0.8 | 72.6 | 0.8 | <0.001 |
Dairy protein a (g/day) | 0.1 | 0.1 | 2.0 | 0.1 | 8.0 | 0.1 | <0.001 | 0.2 | 0.1 | 2.8 | 0.1 | 9.0 | 0.1 | <0.001 |
Dairy protein (% of protein) | 0.2 | 0.1 | 3.1 | 0.1 | 10.7 | 0.1 | <0.001 | 0.4 | 0.2 | 4.9 | 0.2 | 13.2 | 0.2 | <0.001 |
Dairy products (g/day) | ||||||||||||||
Milk | 1.9 | 3.3 | 35.4 | 3.3 | 161.1 | 3.3 | <0.001 | 2.7 | 2.4 | 43.2 | 2.4 | 194.2 | 2.4 | <0.001 |
Yogurt | 1.2 | 1.6 | 18.2 | 1.4 | 63.7 | 1.6 | <0.001 | 2.5 | 1.7 | 30.8 | 1.8 | 62.8 | 1.8 | <0.001 |
Cheese | 0.0 | 0.1 | 0.5 | 0.1 | 1.0 | 0.1 | <0.001 | 0.1 | 0.1 | 0.4 | 0.1 | 1.3 | 0.1 | <0.001 |
Vitamins | ||||||||||||||
Vitamin A (ug RE/day) | 449.4 | 13.1 | 566.8 | 13.3 | 653.4 | 13.1 | <0.001 | 400.3 | 13.2 | 499.2 | 13.4 | 616.7 | 13.3 | <0.001 |
Vitamin C (mg/day) | 105.6 | 3.0 | 122.5 | 3.0 | 132.5 | 3.0 | <0.001 | 115.0 | 3.5 | 137.0 | 3.5 | 144.0 | 3.5 | <0.001 |
Vitamin E (mg/day) | 8.4 | 0.2 | 9.8 | 0.2 | 10.7 | 0.2 | <0.001 | 7.6 | 0.2 | 9.4 | 0.2 | 10.3 | 0.2 | <0.001 |
Variables | Men (n = 2096) | Women (n = 2316) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | p for Trend | p for Interaction d | T1 | T2 | T3 | p for Trend | p for Interaction | |
Dairy protein intake a (g/day) | ||||||||||
Cases (n)/person-months | 72/98,000 | 58/95,286 | 47/98,270 | 94/108,607 | 57/105,387 | 67/108,196 | ||||
HR (95% CI) b | Reference | 0.79 (0.54,1.15) | 0.63 (0.42,0.94) | 0.029 | 0.004 | Reference | 0.78 (0.54,1.12) | 0.89 (0.63,1.28) | 0.667 | 0.402 |
Higher protein intake c | ||||||||||
Cases (n)/person-months | 17/29,342 | 22/43,739 | 31/61,273 | 19/35,229 | 23/53,131 | 37/76,721 | ||||
HR (95% CI) | Reference | 0.67 (0.34,1.35) | 0.62 (0.32,1.19) | 0.943 | Reference | 0.84 (0.47,1.51) | 0.96 (0.57,1.64) | 0.636 | ||
Lower protein intake | ||||||||||
Cases (n)/person-months | 55/68,658 | 36/51,547 | 16/36,997 | 75/73,378 | 34/52,256 | 30/31,475 | ||||
HR (95% CI) | Reference | 0.84 (0.53, 1.31) | 0.59 (0.35,0.99) | 0.036 | Reference | 0.72 (0.45,1.15) | 0.83 (0.50,1.36) | 0.743 | ||
Dairy protein intake (% of protein) | ||||||||||
Cases (n)/person-months | 75/96,885 | 57/97,370 | 45/97,301 | 91/106,787 | 59/107,590 | 68/107,813 | ||||
HR (95% CI) | Reference | 0.72 (0.49,1.04) | 0.60 (0.41,0.89) | 0.017 | 0.007 | Reference | 0.80 (0.55,1.15) | 0.89 (0.63,1.26) | 0.640 | 0.439 |
Higher protein intake | ||||||||||
Cases (n)/person-months | 23/34,264 | 19/43,987 | 19/48,016 | 31/49,253 | 30/63,252 | 34/65,277 | ||||
HR (95% CI) | Reference | 0.62 (0.32,1.19) | 0.58 (0.30,1.12) | 0.920 | Reference | 0.97 (0.56,1.69) | 1.05 (0.61,1.81) | 0.704 | ||
Lower protein intake | ||||||||||
Cases (n)/person-months | 52/62,621 | 38/53,383 | 26/49,285 | 60/57,534 | 29/44,338 | 34/42,536 | ||||
HR (95% CI) | Reference | 0.78 (0.50,1.24) | 0.56 (0.34,0.92) | 0.010 | Reference | 0.69 (0.42,1.14) | 0.77 (0.49,1.23) | 0.458 | ||
Milk protein intake (g/day) | ||||||||||
Cases (n)/person-months | 81/107,429 | 55/94,575 | 41/89,552 | 98/114,331 | 46/83,691 | 74/124,168 | ||||
HR (95% CI) | Reference | 0.86 (0.60,1.24) | 0.66 (0.45,0.99) | 0.048 | Reference | 0.78 (0.54,1.14) | 0.88 (0.63,1.13) | 0.641 | ||
Yogurt protein intake (g/day) | ||||||||||
Cases (n)/person-months | 80/123,787 | 42/54,157 | 55/113,612 | 55/113,612 | 86/120,518 | 46/66,918 | ||||
HR (95% CI) | Reference | 1.28 (0.86,1.91) | 0.74 (0.51,1.07) | 0.037 | Reference | 0.90 (0.62,1.32) | 0.96 (0.69,1.33) | 0.930 |
Variables | Dairy Product Consumption (Servings) b | |||
---|---|---|---|---|
<1/week | 1–6/week | ≥1/day | p for Trend | |
Milk Consumption frequency | ||||
Men (n = 2096) | ||||
Cases (n)/person-months | 113/152,767 | 40/86,179 | 24/52,610 | 0.023 |
HR (95% CI) a | Reference | 0.68(0.47,0.99) | 0.62 (0.39,0.98) | |
Women (n = 2316) | ||||
Cases (n)/person-months | 125/151,642 | 37/89,864 | 56/80,684 | 0.657 |
HR (95% CI) | Reference | 0.65 (0.44,0.96) | 1.05 (0.75,1.48) | |
Yogurt Consumption frequency | ||||
Men (n = 2096) | ||||
Cases (n)/person-months | 121/177,375 | 40/83,213 | 16/30,968 | |
HR (95% CI) | Reference | 0.70 (0.48,1.02) | 0.70 (0.41,1.23) | 0.161 |
Women (n = 2316) | ||||
Cases (n)/person-months | 131/186,333 | 58/95,677 | 29/40,180 | |
HR (95% CI) | Reference | 0.96 (0.68,1.35) | 1.11 (0.73,1.70) | 0.996 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
So, E.; Joung, H. Effect of Dairy Protein Intake on Muscle Mass among Korean Adults: A Prospective Cohort Study. Nutrients 2020, 12, 2537. https://doi.org/10.3390/nu12092537
So E, Joung H. Effect of Dairy Protein Intake on Muscle Mass among Korean Adults: A Prospective Cohort Study. Nutrients. 2020; 12(9):2537. https://doi.org/10.3390/nu12092537
Chicago/Turabian StyleSo, Eunjin, and Hyojee Joung. 2020. "Effect of Dairy Protein Intake on Muscle Mass among Korean Adults: A Prospective Cohort Study" Nutrients 12, no. 9: 2537. https://doi.org/10.3390/nu12092537