Space Flight Diet-Induced Deficiency and Response to Gravity-Free Resistive Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Overview
2.2. Dietary Assessment
2.3. Measurement of Gravity-Independent Resistive Exercise Capacity
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Omega-3 Fatty Acid, β-Alanine and Carnosine Intakes
3.3. Effect of Omega-3 Fatty Acid, β-Alanine and Carnosine Intakes on Resistive Exercise
4. Discussion
5. Implications/Future Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Crucian, B.E.; Chouker, A.; Simpson, R.J.; Mehta, S.; Marshall, G.; Smith, S.M.; Zwart, S.R.; Heer, M.; Ponomarev, S.; Whitmire, A.; et al. Immune system dysregulation during spaceflight: Potential countermeasures for deep space exploration missions. Front. Immunol. 2018. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204. [Google Scholar] [CrossRef] [Green Version]
- Chistyakov, D.V.; Astakhova, A.A.; Sergeeva, M.G. Resolution of inflammation and mood disorders. Exp. Mol. Pathol. 2018, 105, 190–201. [Google Scholar] [CrossRef]
- Gorelick, P.B. Role of inflammation in cognitive impairment: Results of observational epidemiological studies and clinical trials. Ann. N. Y. Acad. Sci. 2010, 1207, 155–162. [Google Scholar] [CrossRef]
- Trollor, J.N.; Smith, E.; Agars, E.; Kuan, S.A.; Baune, B.T.; Campbell, L.; Samaras, K.; Crawford, J.; Lux, O.; Kochan, N.A.; et al. The association between systemic inflammation and cognitive performance in the elderly: The Sydney Memory and Ageing Study. Age (Dordr) 2012, 34, 1295–1308. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, M.; Nieman, D.C.; Pederson, B.K. Exercise, nutrition and immune function. J. Sports Sci. 2004, 22, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.W.; Bourland, C.; Barrett, A.; Heer, M.; Smith, S.M. The Role of Nutritional Research in the Success of Human Space Flight12. Adv. Nutr. 2013, 4, 521–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhoover, A.C.; McEnroe, C.B.; Gray, W.D.; O’Brien, I.T.; Kozerski, A.E.; Selimovic, E.A.; Carter, K.A.; Stumbo, J.; Caruso, J.F. A high protein diet improves exercise performance outcomes to workouts done on gravity-independent hardware. J. Exerc. Nutr. 2019, 2, 16. [Google Scholar]
- NASA Space Flight Human-System Standard Volume 2 Revision A (Human Factors, Habitability, and Environmental Health). In NASA Technical Standards Program; NASA: Washington, DC, USA, 2015.
- Nicogossian, A.E.; Huntoon, C.L.; Pool, S.L. Space Physiology and Medicine; Lea and Feiberger: Philadelphia, PA, USA, 1994. [Google Scholar]
- Convertino, V. Planning strategies for development of effective exercise and nutrition countermeasures for long-duration space flight. Nutrition 2002, 18, 880–888. [Google Scholar] [CrossRef] [Green Version]
- Chuong, P.; Wysoczynski, M.; Hellmann, J. Do Changes in Innate Immunity Underlie the Cardiovascular Benefits of Exercise? Front. Cardiovasc. Med. 2019, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.-J.; Calderin, E.P.; Hill, B.G.; Bhatnagar, A.; Hellmann, J. Exercise Promotes Resolution of Acute Inflammation by Catecholamine-Mediated Stimulation of Resolvin D1 Biosynthesis. J. Immunol. 2019, 203, 3013–3022. [Google Scholar] [CrossRef] [PubMed]
- Zwart, S.R.; Pierson, D.; Mehta, S.; Gonda, S.; Smith, S.M. Capacity of omega-3 fatty acids or eicosopentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-KB activation: From cells to bed rest to astronauts. J. Bone Min. Res. 2010, 25, 1049–1057. [Google Scholar]
- Wigmore, S.J.; Barber, M.D.; A Ross, J.; Tisdale, M.J.; Fearon, K.C.H. Effect of Oral Eicosapentaenoic Acid on Weight Loss in Patients With Pancreatic Cancer. Nutr. Cancer 2000, 36, 177–184. [Google Scholar] [CrossRef]
- Wigmore, S.J.; Ross, J.A.; Falconer, J.S.; Plester, C.E.; Tisdale, M.J.; Carter, D.C.; Fearon, K.C. The Effect of Polyunsaturated Fatty Acids on the Progress on Cachexia in Patients With Pancreatic Cancer. Nutrition 1996, 12, S27–S30. [Google Scholar] [CrossRef]
- Boakye, A.A.; Zhang, D.; Guo, L.; Zheng, Y.; Hoetker, D.; Zhao, J.; Kumar Posa, D.; Ng, C.K.; Zheng, H.; Kumar, A.; et al. Carnosine Supplementation Enhances Post Ischemic Hind Limb Revascularization. Front. Physiol. 2019, 10, 751. [Google Scholar] [CrossRef] [PubMed]
- Barski, O.A.; Xie, Z.; Baba, S.P.; Sithu, S.D.; Agareal, A.; Cai, J.; Bhatnagar, A.; Srivastava, S. Dietary Carnosine Prevents Early Atherosclerotic Lesion Formation in Apolipoprotein E-null Mice. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1162–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansurudeen, I.; Sunkari, V.G.; Grünler, J.; Peter, V.; Schmitt, C.P.; Catrina, S.B.; Brismar, K.; Forsberg, E.A. Carnosine Enhances Diabetic Wound Healing in the Db/Db Mouse Model of Type 2 Diabetes. Amino Acids 2012, 43, 127–134. [Google Scholar] [CrossRef]
- Boldyrev, A.A. Does carnsoine possess direct anti-oxidant activity? Int. J. Biochem. 1993, 25, 1101–1107. [Google Scholar] [CrossRef]
- Caruso, J.F.; Charles, J.; Unruh, K.; Giebel, R.; Learmonth, L.; Potter, W.T. Erogenic effects of β-alanine and carnosine: Proposed future research to quantify their efficacy. Nutrients 2012, 4, 585–601. [Google Scholar] [CrossRef] [Green Version]
- Hipkiss, A.R. On the enigma of carnosine’s anti-aging action. Exp. Gerontol. 2008, 44, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Hipkiss, A.R.; Michaelis, J.; Syrris, P. Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett. 1995, 371, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Caruso, J.F.; Barbosa, A.; Perry, R.; Edwards, R.; Erickson, L.; Potter, W.; Keller, M. β-alanine’s impact on exercise and blood lactate values incurred from repetitive supramaximal activity. Isokinet. Exerc. Sci. 2014, 22, 303–309. [Google Scholar] [CrossRef]
- Hoetker, D.; Chung, W.; Zhang, D.; Zhao, J.; Schmidtke, V.K.; Riggs, D.W.; Derave, W.; Bhatnagar, A.; Bishop, D.; Baba, S.P. Exercise alters and β-alanine combined with exercise augments histidyl dipeptide levels and scavenges lipid peroxidation products in human skeletal muscle. J. Appl. Physiol. 2018, 125, 1767–1778. [Google Scholar] [CrossRef] [PubMed]
- Caruso, J.F.; Voor, M.J.; Jaggers, J.R.; Symons, T.B.; Stith, J.M.; Bai, L.; Selimovic, E.A.; Carter, K.A.; Daily, J.P. Musculoskeletal outcomes from chronic high-speed high-impulse resistance exercise. Int. J. Sports Med. 2018, 39, 791–801. [Google Scholar] [CrossRef]
- Davison, S.W.; Chen, L.; Gray, W.D.; McEnroe, C.B.; O’Brien, I.T.; Kozerski, A.E.; Caruso, J.F. Performance-based correlates to calcaneal accretion produced by chronic high-speed resistive exercise. Bone 2019, 128, 115049. [Google Scholar] [CrossRef]
- Chen, L.; Davison, S.W.; Selimovic, E.A.; Mueller, R.E.; Beatty, S.R.; Parmar, P.J.; Carter, K.A.; Symons, T.B.; Pantalos, G.M.; Caruso, J.F. Load-power relationships for high-speed knee extension exercise. J. Strength Cond. Res. 2019, 33, 1480–1487. [Google Scholar] [CrossRef]
- Chen, L.; Selimovic, E.A.; Daunis, M.; Bayers, T.; O’Brien, I.T.; Kozerski, A.E.; McEnroe, C.B.; Vanhoover, A.C.; Gray, W.D.; Caruso, J.F. Time course adaptations to chronic high-speed resistance exercise training sessions. Gravit. Space Res. 2019, 58, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Leeper, A.; Coday, M.A.; Harikumar, P.; Caruso, J.F. Instrumentation of a high-speed inertial exercise device with load cell transducers. In 53rd Int Instrument Symp (Published Conference Proceedings-Expanded Communication); ITS: Washington, DC, USA, 2007. [Google Scholar]
- Smith, S.M.; Zwart, S.R.; Heer, M. Human adaptation to space flight: The role of nutrition. Natl. Aeronaut. Space Adm. 2014, 1, 71–76. [Google Scholar]
- Scientific Report of the 2015 Dietary Guidelines Advisory Committee. 2015. Available online: http://health.gov/dietaryguidelines/2015-scientific-report/pdfs/scientific-reoprt-of-the-2015-dietary-guideliens-advisory-committee.pdf (accessed on 28 May 2020).
- Institute of Medicine. Dietary Reference Intakes. Energy, Carbohydrate, Fiber, Fat Fatty Acids, Cholesterol, Protein and Amino Acids; National Academy of Sciences: Washington, DC, USA, 2005. [Google Scholar]
- Rousseau, J.H.; Kleppinger, A.; Kenny, A.M. Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function. J. Am. Geriatr. Soc. 2009, 57, 1781–1788. [Google Scholar] [CrossRef]
- Artoli, G.G.; Gualano, B.; Smith, A.; Stout, J.; Lancha, A.H. Role of β-alanine supplementation on muscle carnosine and exercise performance. Med. Sci. Sports Exerc. 2009, 42, 1162–1173. [Google Scholar]
- Derave, W.; Everaert, I.; Beckman, S.; Baguet, A. Muscle carnsoine metabolism and β-alanine supplementation in relation to exercise and training. Sports Med. 2010, 40, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Hobson, R.M.; Saunders, B.; Ball, G.; Harris, R.C.; Sale, C. Effects of β-alanine supplementation on exercise performance: A Meta-Analysis. Amino Acids 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drozak, J.; Veiga-da-Cunha, M.; Vetommen, D.; Stroobant, V.; Van Schaftingen, E. Molecular Identification of Carnosine Synthase as ATP-grasp Domain-Containing Protein 1 (ATPGD1). J. Biol. Chem. 2010, 285, 9346–9356. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.A.; Jiang, H.; Hu, Y.; Keep, R.F.; Smith, D.E. Influence of Genetic knockout of Pept2 on the in vivo Disposition of Endogenous and Exogenous Carnosine in Wild-Type and Pept2 null mice. Am. J. Physiol. 2009, 296, R986–R991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and Pathophysiology of Carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef] [PubMed]
- Menini, S.; Iacobini, C.; Ricci, C.; Scipioni, A.; Fantauzzi, C.B.; Giaccari, A.; Salomone, E.; Canevotti, R.; Lapolla, A.; Orioli, M.; et al. D-Carnosine Octylester Attenuates Atherosclerosis and Renal Disease in ApoE Null Mice Fed a Western Diet Through Reduction of Carbonyl Stress and Inflammation. Br. J. Pharmacol. 2012, 166, 1344–1356. [Google Scholar] [CrossRef] [Green Version]
Women (n = 11) | Men (n = 10) | Total (n = 21) | |
---|---|---|---|
Height (cm) | 162.1 ± 2.0 | 178.6 ± 2.6 * | 170.2 ± 1.4 |
Body mass (kg) | 68.5 ± 2.0 | 80.2 ± 2.8 * | 74.1 ± 1.1 |
Body fat (%) | 31.2 ± 2.2 # | 14.7 ± 0.6 | 22.5 ± 2.2 |
Fat free mass (kg) | 48.6 ± 1.2 | 69.4 ± 3.0 * | 58.5 ± 3.1 |
Body Mass Index (kg/m2) | 26.3 ± 0.9 | 25.3 ± 1.0 | 25.6 ± 0.4 |
Women (n = 11) | Men (n = 10) | Total (n = 21) | |
---|---|---|---|
omega-3 fatty acids (g) | 0.47 ± 0.13 | 0.22 ± 0.05 | 0.35 ± 0.07 |
β-alanine (mg) | 369.5 ± 80.3 | 373.3 ± 101.8 | 371.3 ± 62.5 |
carnosine (micromoles/mg) | 6729.3 ± 10.7 | 6729.9 ± 13.6 | 6729.6 ± 8.3 |
kilocalories | 2204 ± 181 | 2800 ± 226 | 2484 ± 157 |
CHO (g/55% of energy intake) | 303 ± 22 | 385 ± 27 | 335 ± 21 |
Fat (g/30% of energy intake) | 74 ± 9 | 93 ± 10 | 82 ± 5.4 |
Protein (g/15% of energy intake) | 83 ± 8 | 105 ± 9 | 91 ± 7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, S.; Smith, T.; Hellmann, J.; Bhatnagar, A.; Carter, K.; Vanhoover, A.; Caruso, J. Space Flight Diet-Induced Deficiency and Response to Gravity-Free Resistive Exercise. Nutrients 2020, 12, 2400. https://doi.org/10.3390/nu12082400
Baba S, Smith T, Hellmann J, Bhatnagar A, Carter K, Vanhoover A, Caruso J. Space Flight Diet-Induced Deficiency and Response to Gravity-Free Resistive Exercise. Nutrients. 2020; 12(8):2400. https://doi.org/10.3390/nu12082400
Chicago/Turabian StyleBaba, Shahid, Ted Smith, Jason Hellmann, Aruni Bhatnagar, Kathy Carter, Alexandria Vanhoover, and John Caruso. 2020. "Space Flight Diet-Induced Deficiency and Response to Gravity-Free Resistive Exercise" Nutrients 12, no. 8: 2400. https://doi.org/10.3390/nu12082400
APA StyleBaba, S., Smith, T., Hellmann, J., Bhatnagar, A., Carter, K., Vanhoover, A., & Caruso, J. (2020). Space Flight Diet-Induced Deficiency and Response to Gravity-Free Resistive Exercise. Nutrients, 12(8), 2400. https://doi.org/10.3390/nu12082400