Chemical Composition and Glycemic Index of Gluten-Free Bread Commercialized in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Mapping and Selection
2.2. Chemical Composition
2.3. In Vivo GI Gauging
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hill, I.D.; Fasano, A.; Guandalini, S.; Hoffenberg, E.; Levy, J.; Reilly, N.; Verma, R. NASPGHAN clinical report on the diagnosis and treatment of gluten-related disorders. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 156–165. [Google Scholar] [CrossRef]
- Sapone, A.; Bai, J.C.; Ciacci, C.; Dolinsek, J.; Green, P.H.R.; Hadjivassiliou, M.; Kaukinen, K.; Rostami, K.; Sanders, D.S.; Schumann, M.; et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med. 2012, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Gadelha de Mattos, Y.; Puppin Zandonadi, R.; Gandolfi, L.; Pratesi, R.; Yoshio Nakano, E.; Pratesi, C. Self-Reported Non-Celiac Gluten Sensitivity in Brazil: Translation, Cultural Adaptation, and Validation of Italian Questionnaire. Nutrients 2019, 11, 781. [Google Scholar] [CrossRef] [Green Version]
- Barada, K.; Abu Daya, H.; Rostami, K.; Catassi, C. Celiac Disease in the Developing World. Gastrointest. Endosc. Clin. N. Am. 2012, 22, 773–796. [Google Scholar] [CrossRef]
- Tonutti, E.; Bizzaro, N. Diagnosis and classification of celiac disease and gluten sensitivity. Autoimmun. Rev. 2014, 13, 472–476. [Google Scholar] [CrossRef]
- Pellegrini, N.; Agostoni, C. Nutritional aspects of gluten-free products. J. Sci. Food Agric. 2015, 95, 2380–2385. [Google Scholar] [CrossRef]
- Missbach, B.; Schwingshackl, L.; Billmann, A.; Mystek, A.; Hickelsberger, M.; Bauer, G.; König, J. Gluten-free food database: The nutritional quality and cost of packaged gluten-free foods. PeerJ 2015, 3, e1337. [Google Scholar] [CrossRef]
- Falcomer, A.L.; Santos Araújo, L.; Farage, P.; Santos Monteiro, J.; Yoshio Nakano, E.; Puppin Zandonadi, R. Gluten contamination in food services and industry: A systematic review. Crit. Rev. Food Sci. Nutr. 2018. [Google Scholar] [CrossRef]
- Machado, J.; Gandolfi, L.; Coutinho De Almeida, F.; Malta Almeida, L.; Puppin Zandonadi, R.; Pratesi, R. Gluten-free dietary compliance in Brazilian celiac patients: Questionnaire versus serological test. Nutr. Clin. Diet. Hosp. 2013, 33, 46–49. [Google Scholar] [CrossRef]
- Farage, P.; Zandonadi, R.P.; Ginani, V.C.; Gandolfi, L.; Nakano, E.Y.; Pratesi, R. Gluten-free diet: From development to assessment of a check-list designed for the prevention of gluten cross-contamination in food services. Nutrients 2018, 10, 1274. [Google Scholar] [CrossRef] [Green Version]
- Cross, C. Gluten-free industry is healthy, but is the food? CMAJ 2013, 185, 4555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melini, V.; Melini, F. Gluten-free diet: Gaps and needs for a healthier diet. Nutrients 2019, 11, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, J.; Lasa, A.; Bustamante, M.A.; Churruca, I.; Simon, E. Nutritional Differences between a Gluten-free Diet and a Diet Containing Equivalent Products with Gluten. Plant Foods Hum. Nutr. 2014, 69, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Lerma, J.; Crespo-Escobar, P.; Martínez-Barona, S.; Fornés-Ferrer, V.; Donat, E.; Ribes-Koninckx, C. Differences in the macronutrient and dietary fibre profile of gluten-free products as compared to their gluten-containing counterparts. Eur. J. Clin. Nutr. 2019, 73, 930–936. [Google Scholar] [CrossRef]
- Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Menard, O.; et al. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr. 2017, 8398. [Google Scholar] [CrossRef] [Green Version]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.-Y.; Zhang, Y.-H.; Wang, P.; Qin, L.-Q. Meta-Analysis of Dietary Glycemic Load and Glycemic Index in Relation to Risk of Coronary Heart Disease. Am. J. Cardiol. 2012, 109, 1608–1613. [Google Scholar] [CrossRef]
- Capriles, V.; Arêas, J. Approaches to reduce the glycemic response of gluten-free products: In vivo and in vitro studies. Food Funct. 2016, 7, 1266–1272. [Google Scholar] [CrossRef]
- Scazzina, F.; Dall’Asta, M.; Casiraghi, M.C.; Sieri, S.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Glycemic index and glycemic load of commercial Italian foods. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 419–429. [Google Scholar] [CrossRef]
- Dhaheri, A.S.A.; Al Ma’awali, A.K.; Laleye, L.C.; Washi, S.A.; Jarrar, A.H.; Meqbaali, F.T.A.; Mohamad, M.N.; Masuadi, E.M. The effect of nutritional composition on the glycemic index and glycemic load values of selected Emirati foods. BMC Nutrition 2015. [Google Scholar] [CrossRef] [Green Version]
- Markets, M. Market Research Report; 2018; p. 483. [Google Scholar]
- Insights, C. Mercado e Consumo; 2019; p. 54. [Google Scholar]
- Hüttner, E.K.; Arendt, E.K. Recent advances in gluten-free baking and the current status of oats. Trends Food Sci. Technol. 2010, 21, 303–312. [Google Scholar] [CrossRef]
- Feizollahi, E.; Mirmoghtadaie, L.; Mohammadifar, M.A.; Jazaeri, S.; Hadaegh, H.; Nazari, B.; Lalegani, S. Sensory, digestion, and texture quality of commercial gluten-free bread: Impact of broken rice flour type. J. Texture Stud. 2018, 49, 395–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houben, A.; Höchstötter, A.; Becker, T. Possibilities to increase the quality in gluten-free bread production: An overview. Eur. Food Res. Technol. 2012, 235, 195–208. [Google Scholar] [CrossRef]
- IBGE (Instituto Brasileiro de Geografia e Estatística). Coordenação de Trabalho e Rendimento Pesquisa de Orçamentos Familiares: 2008–2009. Análise do Consumo Alimentar Pessoal no Brasil; 2011; ISBN 9788524041983. [Google Scholar]
- Jamieson, J.A.; Weir, M.; Gougeon, L. Canadian packaged gluten-free foods are less nutritious than their regular gluten-containing counterparts. PeerJ 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandonadi, R.P.; Botelho, R.B.A.; Araújo, W.M.C. Psyllium as a Substitute for Gluten in Bread. J. Am. Diet. Assoc. 2009, 109, 1781–1784. [Google Scholar] [CrossRef] [PubMed]
- Brasil Resolução RDC no 360, de 23 de dezembro de 2003. Aprova o Regulamento Técnico sobre Rotulagem Nutricional de Alimentos Embalados, tornando obrigatória a rotulagem nutricional. Agencia Nac. Vigilância Sanitária 2003, 1, 1–9.
- Instituto Adolfo Lutz Determinação do teor de umidade em alimentos. Métodos Físico-Químicos Análise Aliment. 1985, 6.
- AOAC Method 942.05—Ash determination and calculation. In Official Methods of Analysis Proximate Analysis and Calculations—Ash Determination; 2006.
- AOAC. Official Methods of Analysis of AOAC International; AOAC International, 2005; ISBN 0935584773. [Google Scholar]
- AOAC Authors Method 990.03—Total nitrogen or Crude Protein. In Official Methods of Analysis of AOAC; 2006.
- AOAC Method 985.29—Dietary Fibre. Off. Methods Anal. AOAC 2012, 2, 100–102.
- FAO Chapter 4—The role of the glycemic index in food choice. Carbohydr. Hum. Nutr. 1998, 1, 1–6.
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L. Glycaemix Index Methodology. Nutr. Res. Rev. 2005, 1, 145–171. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, F.S.; Kaye Foser-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Nascimento, A.B.; Fiates, G.M.R.; Dos Anjos, A.; Teixeira, E. Analysis of ingredient lists of commercially available gluten-free and gluten-containing food products using the text mining technique. Int. J. Food Sci. Nutr. 2013, 64, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Bagolin do Nascimento, A.; Medeiros Rataichesck Fiates, G.; Dos Anjos, A.; Teixeira, E. Availability, cost and nutritional composition of gluten-free products. Br. Food J. 2014, 116, 1842–1852. [Google Scholar] [CrossRef]
- Santos, F.G.; Aguiar, E.V.; Capriles, V.D. Analysis of ingredient and nutritional labeling of commercially available gluten-free bread in Brazil. Int. J. Food Sci. Nutr. 2019, 70, 562–569. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Bustos, M.C.; Vignola, M.B.; Paesani, C.; Salinas, C.N.; Pérez, G.T. A study on fibre addition to gluten free bread: Its effects on bread quality and in vitro digestibility. J. Food Sci. Technol. 2017, 54, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Sabanis, D.; Lebesi, D.; Tzia, C. Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT—Food Sci. Technol. 2009, 42, 1380–1389. [Google Scholar] [CrossRef]
- Alvarez, M.D.; Herranz, B.; Fuentes, R.; Cuesta, F.J.; Canet, W. Replacement of Wheat Flour by Chickpea Flour in Muffin Batter: Effect on Rheological Properties. J. Food Process Eng. 2017, 40, e12372. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, E.; Gormley, T.R.; Arendt, E.K. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci. Technol. 2004, 15, 143–152. [Google Scholar] [CrossRef]
- Aplevicz, K.S.; Demiate, I.M. Caracterização de amidos de mandioca nativos e modificados e utilização em produtos panificados. Ciência Tecnol. Aliment. 2007, 27, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. The impact of resistant starch on characteristics of gluten-free dough and bread. Food Hydrocoll. 2009, 23, 988–995. [Google Scholar] [CrossRef]
- Liu, X.; Mu, T.; Sun, H.; Zhang, M.; Chen, J.; Fauconnier, M.L. Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour. Food Chem. 2018, 239, 1064–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.A.; Tresaco, B.; Bueno, G.; Fleta, J.; Rodríguez, G.; Garagorri, J.M.; Bueno, M. Psyllium fibre and the metabolic control of obese children and adolescents. J. Physiol. Biochem. 2003, 59, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Fratelli, C.; Muniz, D.G.; Santos, F.G.; Capriles, V.D. Modelling the effects of psyllium and water in gluten-free bread: An approach to improve the bread quality and glycemic response. J. Funct. Foods 2018, 42, 339–345. [Google Scholar] [CrossRef]
- Ogbuji, C.A.; David-Chukwu, N.P. Glycemic Indices of Different Cassava Food Products. Eur. J. Basic Appl. Sci. 2016, 3. [Google Scholar]
- Berti, C.; Riso, P.; Monti, L.D.; Porrini, M. In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. Eur. J. Nutr. 2004, 43, 198–204. [Google Scholar] [CrossRef]
- Anvisa. Requisitos Sanitários para Produtos de Cerais, Amido, Farinhas e Farelos; Brasília, 2019. [Google Scholar]
- Capriles, V.A.J. Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads Food & Function. Food Funct. 2013, 4, 104–110. [Google Scholar] [CrossRef]
- Calle, J.; Benavent-Gil, Y.; Rosell, C.M. Development of gluten free breads from Colocasia esculenta flour blended with hydrocolloids and enzymes. Food Hydrocoll. 2019, 98, 105243. [Google Scholar] [CrossRef]
- Roman, L.; Belorio, M.; Gomez, M. Gluten-Free Breads: The Gap Between Research and Commercial Reality. Compr. Rev. Food Sci. Food Saf. 2019, 18, 690–702. [Google Scholar] [CrossRef] [Green Version]
- Jnawali, P.; Kumar, V.; Tanwar, B. Celiac disease: Overview and considerations for development of gluten-free foods. Food Sci. Hum. Wellness 2016, 5, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Alencar, N.M.M.; de Morais, E.C.; Steel, C.J.; Bolini, H.M.A. Sensory characterisation of gluten-free bread with addition of quinoa, amaranth flour and sweeteners as an alternative for coeliac patients. Int. J. Food Sci. Technol. 2017, 52. [Google Scholar] [CrossRef]
Samples | Ingredients as Presented on Labels * |
---|---|
GFB 1 | Water, corn starch, rice flour, vegetable fiber (psyllium), hydroxypropyl methylcellulose, sunflower oil, soy protein, biological yeast, salt, carbon fiber, sugar |
GFB 2 | Modified starch, corn oil, sugar, egg, salt, emulsifiers mono and diglycerides of fatty acids, hydroxypropyl methylcellulose, xanthan gum, flavoring, calcium propionate, and potassium sorbate. |
GFB 3 | Modified starch, starch (cassava and/or corn and/or potato), soy extract, palm fat, powdered glucose, demerara sugar, salt, hydroxypropyl methylcellulose thickeners, xanthan gum, guar gum, calcium propionate preservative, and stearoyl emulsifier 2-sodium lactyl lactate. |
GFB 4 | Cassava starch, corn starch, cassava, soy oil, soy flour, sugar, yeast, salt, INS 282 preservative (calcium propionate), and INS 415 stabilizer (xanthan gum) |
GFB 5 | Cassava starch, soy flour, egg, cornflour, corn starch, soy oil, sugar, yeast, salt, INS 282 preservative (calcium propionate), and INS 415 stabilizer (xanthan gum) |
GFB 6 | Cassava starch, corn starch, carrot, soy flour, soy oil, yeast, salt, INS 282 preservative (calcium propionate), and INS 415 stabilizer (xanthan gum) |
GFB 7 | Cassava starch, corn starch, sweet potato, soy flour, soy oil, yeast, salt, INS 282 preservative (calcium propionate), and INS 415 stabilizer (xanthan gum) |
GFB 8 | Cassava starch, soy flour, egg, cornflour, corn starch, soy oil, sugar, yeast, salt, INS 282 preservative (calcium propionate), and INS 415 stabilizer (xanthan gum) |
WGFB 1 | Water, corn starch, rice flour, vegetable fiber (psyllium), flaxseed, thickener: hydroxypropyl methylcellulose, sunflower oil, soy protein, sunflower seeds, biological yeast, salt, citrus fiber, sugar, and caramelized sugar. |
WGFB 2 | Modified starch, starch, corn oil, sugar, sunflower seed, egg powder, salt, flaxseed meal, quinoa, chia, hydroxypropyl methylcellulose emulsifiers, mono and diglycerides of fatty acids and xanthan gum, conservative calcium propionate and potassium sorbate |
WGFB 3 | Modified starch, starch (cassava and/or corn and/or potato), soy extract, sunflower seed, palm fat, powdered glucose, demerara sugar, quinoa, golden flaxseed, brown flaxseed, chia, millet, salt, thickeners hydroxypropyl methylcellulose, xanthan gum and guar gum, calcium propionate preservative, and sodium stearoyl-2-lactyl lactate emulsifier. |
WGFB 4 | Cassava starch, corn starch, flaxseed flour, soy flour, soy oil, organic yeast, salt, INS 415 stabilizer (xanthan gum), and INS 282 preservative (calcium propionate) |
Samples | Carbohydrates (g) | Protein (g) | Lipid (g) | Dietary Fiber (g) | Ashes (g) | Moisture (g) | Mean iAUC + SD | GI | Classification [37] |
---|---|---|---|---|---|---|---|---|---|
GFB 1 | 32.32 ± 1.81 a,* | 4.34 ± 0.57 a,* | 1.75 ± 0.80 a | 17.21 ± 1.6 f,* | 2.05 ± 0.38 b,* | 42.33 ± 2.02 e,* | 560.70 ± 36.25 | 67.97 b | Medium |
GFB 2 | 46.26± 2.41 c,* | 2.22 ± 0.24 b,* | 4.36 ± 1.34 b,* | 7.74 ± 1.91 a,* | 3.41 ± 0.16 a,* | 36.02 ± 1.47 c,* | 527.96 ± 32.88 | 64.00 a | Medium |
GFB 3 | 41.79 ± 1.99 b,* | 5.09 ± 0.23 c,* | 2.00 ± 0.77 a,* | 10.13 ± 1.05 d,* | 1.83 ± 0.31 b,* | 39.16 ± 2.73 d,* | 578.60 ± 34.61 | 70.14 c | High |
GFB 4 | 52.56 ± 2.89 e,* | 5.11 ± 0.40 c,* | 2.09± 0.65 a,* | 6.85 ± 0.9 a,* | 1.33 ± 0.13 a,* | 32.06 ± 2.01 b,* | 649.33 ± 41.82 | 78.72 e | High |
GFB 5 | 48.35 ± 1.34 c,* | 8.34 ± 0.27 d,* | 3.90 ± 0.64 b,* | 7.69 ± 1.2 b,* | 1.40 ± 0.23 a,* | 30.32 ± 1.54 a,* | 640.84 ± 30.11 | 77.69 e | High |
GFB 6 | 50.65 ± 1.28 d,* | 5.52 ± 0.15 c,* | 2.28 ± 0.27 a,* | 8.80 ± 1.13 c,* | 1.77 ± 0.08 a,b,* | 30.98 ± 2.39 a,* | 659.43 ± 54.10 | 79.94 e | High |
GFB 7 | 48.64 ± 1.77 c,* | 6.72 ± 0.15 e,* | 2.68 ± 0.14 a,* | 6.99 ± 1.16 a,* | 1.18 ± 0.14 a,* | 33.79 ± 2.60 b,* | 631.25 ± 44.65 | 76.53 de | High |
GFB 8 | 48.57 ± 1.73 c,* | 5.30 ± 0.14 c,* | 2.03 ± 0.35 a,* | 7.64 ± 1.04 b,* | 1.03 ± 0.05 a,* | 35.43 ± 1.37 c,* | 621.84 ± 33.94 | 75.39 d | High |
WGFB 1 | 39.66 ± 2.01 e,* | 4.17 ± 0.51 a,* | 0.50 ± 0.80 c,* | 16.26 ± 1.05 f,* | 1.31 ± 0.10 a,* | 38.68 ± 1.70 d,* | 558.16 ± 30.78 | 67.66 b | Medium |
WGFB 2 | 47.32 ± 1.66 c,* | 3.54 ± 0.63 a,* | 3.90 ± 0.94 b,* | 6.79 ± 1.07 a,* | 1.31 ± 0.03 a,* | 37.14 ± 2.28 d,* | 506.94 ± 46.04 | 61.46 a | Medium |
WGFB 3 | 40.1 ± 0.77 b,* | 5.87 ± 0.05 c,* | 3.96 ± 0.81 b,* | 12.56 ± 0.77 e,* | 1.83 ± 0.31 b,* | 38.68 ± 0.37 d,* | 571.03 ± 29.62 | 69.23 b | Medium |
WGFB 4 | 47.95 ± 1.42 c,* | 6.75 ± 0.17 e | 2.03 ± 0.35 a,* | 6.81 ± 1.31 a | 1.03 ± 0.05 a,* | 35.43 ± 1.37 c,* | 621.96 ± 27.16 | 75.40 d | High |
Sample | Carbohydrates | Difference % | Protein | Difference % | Lipids | Difference % | Dietary Fiber | Difference % | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(g) | (g) | (g) | (g) | |||||||||
Analyzed Value 1 | Label Value | Analyzed Value 1 | Label Value | Analyzed Value 1 | Label Value | Analyzed Value 1 | Label Value | |||||
GFB 1 | 32.32 | 38 | −17.57% | 4.34 | 3.2 | +26.27% * | 1.75 | 4 | −128.57% * | 17.21 | 10.4 | +39.57% * |
GFB 2 | 48.34 | 46 | +4.84% | 2.22 | 4.2 | −89.19% * | 4.36 | 5.6 | −28.44% * | 7.74 | 1.2 | +84.50% * |
GFB 3 | 41.79 | 56 | −34.00% * | 5.09 | 1.6 | +68.57% * | 2 | 6.4 | −220.00% * | 10.13 | 1.4 | +86.18% * |
GFB 4 | 52.56 | 42 | +20.09% * | 5.11 | 2.84 | +44.42% * | 2.09 | 5.7 | −172.73% * | 6.85 | 3 | +56.20% * |
GFB 5 | 48.35 | 42 | +13.13% | 8.34 | 5.7 | +31.65% * | 3.9 | 5.7 | −46.15% * | 7.69 | 2 | +73.99% * |
GFB 6 | 50.65 | 58 | −14.51% | 5.52 | 2.84 | +48.55% * | 2.28 | 5.7 | −150.00% * | 8.8 | 2 | +77.27% * |
GFB 7 | 48.64 | 40 | +17.76% | 6.72 | 2.84 | +57.74% * | 2.68 | 2.84 | −5.97% | 6.99 | 2 | +71.39% * |
GFB 8 | 48.57 | 44 | +9.41% | 5.3 | 8.56 | −61.51% * | 2.03 | 5.64 | −177.83% * | 7.64 | 2 | +73.82% * |
WGFB 1 | 39.66 | 40 | +0.34% * | 4.17 | 2.8 | +32.85% * | 0.5 | 2 | −300.00% * | 16.26 | 10 | +38.50% * |
WGFB 2 | 47.32 | 44 | +7.02% | 3.54 | 5 | −41.24% * | 3.9 | 8 | −105.13% * | 6.79 | 2.4 | +64.65% * |
WGFB 3 | 40.11 | 52 | −29.64% * | 5.87 | 2.4 | +59.11% * | 3.96 | 7.4 | −86.87% * | 12.56 | 3.8 | +69.75% * |
WGFB 4 | 47.95 | 42 | +12.41% | 6.75 | 5.7 | +15.56% | 2.03 | 5.7 | −180.79% * | 6.81 | 4 | +41.26% * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romão, B.; Botelho, R.B.A.; Alencar, E.R.; da Silva, V.S.N.; Pacheco, M.T.B.; Zandonadi, R.P. Chemical Composition and Glycemic Index of Gluten-Free Bread Commercialized in Brazil. Nutrients 2020, 12, 2234. https://doi.org/10.3390/nu12082234
Romão B, Botelho RBA, Alencar ER, da Silva VSN, Pacheco MTB, Zandonadi RP. Chemical Composition and Glycemic Index of Gluten-Free Bread Commercialized in Brazil. Nutrients. 2020; 12(8):2234. https://doi.org/10.3390/nu12082234
Chicago/Turabian StyleRomão, Bernardo, Raquel Braz Assunção Botelho, Ernandes Rodrigues Alencar, Vera Sônia Nunes da Silva, Maria Teresa Bertoldo Pacheco, and Renata Puppin Zandonadi. 2020. "Chemical Composition and Glycemic Index of Gluten-Free Bread Commercialized in Brazil" Nutrients 12, no. 8: 2234. https://doi.org/10.3390/nu12082234
APA StyleRomão, B., Botelho, R. B. A., Alencar, E. R., da Silva, V. S. N., Pacheco, M. T. B., & Zandonadi, R. P. (2020). Chemical Composition and Glycemic Index of Gluten-Free Bread Commercialized in Brazil. Nutrients, 12(8), 2234. https://doi.org/10.3390/nu12082234