Bone Status in Patients with Phenylketonuria: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Exposure
2.4. Primary Outcome Measures
2.5. Study Selection
2.6. Data Extraction
2.7. Assessment of Risk of Bias
3. Results
3.1. Study Characteristics
3.2. Phenylketonuria and Bone Mineral Content
3.3. Phenylketonuria and Bone Turnover Markers
3.4. Phenylketonuria and Serum Minerals and Hormones
3.5. Risk of Bias Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Camp, K.M.; Parisi, M.A.; Acosta, P.B.; Berry, G.T.; Bilder, D.A.; Blau, N.; Young, J.M. Phenylketonuria scientific review conference: State of the science and future research needs. Mol. Genet. Metab. 2014, 112, 87–122. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, R.; Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963, 32, 338–343. [Google Scholar]
- Hsia, D.Y.; Berman, J.L.; Slatis, H.M. Screening newborn infants for phenylketonuria. JAMA 1964, 188, 203–206. [Google Scholar]
- Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet. J. Rare. Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, G.; Evans, S.; Pointon-Bell, K.; Rocha, J.C.; MacDonald, A. Special Low Protein Foods in the UK: An Examination of Their Macronutrient Composition in Comparison to Regular Foods. Nutrients 2020, 12, 1893. [Google Scholar] [CrossRef] [PubMed]
- Pena, M.J.; de Almeida, M.F.; van Dam, E.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; MacDonald, A.; Robert, M.; et al. Protein substitutes for phenylketonuria in Europe: Access and nutritional composition. Eur. J. Clin. Nutr. 2016, 70, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Levy, H.L.; Milanowski, A.; Chakrapani, A.; Cleary, M.; Lee, P.; Trefz, F.K.; Whitley, C.B.; Feillet, F.; Feigenbaum, A.S.; Bebchuk, J.D.; et al. Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: A phase III randomised placebo-controlled study. Lancet 2007, 370, 504–510. [Google Scholar] [CrossRef]
- Evers, R.A.F.; van Wegberg, A.M.J.; Anjema, K.; Lubout, C.M.A.; van Dam, E.; van Vliet, D.; Blau, N.; van Spronsen, F.J. The first European guidelines on phenylketonuria: Usefulness and implications for BH4 responsiveness testing. J. Inherit. Metab. Dis. 2020, 43, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Zori, R.; Ahring, K.; Burton, B.; Pastores, G.M.; Rutsch, F.; Jha, A.; Jurecki, E.; Rowell, R.; Harding, C. Long-term comparative effectiveness of pegvaliase versus standard of care comparators in adults with phenylketonuria. Mol. Genet. Metab. 2019, 128, 92–101. [Google Scholar] [CrossRef]
- Robert, M.; Rocha, J.C.; van Rijn, M.; Ahring, K.; Bélanger-Quintana, A.; MacDonald, A.; Dokoupil, K.; Gokmen Ozel, H.; Lammardo, A.M.; Goyens, P.; et al. Micronutrient status in phenylketonuria. Mol. Genet. Metab. 2013, 110, S6–S17. [Google Scholar] [CrossRef]
- Montoya Parra, G.A.; Singh, R.H.; Cetinyurek-Yavuz, A.; Kuhn, M.; MacDonald, A. Status of nutrients important in brain function in phenylketonuria: A systematic review and meta-analysis. Orphanet. J. Rare Dis. 2018, 13, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vliet, K.; Rodenburg, I.L.; van Ginkel, W.G.; Lubout, C.M.A.; Wolffenbuttel, B.H.R.; van der Klauw, M.M.; Heiner-Fokkema, M.R.; van Spronsen, F.J. Biomarkers of Micronutrients in Regular Follow-Up for Tyrosinemia Type 1 and Phenylketonuria Patients. Nutrients 2019, 11, 2011. [Google Scholar] [CrossRef] [Green Version]
- Crujeiras, V.; Aldámiz-Echevarría, L.; Dalmau, J.; Vitoria, I.; Andrade, F.; Roca, I.; Leis, R.; Fernandez-Marmiesse, A.; Couce, M.L. Vitamin and mineral status in patients with hyperphenylalaninemia. Mol. Genet. Metab. 2015, 115, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Hofman, D.L.; Champ, C.L.; Lawton, C.L.; Henderson, M.; Dye, L. A systematic review of cognitive functioning in early treated adults with phenylketonuria. Orphanet. J. Rare Dis. 2018, 13, 150. [Google Scholar] [CrossRef] [PubMed]
- Stroup, B.M.; Hansen, K.E.; Krueger, D.; Binkley, N.; Ney, D.M. Sex differences in body composition and bone mineral density in phenylketonuria: A cross-sectional study. Mol. Genet. Metab. Rep. 2018, 15, 30–35. [Google Scholar] [CrossRef]
- Mirás, A.; Bóveda, M.D.; Leis, M.R.; Mera, A.; Aldámiz-Echevarría, L.; Fernández-Lorenzo, J.R.; Fraga, J.M.; Couce, M.L. Risk factors for developing mineral bone disease in phenylketonuric patients. Mol. Genet. Metab. 2013, 108, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Demirdas, S.; Coakley, K.E.; Bisschop, P.H.; Hollak, C.E.; Bosch, A.M.; Singh, R.H. Bone health in phenylketonuria: A systematic review and meta-analysis. Orphanet J. Rare Dis. 2015, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubout, C.M.A.; Blanco, F.A.; Bartosiewicz, K.; Feillet, F.; Gizewska, M.; Hollak, C.; van der Lee, J.H.; Maillot, F.; Stepien, K.M.; Wagenmakers, M.A.E.M.; et al. Bone mineral density is within normal range in most adult PKU patients. J. Inherit. Metab. Dis. 2020, 43, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y.; on behalf of the Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019, 30, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Varsavsky, M.; Romero, M.; Ávila, V.; Becerra, A.; García, A.; Martínez, G.; Rozas, P.; Jódar, E.; Muñoz, M. Consensus document on osteoporosis in males. Endocrinol. Diabetes Nutr. 2018, 65, 9–16. [Google Scholar] [CrossRef]
- Siris, E.S.; Adler, R.; Bilezikian, J.; Bolognese, M.; Dawson-Hughes, B.; Favus, M.J.; Harris, S.T.; Jan de Beur, S.M.; Khosla, S.; Lane, N.E.; et al. The clinical diagnosis of osteoporosis: A position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014, 25, 1439–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno Villares, J.M.; Oliveros Leal, L. Bone mineral turnover and bone densitometry in patients with dietary risk: Hyperphenylalaninemia and galactosemia. Pediatria 2006, 64, 284. [Google Scholar]
- Mirás, A.; Freire Corbacho, A.; Rodríguez García, J.; Leis, R.; Aldámiz-Echevarría, L.; Fraga, J.M.; Couce, M.L. Utility of bone turnover markers in metabolic bone disease detection in patients with phenylketonuria. Med. Clin. 2015, 144, 193–197. [Google Scholar]
- Roato, I.; Porta, F.; Mussa, A.; D’Amico, L.; Fiore, L.; Garelli, D.; Spada, M.; Ferracini, R. Bone impairment in phenylketonuria is characterized by circulating osteoclast precursors and activated T cell increase. PLoS ONE 2010, 5, e14167. [Google Scholar] [CrossRef]
- Dobrowolski, S.F.; Tourkova, I.L.; Robinson, L.J.; Secunda, C.; Spridik, K.; Blair, H.C. A bone mineralization defect in the Pahenu2 model of classical phenylketonuria involves compromised mesenchymal stem cell differentiation. Mol. Genet. Metab. 2018, 125, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Coakley, K.E.; Douglas, T.D.; Goodman, M.; Ramakrishnan, U.; Dobrowolski, S.F.; Singh, R.H. Modeling correlates of low bone mineral density in patients with phenylalanine hydroxylase deficiency. J. Inherit. Metab. Dis. 2016, 39, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Shen, M.; Li, H.; Li, X.; He, C. Reduced Bone Mineral Density in Chinese Children with Phenylketonuria. J. Pediatr. Endocrinol. Metab. 2017, 30, 651–656. [Google Scholar] [CrossRef]
- Allen, J.R.; Humphries, I.R.; Waters, D.L.; Roberts, D.C.; Lipsos, A.H.; Howman-Giles, R.G.; Gaskin, K.J. Decreased bone mineral density in children with phenylketonuria. Am. J. Clin. Nutr 1994, 59, 419–422. [Google Scholar] [CrossRef]
- Koura, H.M.; Zaki, S.M.; Ismail, N.A.; Salama, E.E.; El Lebedy, E.H. Relationship Between Biochemical Bone Markers and Bone Mineral Density in Patients with Phenylketonuria Under Restricted Diet. Iran. J. Pediatr. 2014, 24, 23–28. [Google Scholar]
- Hillman, L.; Scholotzhauer, C.; Lee, D.; Grasela, J.; Witter, S.; Allen, S.; Hillman, R. Decreased Bone Mineralization in Children with Phenylketonuria Under Treatment. Eur. J. Pediatr. 1996, 155 (Suppl. 1), S148–S152. [Google Scholar] [CrossRef] [PubMed]
- Mc Murry, M.P.; Chan, G.M.; Leonard, C.O.; Ernst, S.L. Bone Mineral Status in Children with Phenylketonuria--Relationship to Nutritional Intake and Phenylalanine Control. Am. J. Clin. Nutr. 1992, 55, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Koura, H.M.; Ismail, N.A.; Kamel, A.F.; Ahmed, A.M.; Saad-Hussein, A.; Effat, L.K. A long-term study of bone mineral density in patients with phenylketonuria under diet therapy. Arch. Med. Sci. 2011, 7, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Schwahn, B.; Mokov, E.; Scheidhauer, K.; Lettgen, B.; Schönau, E. Decreased Trabecular Bone Mineral Density in Patients with Phenylketonuria Measured by Peripheral Quantitative Computed Tomography. Acta Paediatr. 1998, 87, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Manjón, G.; González, J.M.; Ruiz-Echarri, M.P.; Baldellou, A. Bone mineral turnover and bone densitometry in patients with a high-risk diet: Hyperphenylalaninemia and galactosemia. Pediatria 2005, 63, 224–229. [Google Scholar]
- Ambroszkiewicz, J.; Gajewska, J.; Laskowska-Klita, T. A study of bone turnover markers in prepubertal children with Phenylketonuria. Eur. J. Pediatr. 2004, 163, 177–178. [Google Scholar] [PubMed]
- Al-Qadreh, A.; Schulpis, K.H.; Athanasopoulou, H.; Mengreli, C.; Skarpalezou, A.; Voskaki, I. Bone mineral status in children with Phenylketonuria under treatment. Acta Paediatr. 1998, 87, 1162–1166. [Google Scholar] [CrossRef]
- Millet, P.; Vilaseca, M.A.; Valls, C.; Pérez-Dueñas, B.; Artuch, R.; Gómez, L.; Lambruschini, N.; Campistol, J. Is Deoxypyridinoline a good resorption marker to detect osteopenia in Phenylketonuria? Clin. Biochem. 2005, 38, 1127–1132. [Google Scholar] [CrossRef]
- Pérez-Dueñas, B.; Cambra, F.J.; Vilaseca, M.A.; Lambruschini, N.; Campistol, J.; Camacho, J.A. New Approach to Osteopenia in Phenylketonuric Patients. Acta Paediatr. 2002, 91, 899–904. [Google Scholar] [CrossRef]
- Nagasaka, H.; Tsukahara, H.; Takatani, T.; Sanayama, Y.; Takayanagi, M.; Ohura, T.; Sakamoto, O.; Ito, T.; Wada, M.; Yoshino, M.; et al. Cross-sectional Study of Bone Metabolism with Nutrition in Adult Classical Phenylketonuric Patients Diagnosed by Neonatal Screening. J. Bone Min. Metab. 2011, 29, 737–743. [Google Scholar] [CrossRef]
- Porta, F.; Roato, I.; Mussa, A.; Repici, M.; Gorassini, E.; Spada, M.; Ferracini, R. Increased spontaneous osteoclastogenesis from peripheral blood mononuclear cells in Phenylketonuria. J. Inherit. Metab. Dis. 2008, 31 (Suppl. 2), S339–S342. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Harvey, N.C.; McCloskey, E.V.; Mitchell, P.J.; Dawson-Hughes, B.; Pierroz, D.D.; Reginster, J.Y.; Rizzoli, R.; Cooper, C.; Kanis, J.A. Mind the (treatment) gap: A global perspective on current and future strategies for prevention of fragility fractures. Osteoporos. Int. 2017, 28, 1507–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgström, F.; Karlsson, L.; Ortsäter, G.; Norton, N.; Halbout, P.; Cooper, C.; Lorentzon, M.; McCloskey, E.V.; Harvey, N.C.; Javaid, M.K.; et al. Fragility fractures in Europe: Burden, management and opportunities. Arch. Osteoporos. 2020, 15, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greeves, L.G.; Carson, D.J.; Magee, A.; Patterson, C.C. Fractures and phenylketonuria. Acta Paediatr. 1997, 86, 242–244. [Google Scholar] [CrossRef]
- Rizzoli, R.; Biver, E.; Bonjour, J.P.; Coxam, V.; Goltzman, D.; Kanis, J.A.; Lappe, J.; Rejnmark, L.; Sahni, S.; Weaver, C.; et al. Benefits and safety of dietary protein for bone health-an expert consensus paper endorsed by the European Society for Clinical and Economical Aspects of Osteopororosis, Osteoarthritis, and Musculoskeletal Diseases and by the International Osteoporosis Foundation. Osteoporos. Int. 2018, 29, 1933–1948. [Google Scholar] [CrossRef]
Reference Country | n | Age 1 | Trial Type/ Phe Levels 2 | Outcome Measure | Results 3 | Conclusions |
---|---|---|---|---|---|---|
Wang et al., China (2017) [28] | 105 41 PKU | 3–4 | Cross-sectional/ PG: 43–1776 μmol/L | Mean lumbar L1–L4 BMD (DXA) in g/cm2 | L1–L4 BMD: (3 years) PG 0.49 ± 0.06; CG 0.54 ± 0.05 (p = 0.03); (4 years) PG 0.51 ± 0.09; CG 0.57 ± 0.06 (p = 0.01) | Significantly lower lumbar BMD |
Allen et al., Australia (1994) [29] | 127(50 F) 32 PKU | PG 7.7 ± 2.3 CG 8.1 ± 2.1 | Cross-sectional | Mean total body and lumbar L2–L4 BMD (DXA) in g/cm2 | TBMD: PG 0.77 ± 0.08; CG 0.81 ± 0.07 (p < 0.05) L2-L4 BMD: PG 0.61 ± 0.10; CG 0.78 ± 0.06 (p < 0.05) | Significantly lower lumbar and total BMD |
Koura et al., Egypt (2014) [30] | 77 (34 F) 33 PKU | PG 8.4 ± 4.6 CG 8.5 ± 3.3 | Cross-sectional | Mean total body BMC and Z-score BMC, femoral neck and lumbar spine BMD, and Z-score BMD (DXA) in g and g/m2 | TBMC: PG 1072 ± 596; CG 1269 ± 557 Z-TBMC: PG −0.1 ± 1.2; CG 1.1 ± 1 (p < 0.001) Femoral neck BMD: PG 0.5 ± 0.1; CG 0.7 ± 0.1 (p < 0.001) Femoral neck Z-BMD: PG −0.6 ± 0.7; CG 0.02 ± 0.4 (p < 0.001) Lumbar BMD: PG 0.5 ± 0.1; CG 0.5 ± 0.1 Lumbar Z-BMD: PG −0.3 ± 0.6; CG 0.06 ± 0.6 (p = 0.01) | Significantly lower Z-TBMC, femoral neck BMD and z-BMD, and lumbar z-BMD |
Hillman et al., USA (1996) [31] | 22 11 PKU | PG 10.9 ± 4.2 CG 11.4 ± 4.2 | Cross-sectional PG: 9.9 ± 9.5 mg/dL | Mean total body, lumbar spine, upper extremity, lower extremity, 1/3 radius and 1/10 radius BMD (DXA) in g/cm2 | TBMD: PG 0.80 ± 0.10; CG 0.88 ± 0.18 Lumbar BMD: PG 0.61 ± 0.15; CG 0.72 ± 0.24 (p = 0.04) Upper BMD: PG 1.25 ± 0.16; CG 1.37 ± 0.28 Lower BMD: PG 1.56 ± 0.3; CG 1.87 ± 0.56 (p = 0.03) 1/3 radius BMD: PG 0.48 ± 0.08; CG 0.53 ± 0.12 1/10 radius BMD: PG 0.32 ± 0.07; CG 0.36 ± 0.11 | Significantly lower lumbar BMD and lower extremities BMD. |
McMurry et al., USA (1992) [32] | 190 (91 F) 26 PKU | PG 1.9–25.5 CG 3–16 | Cohort study PG (1–5 years): 581 ± 121 PG (6–11 years): 1041 ± 188 PG (>11 years): 1629 ± 170 μmol/L | Mean total body BMC and BMD (non-dominant radius single photon absorptiometry) in g/cm and g/cm2 | BMC: (1–5 years) PG 0.26 ± 0.02; CG 0.26 ± 0.07; (6–11 years) PG 0.42 ± 0.01; CG 0.45 ± 0.1; (>11 years) PG 0.70 ± 0.05; CG 0.72 ± 0.15 BMD: (1–5 years) PG 0.28 ± 0.01; CG 0.29 ± 0.06; (6–11 years) PG 0.4 ± 0.007; CG 0.41 ± 0.06; (>11 years) PG 0.57 ± 0.03; CG 0.58 ± 0.008 | No significant differences |
Koura et al., Egypt (2011) [33] | 74 32 PKU | PG 3–19 | Cross-sectional | Mean femoral neck and lumbar L2–4 BMC, BMD, and Z-score BMD (DXA) in g and g/cm2 | Femoral neck BMC: PG 2.0 ± 0.18; CG 0.7 ± 0.07 Femoral neck BMD: PG 0.6 ± 0.03; CG 0.7 ± 0.02 (p < 0.0001) Femoral neck Z-BMD: PG −0.7 ± 0.12; CG 0.03 ± 0.08 (p < 0.0001) Lumbar L2–4 BMC: PG 14.9 ± 1.65; CG 17.4 ± 1.29 Lumbar L2–4 BMD: PG 0.5 ± 0.03; CG 0.6 ± 0.02 Lumbar L2–4 Z-BMD: PG −0.4 ± 0.12; CG 0.1 ± 0.11 (p = 0.01) | Significantly lower femoral neck BMD, femoral neck Z-BMD, and lumbar L2–4 Z-BMD |
Schwahn et al., (1998) [34] | 28 (12 F) 14 PKU | 5–28 | Cross-sectional | Mean TBMD and SBMD (pQCT) in mg/cm3 | TBMD: PG 290.9 ± 64.4; CG 305.4 ± 67.6 SBMD: PG 139.7 ± 23.5; CG 169.3 ± 31.5 (p < 0.01) | Significantly lower SBMD |
Fernández et al., Germany (2005) [35] | 92 7 PKU 10 HPA | PKU 6–29 HPA 4–16 CG 0.5–14 | Cross-sectional | Mean Z-score TBMD (DXA) | Z-TBMD: PKU −0.45 ± 0.83; HPA 0.45 ± 0.86 | No significant differences |
Reference Country | n | Age 1 | Trial Type Phe Levels 2 | Outcome Measure | Results 3 | Conclusions |
---|---|---|---|---|---|---|
Wang et al., China (2017) [28] | 105 41 PKU | 3–4 years | Cross-sectional PG: 43-1776 μmol/L | Mean serum ALP (ELISA) in IU/L | ALP: (3 years) PG 209 ± 54; CG 134 ± 42 (p < 0.01); (4 years) PG 203 ± 51; CG 138 ± 51 (p = 0.01) | Significantly higher serum ALP |
Ambroszkiewicz et al., Poland (2004) [36] | 64 (44 F) 37 PKU | PGG 4.5 PGB 6.0 CG 5.9 | Cross-sectional PGG: 189 ± 64 PGB: 649 ± 140 μmol/L | Mean serum OC (ELISA) in µg/L and BALP (RIA) in IU/L | OC: PGG 67.1 (42–140); PGB 80 (43–148); CG 102.8 (79–121) (p < 0.05) BALP: PGG 93.8 (75–141); PGB 102.5 (74–145); CG 110.2 (89–129) | Significantly lower serum OC |
Koura et al., Egypt (2014) [30] | 77 (34 F) 33 PKU | PG 8.4 ± 4.6 CG 8.5 ± 3.3 | Cross-sectional | Mean serum OC (ELISA) in mg/dL, ALP in IU/L, and PICP (ELISA) in ng/mL | OC: PG 13.9 ± 12.9; CG 43.4 ± 34.5 (p < 0.001) ALP: PG 121.6 ± 46; CG 152 ± 43.1 (p = 0.005) PICP: PG 283.4 ± 114.7; CG 270.7 ± 89.6 | Significantly lower serum OC and ALP |
Al-Qadreh, Greece (1998) [37] | 98 (56 F) 48 PKU | PG 8.8 ± 3.7 CG 9 ± 3.5 | Cross-sectional PG: 11.1 ± 6.6 mg/dL | Mean serum ALP in IU/L | ALP: PG 73.3 ± 4.9; CG 89 ± 3.6 (p = 0.01) | Significantly lower serum ALP |
Hillman et al., USA (1996) [31] | 22 11 PKU | PG 10.9 ± 4.2 CG 11.4 ± 4.2 | Cross-sectional PG: 9.9 ± 9.5 mg/dL | Mean serum OC (RIA) in µg/L, BALP (colorimetry) in IU/L, and PICP (RIA) | OC: PG 6.1 ± 6.3; CG 13.1 ± 2.0 (p < 0.01) BALP: PG 72 ± 30; CG 126 ± 43 (p < 0.001) PICP: PG 290 ± 174; CG 400 ± 159 | Significantly lower serum OC and BALP |
Millet et al., Spain (2005) [38] | 226 (120 F) 46 PKU | PG 17.5 (4–38) CG 8.99 (0–26) | Cross-sectional | Mean serum OC (chemiluminescent assay), and BALP (IRMA) in µg/L | OC: (6–8 years) PG 27.5 (3.6–50); CG 24.1 (3.4–84); (9–15 years) PG 29.9 (9–70); CG 42.6 (5.5–77); (>15 years) PG 7.2 (2.7–35); CG 11.4 (2.7–14) BALP: (6–8 years) PG 64.3 (31.9–89); CG 49.9 (21–114); (9–13 years) PG 69.2 (36–99); CG 51.9 (23–79) (p = 0.016); (14–18 years) PG 30.9 (13–48); CG 27.7 (14–51); (>18 years) PG 14.2 (8.8–39); CG 18.8 (9–21) (p = 0.003) | Significantly higher serum BALP in 9–13 years PKU patients and significantly lower serum BALP in >18 years PKU patients and OC in >15 years patients |
McMurry et al., USA (1992) [32] | 190 (91 F) 26 PKU | PG 1.9–25.5 CG 3–16 | Cohort study PG (1–5 years): 581 ± 121 PG (6–11 years): 1041 ± 188 PG (>11 years): 1629 ± 170 μmol/L | Mean serum ALP in µkat/L | ALP: (1–5 years) PG 1.2 ± 0.1; CG 2.1 ± 0.2 (p < 0.02); (6–11 years) PG 0.9 ± 0.1; CG 1.6 ± 0.1 (p < 0.001); (>11 years) PG 0.6 ± 0.1; CG 1.5 ± 0.1 (p < 0.001) | Significantly lower serum ALP |
Pérez-Dueñas et al., Spain (2002) [39] | 97 28 PKU | PG 18 (10–33) CG 10–34 | Cohort study | Mean serum OC (chemiluminescent assay) and BALP (IRMA) in µg/L | OC: (11–5 years) PG 47.5(19–73); CG 48(15–78); (19–33 years) PG 12.9 (9.5–18.9); CG 9.9 (4.4–26) BALP: (11–15 years) PG 50.8 (22.6–76); CG 42 (15–84); (19–33 years) PG 11.4 (8.8–13); CG 18.9 (16–22) (p < 0.0001) | Significantly lower serum BALP in 19–33 years patient group |
Fernández et al., Spain (2005) [35] | 92 7 PKU 10 HPA | PKU 6–29 HPA 4–16 CG 0.5–14 | Cross-sectional | Mean Z-score serum OC and C-terminal propeptide (enzyme immunoassay) | Z-OC: PKU 0.75 ± 1.26; HPA 0.67 ± 0.92 Z-C-term: PKU −0.23 ± 0.49; HPA 0.91 ± 1.16 | No significant differences |
Nagasaka et al., Japan (2011) [40] | 70 (43 F) 34 PKU | PG 20–35 CG 19–40 | Cross-sectional | Mean serum OC (RIA) in ng/mL and BALP (ELISA) in IU/L | OC: FPG 5.6 ± 0.7; FCG 5.9 ± 0.5; MPG 5.4 ± 1.0; MCG 5.5 ± 0.6 BALP: FPG 22.7 ± 2.2; FCG 21.7 ± 2.5; MPG 28.5 ± 2.7; MCG 25.4 ± 2.7 | No significant differences |
Reference Country | n | Age 1 | Trial Type Phe Levels 2 | Outcome Measure | Results 3 | Conclusions |
---|---|---|---|---|---|---|
Ambroszkiewicz et al., Poland (2004) [36] | 64 (44 F) 37 PKU | PGG 4.5 PGB 6.0 CG 5.9 | Cross-sectional PGG: 189 ± 64 PGB: 649 ± 140 μmol/L | Mean serum CTX (ELISA) in mg/L and OPG (RIA) in pmol/L | CTX: PGG 1322 (1017–2871); PGB 1685 (1096–2762); CG 2030 (1363–2815) (p < 0.01) OPG: PGG 3.58 (2.32–4.59); PGB 3.33 (2.37–5.01); CG: 4.46 (2.34–5.64) (p < 0.01) | Significantly lower serum CTX and OPG |
Koura et al., Egypt (2014) [30] | 77 (34 F) 33 PKU | PG 8.4 ± 4.6 CG 8.5 ± 3.3 | Cross-sectional | Mean serum OPG and RANKL (ELISA) in ng/mL and urinary D-Pyr (ELISA) in mmol/creatinine mmol | OPG: PG 4 ± 0.8; CG 3.3 ± 2.3 RANKL: PG 1.0 ± 0.2; CG 0.1 ± 0.07 (<0.001) D-Pyr: PG 32.3 ± 15; CG 68.1 ± 30.7 (<0.001) | Significantly higher serum RANKL and significantly lower urinary D-Pyr |
Al-Qadreh Greece (1998) [37] | 98 (56 F) 48 PKU | PG 8.8 ± 3.7 CG 9 ± 3.5 | Cross- sectional PG: 11.1 ± 6.6 mg/dL | Mean urinary Ca:Cr ratio | UCa:Cr: PG 0.46 ± 0.05; CG 0.22 ± 0.01 (<0.001) | Significantly higher urinary Ca:Cr ratio |
Hillman et al., USA (1996) [31] | 22 11 PKU | PG 10.9 ± 4.2 CG 11.4 ± 4.2 | Cross-sectional PG: 9.9 ± 9.5 mg/dL | Mean serum TRAP (enzymatically) in IU/L and urinary Ca:Cr ratio | TRAP: PG 11.4 ± 3.3; CG 12.0 ± 5.0 UCa:Cr: PG 0.17 ± 0.22; CG 0.12 ± 0.09 | No significant differences |
Porta et al., Italy (2008) [41] | 40 20 PKU | 14 ± 7.1 | Cross-sectional | Mean number of osteoclasts from PBMC cultures | Osteoclasts: PG 159.9 ± 79.5; CG 87.8 ± 44.7 (p = 0.001) | Significantly higher spontaneous osteoclastogenesis from PBMCs |
Millet et al., Spain (2005) [38] | 226 (120 F) 46 PKU | PG 17.5 (4–38) CG 8.99 (0–26) | Cross-sectional | Mean urinary D-Pyr (chemiluminescent assay) in μmol/mol creatinine and Ca:Cr ratio | D-Pyr: (4–6 years) PG 33.6 (29.1–55.0); CG 27.6 (12.4–45.1); (7–11 years) PG 29.6 (18–40); CG 22 (10.9–36.7) (p = 0.005); (12–14 years) PG 30.7 (17.3–34.4); CG 14.3 (6.9–30) (p = 0.004); (15–17 years) PG 11.4 (6.5–7.2); CG 8.1 (3.6–20.5); (>18 years) PG 6.7 (3.6–13.4); CG 5.4 (3.6–10.9) (p = 0.031) UCa:Cr: (4–6 years) PG 0.38 (0.36–1.8); CG 0.29 (0.01–0.94); (7–11 years) PG 0.43 (0.03–1.03); CG 0.31 (0.03–0.75); (12–14 years) PG 0.17 (0.03–0.56); CG 0.24 (0.02–0.84); (15–17 years) PG 0.33 (0.05–0.57); CG 0.24 (0.06–0.84); (>18 years) PG 0.49 (0.25–0.81); CG 0.33 (0.05–0.56) (p < 0.001). | Significantly higher D-Pyr in 7–14 years and >18 years PKU patients and significantly higher urinary Ca:Cr ratio in >18 years PKU patients |
Fernández et al., Spain (2005) [35] | 92 7 PKU 10 HPA | PKU 6–29 HPA 4–16 CG 0.5–14 | Cross-sectional | Mean Z-score urinary hydroxyproline:creatinine ratio (HPLC) and pyridinoline:creatinine ratio (enzyme immunoassay) | z-H/Cr: PKU −1.07 ± 0.98; HPA −0.43 ± 1.18 z-P/Cr: PKU −0.21 ± 1.26; HPA 1.07 ± 1.25 | No significant differences |
Nagasaka et al., Japan (2011) [40] | 70 (43 F) 34 PKU | PG 20–35 CG 19–40 | Cross-sectional | Mean serum ICTP (RIA) in ng/mL, OPG (ELISA) in pmol/L, urinary D-Pyr (ELISA) and NTx (ELISA) in nmol/mmol, and urinary Ca:Cr ratio | ICTP: FPG 4.6 ± 0.2; FCG 3.0 ± 0.2 (p <0.001); MPG 4.3 ± 0.3; MCG 3.0 ± 0.2 (p <0.01) OPG: FPG 3.3 ± 0.3; FCG 4.7 ± 0.4 (p <0.001); MPG 3.1 ± 0.2; MCG 4.3 ± 0.2 (p <0.01) D-Pyr: FPG 7.3 ± 0.5; FCG 4.9 ± 0.4 (p <0.001); MPG 5.2 ± 0.5; MCG 3.8 ± 0.6 (p <0.01) NTx: FPG 47.8 ± 6.1; FCG 31.7 ± 5.1 (p <0.001); MPG 54.7 ± 12.1; MCG 38.3 ± 10.5 (p <0.01) UCa:Cr: FPG 0.4 6 ± 0.08; FCG 0.33 ± 0.88 (p <0.001); MPG 0.42 ± 0.1; MCG 0.3 ± 0.07 (p <0.05) | Significantly higher ICTP, D-Pyr, NTx, and urinary Ca:Cr ratio; significantly lower serum OPG |
Reference Country | n | Age 1 | Trial Type Phe Levels 2 | Outcome Measure | Results 3 | Conclusions |
---|---|---|---|---|---|---|
Wang et al., China (2017) [28] | 105 41 PKU | 3–4 | Cross-sectional PG: 43-1776 μmol/L | Mean serum Ca and P (colorimetry) in mmol/L | Ca: (3 years) PG 2.42 ± 0.09; CG 2.37 ± 0.12; (4 years) PG 2.41 ± 0.13; CG 2.32 ± 0.12 (p = 0.029) P: (3 years) PG 1.65 ± 0.31; CG 1.53 ± 0.22; (4 years) PG 1.49 ± 0.21; CG 1.57 ± 0.22 | Significantly higher serum Ca in PKU patients |
Al-Qadreh Greece (1998) [37] | 98 (56 F) 48 PKU | PG 8.8 ± 3.7 CG 9 ± 3.5 | Cross sectional PG: 11.1 ± 6.6 mg/dL | Mean serum Ca, Mg, and P in mmol/L, PTH in pmol/L, and 25-OHD in nmol/L | Ca: PG 2.51 ± 0.02; CG 2.47 ± 0.02 (p = 0.04) Mg: PG 0.94 ± 0.01; CG 0.86 ± 0.01 (p < 0.001) P: PG 1.63 ± 0.03; CG 1.65 ± 0.04 PTH: PG 16.6 ± 2.6; CG 23.0 ± 2.4 25-OHD: PG 45.3 ± 3.8; CG 49.16 ± 2.54 | Significantly higher serum Ca and Mg |
Hillman et al., USA (1996) [31] | 22 11 PKU | PG 10.9 ± 4.2 CG 11.4 ± 4.2 | Cross-sectional PG: 9.9 ± 9.5 mg/dL | Mean serum Ca, Mg (flame atomic absorption) and P (calorimetry) in mg/dL, PTH (RIA), and 25-OHD (immunoassay) | Ca: PG 9.1 ± 0.9; CG 10.4 ± 1.9 (p < 0.01) Mg: PG 1.67 ± 0.14; CG 2.07 ± 0.16 (p < 0.001) P: PG 5.6 ± 7.1; CG 5.5 ± 0.9 PTH: PG 24.1 ± 9.1; CG 25.0 ± 9.3 25-OHD: PG 28.3 ± 9.8; CG 22.3 ± 8.5 | Significantly lower serum Ca and Mg |
McMurry et al., USA (1992) [32] | 190 (91 F) 26 PKU | PG 1.9–25.5 CG 3–16 | Cohort study PG (1–5 years): 581 ± 121 PG (6–11 years) 1041 ± 188 PG (>11 years): 1629 ± 170 μmol/L | Mean serum Ca, Mg (atomic absorption spectrophotometry), and P (calorimetry) in mmol/L and 25-OHD (protein binding radio assay) in nmol/L | Ca: (1–5 years) PG 2.35 ± 0.04; CG 2.40 ± 0.02; (6–11 years) PG 2.32 ± 0.02; CG 2.30 ± 0.02; (>11 years) PG 2.35 ± 0.1; CG 2.32 ± 0.05 Mg: (1–5 years) PG 0.74 ± 0.04; CG 0.86 ± 0.04 (p < 0.001); (6–11 years) PG 0.74 ± 0.04; CG 0.91 ± 0.04 (p < 0.001); (>11 years) PG 0.66 ± 0.04; CG 0.82 ± 0.04 (p <0.001) P: (1–5 years) PG 1.68 ± 0.13; CG 1.65 ± 0.06; (6–11 years) PG 1.45 ± 0.06; CG 1.13 ± 0.06(p < 0.02); (>11 years) PG 1.13 ± 0.06; CG 1.65 ± 0.06 25-OHD: (1–5 years) PG 49 ± 8; CG 83 ± 4 (p <0.01); (6–11 years) PG 81 ± 17; CG 66 ± 2; (>11 years) PG 63 ± 10; CG 67 ± 4 | Significantly lower serum Mg and 25-OHD in 1–5 y patient group; significantly higher P in 6–11 y |
Pérez-Dueñas et al., Spain (2002) [39] | 97 28 PKU | PG 18 (10–33) CG 10–34 | Cohort study | Mean serum Ca, Mg, and P (standard procedure) in mg/dL | Ca: PG 2.42 (2.22–2.69); CG 2.41 (2.22–2.65) Mg: PG 0.82 (0.69–0.97); CG 0.83 (0.64–0.98) P: PG 1.22(0.77–1.66); CG 1.29(0.82–1.95) (p = 0.006) | Significantly lower P |
Nagasaka et al., Japan (2011) [40] | 70 (43 F) 34 PKU | PG 20–35 CG 19–40 | Cross-sectional | Mean serum PTH and 25-OHD (RIA) in pg/mL | PTH: FPG 37.5 ± 2.4; FCG 32.3 ± 3.5 (p < 0.05); MPG 36.5 ± 3.8; MCG 32.7 ± 3.7 25-OHD: FPG 18.7 ± 1.3; FCG 27.6 ± 2.1 (p < 0.001); MPG 22.2 ± 1.7; MCG 30.0 ± 2.6 (p < 0.01) | Significantly higher PTH and 25-OHD in FPG; significantly lower 25-OHD in MPG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro, M.J.; de Lamas, C.; Sánchez-Pintos, P.; González-Lamuño, D.; Couce, M.L. Bone Status in Patients with Phenylketonuria: A Systematic Review. Nutrients 2020, 12, 2154. https://doi.org/10.3390/nu12072154
de Castro MJ, de Lamas C, Sánchez-Pintos P, González-Lamuño D, Couce ML. Bone Status in Patients with Phenylketonuria: A Systematic Review. Nutrients. 2020; 12(7):2154. https://doi.org/10.3390/nu12072154
Chicago/Turabian Stylede Castro, María José, Carmela de Lamas, Paula Sánchez-Pintos, Domingo González-Lamuño, and María Luz Couce. 2020. "Bone Status in Patients with Phenylketonuria: A Systematic Review" Nutrients 12, no. 7: 2154. https://doi.org/10.3390/nu12072154