Cross-Sectional Study on the Association between Dietary Non-Enzymatic Antioxidant Capacity and Serum Liver Enzymes: The Furukawa Nutrition and Health Study
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Procedure and Participants
2.2. Blood Sampling and Laboratory Assays
2.3. Dietary Intake
2.4. Other Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cichoz-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Stanner, S.A.; Hughes, J.; Kelly, C.N.; Buttriss, J. A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr. 2004, 7, 407–422. [Google Scholar] [CrossRef]
- Arauz, J.; Ramos-Tovar, E.; Muriel, P. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Ann. Hepatol. 2016, 15, 160–173. [Google Scholar]
- Adikkwu, E.; Deo, O. Hepatoprotective Effect of Vitamin C (Ascorbic Acid). Pharmacol. Pharm. 2013, 4, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Vitaglione, P.; Morisco, F.; Caporaso, N.; Fogliano, V. Dietary antioxidant compounds and liver health. Crit. Rev. Food Sci. Nutr. 2004, 44, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Bielli, A.; Scioli, M.G.; Mazzaglia, D.; Doldo, E.; Orlandi, A. Antioxidants and vascular health. Life Sci. 2015, 143, 209–216. [Google Scholar] [CrossRef]
- Serafini, M.; Villano, D.; Spera, G.; Pellegrini, N. Redox molecules and cancer prevention: The importance of understanding the role of the antioxidant network. Nutr. Cancer. 2006, 56, 232–240. [Google Scholar] [CrossRef]
- Abshirini, M.; Siassi, F.; Koohdani, F.; Qorbani, M.; Mozaffari, H.; Aslani, Z.; Soleymani, M.; Entezarian, M.; Sotoudeh, G. Dietary total antioxidant capacity is inversely associated with depression, anxiety and some oxidative stress biomarkers in postmenopausal women: A cross-sectional study. Ann. Gen. Psychiatry. 2019, 18, 3. [Google Scholar] [CrossRef]
- Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S.; Three-generation Study of Women on, D.; Health Study, G. Inverse association between dietary habits with high total antioxidant capacity and prevalence of frailty among elderly Japanese women: A multicenter cross-sectional study. J. Nutr. Health Aging 2014, 18, 827–839. [Google Scholar] [CrossRef]
- Lee, D.H.; Steffen, L.M.; Jacobs, D.R., Jr. Association between serum gamma-glutamyltransferase and dietary factors: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am. J. Clin. Nutr. 2004, 79, 600–605. [Google Scholar] [CrossRef]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. High serum carotenoids are associated with lower risk for developing elevated serum alanine aminotransferase among Japanese subjects: The Mikkabi cohort study. Br. J. Nutr. 2016, 115, 1462–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torruellas, C.; French, S.W.; Medici, V. Diagnosis of alcoholic liver disease. World J. Gastroenterol. 2014, 20, 11684–11699. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Blomhoff, R.; Jacobs, D.R. ReviewIs Serum Gamma Glutamyltransferase a Marker of Oxidative Stress? Free Radic. Res. 2004, 38, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Mollahosseini, M.; Daneshzad, E.; Rahimi, M.H.; Yekaninejad, M.S.; Maghbooli, Z.; Mirzaei, K. The Association between Fruit and Vegetable Intake and Liver Enzymes (Aspartate and Alanine Transaminases) in Tehran, Iran. Ethiop. J. Health Sci. 2017, 27, 401–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, S.; Shinchi, K.; Imanishi, K.; Todoroki, I.; Hatsuse, K. Coffee and serum gamma-glutamyltransferase: A study of self-defense officials in Japan. Am. J. Epidemiol. 1994, 139, 723–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, K.; Tokunaga, S.; Kono, S.; Tokudome, S.; Akamatsu, T.; Moriyama, T.; Zakouji, H. Coffee consumption and decreased serum gamma-glutamyltransferase and aminotransferase activities among male alcohol drinkers. Int. J. Epidemiol. 1998, 27, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Nakachi, K. Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ 1995, 310, 693–696. [Google Scholar] [CrossRef] [Green Version]
- Mazzanti, G.; Menniti-Ippolito, F.; Moro, P.A.; Cassetti, F.; Raschetti, R.; Santuccio, C.; Mastrangelo, S. Hepatotoxicity from green tea: A review of the literature and two unpublished cases. Eur. J. Clin. Pharmacol. 2009, 65, 331–341. [Google Scholar] [CrossRef]
- Valtuena, S.; Pellegrini, N.; Franzini, L.; Bianchi, M.A.; Ardigo, D.; Del Rio, D.; Piatti, P.; Scazzina, F.; Zavaroni, I.; Brighenti, F. Food selection based on total antioxidant capacity can modify antioxidant intake, systemic inflammation, and liver function without altering markers of oxidative stress. Am. J. Clin. Nutr. 2008, 87, 1290–1297. [Google Scholar] [CrossRef]
- Lettieri-Barbato, D.; Tomei, F.; Sancini, A.; Morabito, G.; Serafini, M. Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: A meta-analysis. Br. J. Nutr. 2013, 109, 1544–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, S.; Eguchi, M.; Kurotani, K.; Kochi, T.; Pham, N.M.; Ito, R.; Kuwahara, K.; Tsuruoka, H.; Mizoue, T.; Kabe, I.; et al. High dietary acid load is associated with increased prevalence of hypertension: The Furukawa Nutrition and Health Study. Nutrition 2015, 31, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Nanri, A.; Eguchi, M.; Kuwahara, K.; Kochi, T.; Kurotani, K.; Ito, R.; Pham, N.M.; Tsuruoka, H.; Akter, S.; Jacka, F.; et al. Macronutrient intake and depressive symptoms among Japanese male workers: The Furukawa Nutrition and Health Study. Psychiatry Res. 2014, 220, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef]
- The Council for Science and Technology, Ministry of Education, Culture, Sports, Science, and Technology, Japan. Standard Tables of Food Composition in Japan Subdivision on Resources; International Network of Food Data Systems (INFOODS): Rome, Italy, 2005; 508p, (Japanese with English). [Google Scholar]
- Kashino, I.; Li, Y.S.; Kawai, K.; Nanri, A.; Miki, T.; Akter, S.; Kobayashi, S.; Kasai, H.; Mizoue, T. Dietary non-enzymatic antioxidant capacity and DNA damage in a working population. Nutrition 2018, 47, 63–68. [Google Scholar] [CrossRef]
- Serafini, M.; Del Rio, D. Understanding the association between dietary antioxidants, redox status and disease: Is the Total Antioxidant Capacity the right tool? Redox. Rep. 2004, 9, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Bastide, N.; Dartois, L.; Dyevre, V.; Dossus, L.; Fagherazzi, G.; Serafini, M.; Boutron-Ruault, M.C. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur. J. Nutr. 2017, 56, 1233–1243. [Google Scholar] [CrossRef]
- Serafini, M.; Jakszyn, P.; Lujan-Barroso, L.; Agudo, A.; Bas Bueno-de-Mesquita, H.; van Duijnhoven, F.J.; Jenab, M.; Navarro, C.; Palli, D.; Boeing, H.; et al. Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int. J. Cancer 2012, 131, E544–E554. [Google Scholar] [CrossRef]
- Hantikainen, E.; Lof, M.; Grotta, A.; Trolle Lagerros, Y.; Serafini, M.; Bellocco, R.; Weiderpass, E. Dietary non enzymatic antioxidant capacity and the risk of myocardial infarction in the Swedish women’s lifestyle and health cohort. Eur. J. Epidemiol. 2018, 33, 213–221. [Google Scholar] [CrossRef]
- Morales, F.J.; Somoza, V.; Fogliano, V. Physiological relevance of dietary melanoidins. Amino Acids 2012, 42, 1097–1109. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Clifford, M.N.; Lean, M.E.; Ashihara, H.; Crozier, A. Coffee: Biochemistry and potential impact on health. Food Funct. 2014, 5, 1695–1717. [Google Scholar] [CrossRef]
- Nakajima, T.; Ohta, S.; Fujita, H.; Murayama, N.; Sato, A. Carbohydrate-related regulation of the ethanol-induced increase in serum gamma-glutamyl transpeptidase activity in adult men. Eur. J. Clin. Nutr. 2007, 61, 69–76. [Google Scholar]
- Nanri, H.; Hara, M.; Nishida, Y.; Shimanoe, C.; Nakamura, K.; Higaki, Y.; Imaizumi, T.; Taguchi, N.; Sakamoto, T.; Horita, M.; et al. Dietary patterns and serum gamma-glutamyl transferase in Japanese men and women. J. Epidemiol. 2015, 25, 378–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Puntarulo, S. Iron, oxidative stress and human health. Mol. Aspects. Med. 2005, 26, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, C.; Kishimoto, Y.; Kondo, K.; Tohyama, K.; Goda, T. Serum gamma-glutamyltransferase is inversely associated with dietary total and coffee-derived polyphenol intakes in apparently healthy Japanese men. Eur. J. Nutr. 2018, 57, 2819–2826. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Bozalan, N.K.; Karadeniz, F. Carotenoid profile, total phenolic content, and antioxidant activity of carrots. Int. J. Food Prop. 2011, 14, 1060–1068. [Google Scholar] [CrossRef]
- Obika, M.; Noguchi, H. Diagnosis and evaluation of nonalcoholic fatty liver disease. Exp. Diabetes Res. 2012, 2012, 145754. [Google Scholar] [CrossRef] [PubMed]
Food Group and Item b | % Total NEAC by FRAP c | % Total NEAC by ORAC |
---|---|---|
Food group | ||
Vegetables | 17.4 | 21.8 |
Fruits | 5.4 | 8.4 |
Cereals | 3.8 | 3.7 |
Pulses | 2.4 | 7.5 |
Oil | 2.1 | - |
Confectionary | 1.5 | 0.1 |
Potatoes | 1.1 | 3.7 |
Beverage Group | ||
Green Tea | 38.1 | 35.2 |
Black and Oolong Tea | 14.3 | 13.3 |
Alcoholic Beverages | 9.1 | 1.2 |
Fruit Juice and Vegetable Juice | 4.7 | 3.5 |
FRAP | ORAC | |||||
---|---|---|---|---|---|---|
Q1 (Lowest) | Q4 (Highest) | p-Value a | Q1 (Lowest) | Q4 (Highest) | p-Value a | |
Age (years) | 41.6 (8.7) b | 44.7 (9.7) | <0.01 | 41.2 (8.6) | 45.0 (9.9) | <0.01 |
Sex (men, %) | 93.3 | 84.2 | <0.01 | 95.5 | 83.2 | <0.01 |
Workplace (site A, %) | 52.9 | 56.7 | 0.37 | 51.1 | 57.3 | 0.05 |
Body Mass Index (kg/m2) | 23.1 (3.4) | 23.4 (3.3) | 0.09 | 23.2 (3.5) | 23.4 (3.3) | 0.36 |
Occupational Physical Activity (≥20 METs-hour/day, %) | 27.7 | 17.4 | <0.01 | 28.6 | 17.1 | <0.01 |
Leisure-Time Physical Activity (≥10 METs-hour/week, %) | 24.6 | 26.8 | <0.01 | 23.9 | 28.1 | <0.01 |
Current Smoker (%) | 34.6 | 25.5 | <0.01 | 37.1 | 24.3 | <0.01 |
Current Alcohol Drinker (≥23 g of ethanol/day, %) | 25.2 | 26.6 | 0.38 | 34.2 | 24.3 | <0.01 |
Dyslipidemia (%) | 2.5 | 6.9 | <0.01 | 2.7 | 5.6 | 0.01 |
Use of Anti-Inflammatory Drug (%) | 7.4 | 8.9 | 0.65 | 6.9 | 8.8 | 0.52 |
Use of Antioxidant Supplements (%) | 9.4 | 12.7 | 0.07 | 8.9 | 12.6 | 0.07 |
Serum Ferritin (μg/L) | 138 (84, 217) | 129 (70, 228) | 0.045 | 141 (90, 218) | 129 (67, 229) | 0.03 |
Coffee Intake (≥1 cup/day, %) | 73.7 | 59.8 | <0.01 | 72.8 | 60.5 | <0.01 |
Total Energy Intake (kcal/day) | 1845 (496) | 1658 (446) | <0.01 | 1864 (502) | 1665 (451) | <0.01 |
Vitamin C (mg/1000 kcal) c | 33.0 (14.2) | 68.4 (27.4) | <0.01 | 29.9 (12.0) | 71.2 (26.3) | <0.01 |
α-Tocopherol Intake (mg/1000 kcal) | 3.2 (0.8) | 3.9 (1.1) | <0.01 | 3.0 (0.8) | 4.0 (1.0) | <0.01 |
α-Carotene Intake (μg/1000 kcal) | 129 (105) | 189 (164) | <0.01 | 112 (88.0) | 204 (166) | <0.01 |
β-Carotene Intake (μg/1000 kcal) | 1051 (662) | 1730 (1174) | <0.01 | 928 (543) | 1852 (1181) | <0.01 |
Cryptoxanthin (μg/1000 kcal) | 75 (74) | 158 (162) | <0.01 | 68 (69) | 162 (156) | <0.01 |
Q1 (lowest) | Q2 | Q3 | Q4 (highest) | p for Trend a | |
---|---|---|---|---|---|
FRAP (mmol Fe2+) b | |||||
Total NEAC | 0.32–2.03 | 2.04–3.07 | 3.08–5.01 | 5.02–25.37 | |
Participants, n | 448 | 446 | 449 | 448 | |
AST | 22.1 (21.6–22.7) c | 22.3 (21.7–22.8) | 22.6 (22.1–23.2) | 22.0 (21.4–22.6) | 0.97 |
ALT | 22.5 (21.7–23.5) | 22.8 (21.9–23.7) | 23.3 (22.4–24.2) | 22.6 (21.7–23.5) | 0.73 |
GGT | 30.8 (29.2–32.4) | 33.7 (32.0–35.5) | 32.3 (30.7–34.0) | 31.2 (29.6–32.9) | 0.96 |
NEAC from Foods | 0.13–0.65 | 0.66–0.89 | 0.90–1.15 | 1.16–3.77 | |
Participants, n | 446 | 454 | 443 | 448 | |
AST | 22.1 (21.6–22.7) | 22.5 (21.9–23.0) | 22.3 (21.8–22.9) | 22.1 (21.6–22.7) | 0.90 |
ALT | 23.0 (22.1–23.9) | 22.7 (21.9–23.6) | 23.3 (22.4–24.3) | 22.2 (21.3–23.1) | 0.39 |
GGT | 33.7 (32.0–35.6) | 32.3 (30.7–34.0) | 32.6 (31.0–34.3) | 29.4 (27.9–31.0) | 0.001 |
NEAC from Beverages | 0.00–1.15 | 1.16–2.11 | 2.12–3.90 | 3.91–23.65 | |
Participants, n | 450 | 446 | 446 | 449 | |
AST | 22.2 (21.7–22.8) | 22.3 (21.8–22.9) | 22.6 (22.0–23.2) | 21.9 (21.3–22.4) | 0.56 |
ALT | 22.6 (21.7–23.5) | 22.7 (21.8–23.6) | 23.3 (22.4–24.2) | 22.7 (21.9–23.7) | 0.58 |
GGT | 30.9 (29.3–32.5) | 32.8 (31.2–34.5) | 33.2 (31.6–35.0) | 31.1 (29.5–32.7) | 0.76 |
ORAC (mmol TE) b | |||||
Total NEAC | 0.43–3.10 | 3.11–4.71 | 4.72–7.35 | 7.36–37.40 | |
Participants, n | 448 | 448 | 450 | 445 | |
AST | 22.2 (21.6–22.7) | 22.2 (21.7–22.8) | 22.7 (22.2–23.3) | 21.9 (21.3–22.4) | 0.72 |
ALT | 22.5 (21.7–23.5) | 22.9 (22.0–23.8) | 23.2 (22.3–24.1) | 22.5 (21.6–23.4) | 0.92 |
GGT | 31.7 (30.1–33.4) | 33.6 (32.0–35.4) | 32.1 (30.5–33.8) | 30.5 (28.9–32.2) | 0.19 |
NEAC from Foods | 0.03–1.41 | 1.42–1.95 | 1.96–2.60 | 2.61–7.95 | |
Participants, n | 456 | 443 | 452 | 450 | |
AST | 22.0 (21.5–22.6) | 22.5 (21.9–23.0) | 22.7 (22.1–23.2) | 21.8 (21.3–22.4) | 0.71 |
ALT | 22.7 (21.8–23.6) | 23.2 (22.3–24.1) | 23.4 (22.5–24.3) | 21.9 (21.1–22.8) | 0.32 |
GGT | 32.6 (30.9–34.3) | 33.0 (31.3–34.7) | 33.0 (31.3–34.7) | 29.6 (28.1–31.2) | 0.02 |
NEAC from Beverages | 0.00–1.18 | 1.19–2.46 | 2.47–4.99 | 5.00–32.33 | |
Participants, n | 450 | 443 | 450 | 448 | |
AST | 22.2 (21.7–22.8) | 22.4 (21.9–23.0) | 22.5 (22.0–23.1) | 21.9 (21.3–22.4) | 0.45 |
ALT | 22.4 (21.6–23.3) | 22.9 (22.0–23.8) | 23.3 (22.4–24.3) | 22.5 (21.6–23.4) | 0.76 |
GGT | 31.6 (30.0–33.2) | 32.5 (30.8–34.2) | 33.3 (31.7–35.1) | 30.7 (29.1–32.3) | 0.63 |
Q1 (Lowest) | Q2 | Q3 | Q4 (Highest) | p for Trend a | |
---|---|---|---|---|---|
Age | |||||
<Median b | 248 | 328 | 172 | 180 | |
AST | 21.3 (20.6–22.0) c | 21.6 (20.9–22.3) | 22.1 (21.3–23.0) | 22.1 (21.3–23.0) | 0.48 |
ALT | 22.3 (21.1–23.5) | 22.2 (21.0–23.5) | 22.4 (21.0–23.8) | 21.7 (20.4–23.8) | 0.60 |
GGT | 27.7 (26.0–29.5) | 28.8 (27.0–30.8) | 27.7 (25.7–29.9) | 26.4 (24.4–28.4) | 0.30 |
≥Median | 200 | 208 | 277 | 268 | |
AST | 22.8 (21.9–23.7) | 23.0 (22.1–23.9) | 23.2 (22.4–24.0) | 22.5 (21.7–23.3) | 0.70 |
ALT | 22.6 (21.3–24.0) | 23.5 (22.2–24.8) | 24.0 (22.8–25.2) | 23.3 (22.2–24.5) | 0.40 |
GGT | 33.3 (30.7–36.1) | 38.9 (35.9–42.1) | 36.8 (34.4–39.5) | 36.1 (33.6–38.8) | 0.36 |
Body Mass Index | |||||
<25.0 kg/m2, n | 341 | 345 | 332 | 327 | |
AST | 21.1 (20.5–21.7) | 21.4 (20.8–22.0) | 22.1 (20.9–22.1) | 21.5 (20.8–22.1) | 0.21 |
ALT | 20.2 (19.3–21.1) | 20.2 (19.3–21.1) | 21.1 (20.2–22.1) | 20.8 (19.9–21.8) | 0.21 |
GGT | 27.5 (25.9–29.1) | 29.7 (28.1–31.5) | 29.6 (27.9–31.4) | 28.7 (27.1–30.5) | 0.33 |
≥25.0 kg/m2, n | 107 | 101 | 117 | 121 | |
AST | 25.3 (23.9–26.8) | 25.1 (23.7–26.6) | 24.5 (23.2–25.9) | 23.9 (22.6–25.2) | 0.14 |
ALT | 30.8 (28.1–33.8) | 32.8 (29.8–36.1) | 31.5 (28.8–34.4) | 29.7 (27.2–32.4) | 0.46 |
GGT | 43.3 (38.5–48.7) | 49.8 (44.2–56.2) | 42.0 (37.5–46.9) | 40.7 (36.4–45.5) | 0.19 |
Smoking | |||||
Non-Smoker, n | 293 | 307 | 331 | 334 | |
AST | 22.0 (21.3–22.6) | 22.3 (21.6–23.0) | 22.9 (22.2–23.6) | 22.0 (21.4–22.7) | 0.59 |
ALT | 22.0 (20.9–23.1) | 22.3 (21.2–23.3) | 22.9 (21.9–23.9) | 21.9 (21.0–23.0) | 0.85 |
GGT | 29.9 (28.0–31.9) | 32.1 (30.2–34.2) | 31.0 (29.2–32.9) | 29.1 (27.3–30.9) | 0.40 |
Smoker, n | 155 | 139 | 118 | 114 | |
AST | 22.5 (21.6–23.4) | 22.0 (21.1–23.0) | 22.1 (21.1–23.2) | 21.8 (20.8–22.9) | 0.42 |
ALT | 24.0 (22.4–25.8) | 23.8 (22.2–25.6) | 24.5 (22.6–26.5) | 24.3 (22.4–26.3) | 0.76 |
GGT | 33.8 (31.0–36.8) | 37.3 (34.1–40.7) | 36.2 (32.9–39.9) | 37.0 (33.5–40.9) | 0.22 |
Alcohol Drinking | |||||
<23 g of ethanol/day, n | 335 | 324 | 307 | 329 | |
AST | 21.4 (20.8–22.0) | 21.5 (20.9–22.2) | 22.2 (21.5–22.8) | 21.4 (20.8–22.0) | 0.68 |
ALT | 22.4 (21.4–23.5) | 22.2 (21.2–23.3) | 23.0 (21.9–24.1) | 22.3 (21.3–23.4) | 0.92 |
GGT | 27.5 (26.0–29.1) | 29.1 (27.4–30.8) | 28.1 (26.4–29.8) | 26.5 (25.0–28.1) | 0.30 |
≥23 g of ethanol/day, n | 113 | 122 | 142 | 119 | |
AST | 24.0 (22.8–25.4) | 24.4 (23.1–25.6) | 24.1 (23.0–25.3) | 23.8 (22.5–25.1) | 0.73 |
ALT | 22.6 (20.9–24.5) | 24.1 (22.4–26.0) | 24.1 (22.5–25.9) | 23.7 (21.9–25.6) | 0.42 |
GGT | 40.7 (36.2–45.8) | 50.4 (45.0–56.4) | 46.7 (42.1–51.8) | 47.3 (42.1–53.2) | 0.18 |
Ferritin | |||||
<Median d, n | 248 | 220 | 208 | 224 | |
AST | 21.2 (20.5–21.8) | 20.6 (19.9–21.3) | 21.6 (20.9–22.3) | 20.6 (20.0–21.3) | 0.65 |
ALT | 21.2 (20.2–22.2) | 19.8 (18.8–20.9) | 21.3 (20.2–22.4) | 20.1 (19.1–21.2) | 0.43 |
GGT | 27.4 (25.7–29.3) | 28.0 (26.1–29.9) | 28.8 (26.8–30.9) | 26.9 (25.1–28.8) | 0.87 |
≥Median, n | 200 | 226 | 241 | 224 | |
AST | 23.0 (22.0–23.9) | 24.1 (23.2–25.0) | 23.8 (22.9–24.7) | 23.5 (22.6–24.5) | 0.57 |
ALT | 23.7 (22.3–25.3) | 25.5 (24.0–27.0) | 25.6 (24.1–27.3) | 25.6 (24.1–27.3) | 0.18 |
GGT | 34.3 (31.6–37.3) | 40.5 (37.5–43.8) | 36.2 (33.6–39.1) | 36.7 (33.9–39.8) | 0.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanri, H.; Kashino, I.; Kochi, T.; Eguchi, M.; Akter, S.; Nanri, A.; Kabe, I.; Mizoue, T. Cross-Sectional Study on the Association between Dietary Non-Enzymatic Antioxidant Capacity and Serum Liver Enzymes: The Furukawa Nutrition and Health Study. Nutrients 2020, 12, 2051. https://doi.org/10.3390/nu12072051
Nanri H, Kashino I, Kochi T, Eguchi M, Akter S, Nanri A, Kabe I, Mizoue T. Cross-Sectional Study on the Association between Dietary Non-Enzymatic Antioxidant Capacity and Serum Liver Enzymes: The Furukawa Nutrition and Health Study. Nutrients. 2020; 12(7):2051. https://doi.org/10.3390/nu12072051
Chicago/Turabian StyleNanri, Hinako, Ikuko Kashino, Takeshi Kochi, Masafumi Eguchi, Shamima Akter, Akiko Nanri, Isamu Kabe, and Tetsuya Mizoue. 2020. "Cross-Sectional Study on the Association between Dietary Non-Enzymatic Antioxidant Capacity and Serum Liver Enzymes: The Furukawa Nutrition and Health Study" Nutrients 12, no. 7: 2051. https://doi.org/10.3390/nu12072051
APA StyleNanri, H., Kashino, I., Kochi, T., Eguchi, M., Akter, S., Nanri, A., Kabe, I., & Mizoue, T. (2020). Cross-Sectional Study on the Association between Dietary Non-Enzymatic Antioxidant Capacity and Serum Liver Enzymes: The Furukawa Nutrition and Health Study. Nutrients, 12(7), 2051. https://doi.org/10.3390/nu12072051