Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. In Vitro Digestion Experiment
2.3. Sensory Evaluation
2.4. Physical Property Tests
2.5. GI/insulin Measurement Subjects
2.6. Study Design
2.7. Statistical Analysis
3. Results
3.1. In Vitro Digestion Experiment
3.2. Sensory Evaluation
3.3. Physical Property Tests
3.4. GI/Insulin Measurements
4. Discussion
4.1. Rapidly Available Glucose, Sensory Evaluation, and Physical Properties of Noodles Made from Legumes
4.2. Blood Glucose/Insulin Response from Noodles Made from Legumes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Awika, J.M. Major Cereal Grains Production and Use around the World. ACS Symp. 2011, 1089, 1–13. [Google Scholar]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Kato, M.; Inoue, M.; Tsugane, S. Rice intake and type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Am. J. Clin. Nutr. 2010, 92, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. BMJ 2012, 344, e1454. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Jenkins, A.L. Starchy foods and glycemic index. Diabetes Care 1988, 11, 49–59. [Google Scholar] [CrossRef]
- Augustin, L.S.; Kendall, C.W.; Jenkins, D.J.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef]
- Mann, J.; Cummings, J.H.; Brand-Miller, J.C.; Englyst, H.N.; Key, T.; Liu, S.; Riccardi, G.; Summerbell, C.; Uauy, R.; Van Dam, R.M.; et al. FAO/WHO Scientific Update on carbohydrates in human nutrition: Conclusions. Eur. J. Clin. Nutr. 2007, 61, S132–S137. [Google Scholar] [CrossRef]
- Oba, S.; Nanri, A.; Kurotani, K.; Goto, A.; Kato, M.; Mizoue, T.; Noda, M.; Inoue, M.; Tsugane, S. Dietary glycemic index, glycemic load and incidence of type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Nutr. J. 2013, 12, 165. [Google Scholar] [CrossRef]
- Yanai, H.; Katsuyama, H.; Hamasaki, H.; Abe, S.; Tada, N.; Sako, A. Effects of Carbohydrate and Dietary Fiber Intake, Glycemic Index and Glycemic Load on HDL Metabolism in Asian Populations. J. Clin. Med. Res. 2014, 6, 321–326. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef]
- Clemente, A.; Olias, R. Beneficial effects of legumes in gut health. Curr. Opin. Food Sci. 2017, 14, 32–36. [Google Scholar] [CrossRef]
- Robinson, G.H.J.; Domoney, B.C. Improving pulse crops as a source of protein, starch and micronutrients. Nutr. Bull. 2019, 44, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Kaur, A.; Chopra, C. Gluten-Free Products for Celiac Susceptible People. Front. Nutr. 2018, 17, 116. [Google Scholar] [CrossRef] [PubMed]
- Mathai, J.K.; Liu, Y.; Stein, H.H. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br. J. Nutr. 2017, 117, 490–499. [Google Scholar] [CrossRef]
- Polak, R.; Phillips, E.M.; Campbell, A. Legumes: Health Benefits and Culinary Approaches to Increase Intake. Clin. Diabetes 2015, 33, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Kristiawan, M.; Micard, V.; Maladira, P.; Alchamieh, C.; Maigret, J.E.; Réguerre, A.L.; Emin, M.A.; Della Valle, G. Multi-scale structural changes of starch and proteins during pea flour extrusion. Food Res. Int. 2018, 108, 203–215. [Google Scholar] [CrossRef]
- Englyst, K.N.; Hudson, G.J.; Englyst, H.N. Starch Analysis in Food. In Encyclopedia of Analytical Chemistry; © John Wiley & Sons Ltd: Chichester, UK, 2000; pp. 4246–4262. [Google Scholar]
- Rathod, P.R.; Annapure, U.S. Physicochemical properties, protein and starch digestibility of lentil based noodle prepared by using extrusion processing. LWT Food Sci. Technol. 2017, 80, 121–130. [Google Scholar] [CrossRef]
- Ogawa, T.; Adachi, S. Moisture distribution and texture of spaghetti rehydrated under different conditions. Biosci. Biotechnol. Biochem. 2016, 80, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Tang, A.C.; Wakaki, Y.; Koyama, W. Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. Eur. J. Clin. Nutr. 2003, 57, 743–752. [Google Scholar] [CrossRef]
- Dhital, S.; Warren, F.J.; Butterworth, P.J.; Ellis, P.R.; Gidley, M.J. Mechanisms of starch digestion by α-amylase–structural basis for kinetic properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 875–892. [Google Scholar] [CrossRef]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant Starch—A Review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Englyst, K.N.; Liu, S.; Englyst, H.N. Nutritional characterization and measurement of dietary carbohydrates. Eur. J. Clin. Nutr. 2007, 61 (Suppl. 1), S19–S39. [Google Scholar] [CrossRef]
- Marinangeli, C.P.; Kassis, A.N.; Jones, P.J. Glycemic Responses and Sensory Characteristics of Whole Yellow Pea Flour Added to Novel Functional Foods. J. Food Sci. 2009, 74, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Hall, C.; Jenkins, A.L. Development of Low Glycemic Index (GI) Foods by Incorporating Pulse Ingredients into Cereal-Based Products: Use of In Vitro Screening and In Vivo Methodologies. Cereal chem. 2017, 94, 110–116. [Google Scholar] [CrossRef]
- Wang, N.; Bhirud, P.R.; Sosulsk, F.W.; Tyler, R.T. Pasta-Like Product from Pea Flour by Twin-Screw Extrusion. J. Food Sci. 1999, 64, 671–678. [Google Scholar] [CrossRef]
- Wolever, T.M. Relationship between dietary fiber content and composition in foods and the glycemic index. Am. J. Clin. Nutr. 1990, 51, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, J.T.; Ammerlaan, A.M.; Wouterlood, M.; Van Aelst, A.C.; Borstlap, A.C. Structure of the Developing Pea Seed Coat and the Post-phloem Transport Pathway of Nutrients. Ann. Bot. 2003, 91, 729–737. [Google Scholar] [CrossRef]
- Johnson, S.K.; Thomas, S.J.; Hall, R.S. Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast. Eur. J. Clin. Nutr. 2005, 59, 169–176. [Google Scholar] [CrossRef]
- Rietman, A.; Schwarz, J.; Tomé, D.; Kok, F.J.; Mensink, M. High dietary protein intake, reducing or eliciting insulin resistance? Eur. J. Clin. Nutr. 2014, 68, 973–979. [Google Scholar] [CrossRef]
- Van Haeften, T.W.; Voetberg, G.A.; Gerich, J.E.; Van der Veen, E.A. Dose-response characteristics for arginine-stimulated insulin secretion in man and influence of hyperglycemia. J. Clin. Endocrinol. Metab. 1989, 69, 1059–1064. [Google Scholar] [CrossRef]
- Calbet, J.A.; MacLean, D. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 2002, 132, 2174–2182. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Klebach, M.; Visser, M.; Hofman, Z. Amino Acid Availability of a Dairy and Vegetable Protein Blend Compared to Single Casein, Whey, Soy, and Pea Proteins: A Double-Blind, Cross-Over Trial. Nutrients 2019, 11, 2613. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.E.; Greenwood, D.C.; Threapleton, D.E.; Gale, C.P.; Cleghorn, C.L.; Burley, V.J. Glycemic index, glycemic load, and blood pressure: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 105, 1176–1190. [Google Scholar] [CrossRef] [PubMed]
Sample | Moisture | Protein | Fat | Carbohydrate | Total Dietary Fiber |
---|---|---|---|---|---|
YP | 59.6 | 10.1 | 1.0 | 23.1 | 5.3 |
YP-U | 60.7 | 8.7 | 1.0 | 20.8 | 7.8 |
CP | 63.5 | 8.0 | 2.1 | 20.8 | 4.6 |
LT | 64.4 | 9.3 | 0.6 | 17.6 | 6.8 |
CGF-A | 61.9 | 10.7 † | 0.7 † | 21.6 † | 4.0 † |
CGF-B | 64.6 | 7.9 † | 1.8 † | 21.2 † | 3.6 † |
Nutritional Composition | WR (Reference) | YP | YP-U |
---|---|---|---|
Energy (kJ) a | 917 | 1394 | 1425 |
Protein (g) | 3 † | 22 | 21 |
Fat (g) | 0 † | 2 | 2 |
Total dietary fiber (g) | 2 | 12 | 18 |
Available carbohydrate (g) | 50 † | 50 | 50 |
Sample | RAG (%) |
---|---|
YP | 8.34 ± 1.07 |
YP-U | 8.20 ± 0.88 |
CP | 10.43 ± 2.99 |
LT | 7.53 ± 1.46 |
CGF-A | 9.91 ± 1.56 |
CGF-B | 9.71 ± 1.42 |
WR | 17.32 ± 3.69 * |
Sample | Appearance | Taste | Aroma | Texture | Hardness | Stickiness | Overall Acceptance |
---|---|---|---|---|---|---|---|
YP | 6.23 ± 1.07 a | 5.60 ± 1.25 a | 4.70 ± 1.39 a | 5.20 ± 1.63 a | 5.23 ± 1.65 a | 5.67 ± 1.40 a | 5.30 ±1.32 a |
YP-U | 3.90 ± 1.32 b | 4.80 ± 1.03 a | 4.10 ± 1.24 a | 4.87 ± 1.33 a | 5.40 ± 1.28 a | 5.23 ± 1.22 ab | 4.57 ± 1.28 ab |
CP | 5.23 ± 1.63 a | 4.77 ± 1.76 ab | 4.60 ± 1.29 a | 5.60 ± 2.03 a | 5.50 ± 1.96 a | 5.60 ± 1.81 a | 4.97 ± 1.94 a |
LT | 3.20 ± 1.61 b | 4.60 ± 1.28 ab | 4.63 ± 1.60 a | 4.80 ± 1.45 ac | 4.73 ± 1.51 ab | 4.37 ± 1.50 b | 3.80 ± 1.40 b |
CGF-A | 3.80 ± 1.37 b | 4.10 ± 1.56 b | 4.10 ± 1.36 a | 4.73 ± 1.51 b | 3.17 ± 1.57 b | 3.57 ± 1.23 c | 2.93 ± 1.32 c |
CGF-B | 4.00 ± 1.11 b | 3.73 ± 1.80 b | 3.93 ± 1.56 a | 3.60 ± 1.61 bc | 4.10 ± 1.47 b | 4.00 ± 1.72 c | 3.40 ± 1.67 c |
Characteristic | Mean ± SD | Range of Values |
---|---|---|
Age (yrs) | 37.8 ± 9.5 | 21–47 |
Weight (kg) | 66.9 ± 12.6 | 47.9–91.9 |
Height (cm) | 170.5 ± 9.9 | 156.7–185.6 |
BMI (kg/m2) | 22.9 ± 3.5 | 18.3–28.7 |
Systolic blood pressure (mmHg) | 121.1 ± 12.8 | 100–145 |
Diastolic blood pressure (mmHg) | 73.3 ± 13.5 | 52–105 |
Fasting blood glucose (mg/dL) | 92.3 ± 5.2 | 86–104 |
Triglyceride (mg/dL) | 81.7 ± 35.8 | 27–133 |
Total cholesterol (mg/dL) | 178.4 ± 17.0 | 146–199 |
HDL-C (mg/dL) | 62.6 ± 17.9 | 42–99 |
LDL-C (mg/dL) | 97.9 ± 20.1 | 73–143 |
Sample | GIR | GIG # |
---|---|---|
WR (Reference) | 100 * | 80 |
YP | 50.4 ± 31.6 | 40.3 ± 25.3 |
YP-U | 68.8 ± 12.4 | 55.0 ± 9.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshimoto, J.; Kato, Y.; Ban, M.; Kishi, M.; Horie, H.; Yamada, C.; Nishizaki, Y. Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase. Nutrients 2020, 12, 1839. https://doi.org/10.3390/nu12061839
Yoshimoto J, Kato Y, Ban M, Kishi M, Horie H, Yamada C, Nishizaki Y. Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase. Nutrients. 2020; 12(6):1839. https://doi.org/10.3390/nu12061839
Chicago/Turabian StyleYoshimoto, Joto, Yukiko Kato, Masayasu Ban, Mikiya Kishi, Humitoshi Horie, Chizumi Yamada, and Yasuhiro Nishizaki. 2020. "Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase" Nutrients 12, no. 6: 1839. https://doi.org/10.3390/nu12061839
APA StyleYoshimoto, J., Kato, Y., Ban, M., Kishi, M., Horie, H., Yamada, C., & Nishizaki, Y. (2020). Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase. Nutrients, 12(6), 1839. https://doi.org/10.3390/nu12061839