Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. In Vitro Digestion Experiment
2.3. Sensory Evaluation
2.4. Physical Property Tests
2.5. GI/insulin Measurement Subjects
2.6. Study Design
2.7. Statistical Analysis
3. Results
3.1. In Vitro Digestion Experiment
3.2. Sensory Evaluation
3.3. Physical Property Tests
3.4. GI/Insulin Measurements
4. Discussion
4.1. Rapidly Available Glucose, Sensory Evaluation, and Physical Properties of Noodles Made from Legumes
4.2. Blood Glucose/Insulin Response from Noodles Made from Legumes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Awika, J.M. Major Cereal Grains Production and Use around the World. ACS Symp. 2011, 1089, 1–13. [Google Scholar]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Kato, M.; Inoue, M.; Tsugane, S. Rice intake and type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Am. J. Clin. Nutr. 2010, 92, 1468–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. BMJ 2012, 344, e1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, D.J.; Wolever, T.M.; Jenkins, A.L. Starchy foods and glycemic index. Diabetes Care 1988, 11, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Augustin, L.S.; Kendall, C.W.; Jenkins, D.J.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [Green Version]
- Mann, J.; Cummings, J.H.; Brand-Miller, J.C.; Englyst, H.N.; Key, T.; Liu, S.; Riccardi, G.; Summerbell, C.; Uauy, R.; Van Dam, R.M.; et al. FAO/WHO Scientific Update on carbohydrates in human nutrition: Conclusions. Eur. J. Clin. Nutr. 2007, 61, S132–S137. [Google Scholar] [CrossRef] [Green Version]
- Oba, S.; Nanri, A.; Kurotani, K.; Goto, A.; Kato, M.; Mizoue, T.; Noda, M.; Inoue, M.; Tsugane, S. Dietary glycemic index, glycemic load and incidence of type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Nutr. J. 2013, 12, 165. [Google Scholar] [CrossRef] [Green Version]
- Yanai, H.; Katsuyama, H.; Hamasaki, H.; Abe, S.; Tada, N.; Sako, A. Effects of Carbohydrate and Dietary Fiber Intake, Glycemic Index and Glycemic Load on HDL Metabolism in Asian Populations. J. Clin. Med. Res. 2014, 6, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [Green Version]
- Clemente, A.; Olias, R. Beneficial effects of legumes in gut health. Curr. Opin. Food Sci. 2017, 14, 32–36. [Google Scholar] [CrossRef]
- Robinson, G.H.J.; Domoney, B.C. Improving pulse crops as a source of protein, starch and micronutrients. Nutr. Bull. 2019, 44, 202–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, S.; Kaur, A.; Chopra, C. Gluten-Free Products for Celiac Susceptible People. Front. Nutr. 2018, 17, 116. [Google Scholar] [CrossRef] [PubMed]
- Mathai, J.K.; Liu, Y.; Stein, H.H. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br. J. Nutr. 2017, 117, 490–499. [Google Scholar] [CrossRef]
- Polak, R.; Phillips, E.M.; Campbell, A. Legumes: Health Benefits and Culinary Approaches to Increase Intake. Clin. Diabetes 2015, 33, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristiawan, M.; Micard, V.; Maladira, P.; Alchamieh, C.; Maigret, J.E.; Réguerre, A.L.; Emin, M.A.; Della Valle, G. Multi-scale structural changes of starch and proteins during pea flour extrusion. Food Res. Int. 2018, 108, 203–215. [Google Scholar] [CrossRef]
- Englyst, K.N.; Hudson, G.J.; Englyst, H.N. Starch Analysis in Food. In Encyclopedia of Analytical Chemistry; © John Wiley & Sons Ltd: Chichester, UK, 2000; pp. 4246–4262. [Google Scholar]
- Rathod, P.R.; Annapure, U.S. Physicochemical properties, protein and starch digestibility of lentil based noodle prepared by using extrusion processing. LWT Food Sci. Technol. 2017, 80, 121–130. [Google Scholar] [CrossRef]
- Ogawa, T.; Adachi, S. Moisture distribution and texture of spaghetti rehydrated under different conditions. Biosci. Biotechnol. Biochem. 2016, 80, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Tang, A.C.; Wakaki, Y.; Koyama, W. Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. Eur. J. Clin. Nutr. 2003, 57, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Dhital, S.; Warren, F.J.; Butterworth, P.J.; Ellis, P.R.; Gidley, M.J. Mechanisms of starch digestion by α-amylase–structural basis for kinetic properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 875–892. [Google Scholar] [CrossRef]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant Starch—A Review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Englyst, K.N.; Liu, S.; Englyst, H.N. Nutritional characterization and measurement of dietary carbohydrates. Eur. J. Clin. Nutr. 2007, 61 (Suppl. 1), S19–S39. [Google Scholar] [CrossRef] [Green Version]
- Marinangeli, C.P.; Kassis, A.N.; Jones, P.J. Glycemic Responses and Sensory Characteristics of Whole Yellow Pea Flour Added to Novel Functional Foods. J. Food Sci. 2009, 74, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Hall, C.; Jenkins, A.L. Development of Low Glycemic Index (GI) Foods by Incorporating Pulse Ingredients into Cereal-Based Products: Use of In Vitro Screening and In Vivo Methodologies. Cereal chem. 2017, 94, 110–116. [Google Scholar] [CrossRef]
- Wang, N.; Bhirud, P.R.; Sosulsk, F.W.; Tyler, R.T. Pasta-Like Product from Pea Flour by Twin-Screw Extrusion. J. Food Sci. 1999, 64, 671–678. [Google Scholar] [CrossRef]
- Wolever, T.M. Relationship between dietary fiber content and composition in foods and the glycemic index. Am. J. Clin. Nutr. 1990, 51, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, J.T.; Ammerlaan, A.M.; Wouterlood, M.; Van Aelst, A.C.; Borstlap, A.C. Structure of the Developing Pea Seed Coat and the Post-phloem Transport Pathway of Nutrients. Ann. Bot. 2003, 91, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.K.; Thomas, S.J.; Hall, R.S. Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast. Eur. J. Clin. Nutr. 2005, 59, 169–176. [Google Scholar] [CrossRef]
- Rietman, A.; Schwarz, J.; Tomé, D.; Kok, F.J.; Mensink, M. High dietary protein intake, reducing or eliciting insulin resistance? Eur. J. Clin. Nutr. 2014, 68, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Van Haeften, T.W.; Voetberg, G.A.; Gerich, J.E.; Van der Veen, E.A. Dose-response characteristics for arginine-stimulated insulin secretion in man and influence of hyperglycemia. J. Clin. Endocrinol. Metab. 1989, 69, 1059–1064. [Google Scholar] [CrossRef]
- Calbet, J.A.; MacLean, D. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 2002, 132, 2174–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Klebach, M.; Visser, M.; Hofman, Z. Amino Acid Availability of a Dairy and Vegetable Protein Blend Compared to Single Casein, Whey, Soy, and Pea Proteins: A Double-Blind, Cross-Over Trial. Nutrients 2019, 11, 2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, C.E.; Greenwood, D.C.; Threapleton, D.E.; Gale, C.P.; Cleghorn, C.L.; Burley, V.J. Glycemic index, glycemic load, and blood pressure: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 105, 1176–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Moisture | Protein | Fat | Carbohydrate | Total Dietary Fiber |
---|---|---|---|---|---|
YP | 59.6 | 10.1 | 1.0 | 23.1 | 5.3 |
YP-U | 60.7 | 8.7 | 1.0 | 20.8 | 7.8 |
CP | 63.5 | 8.0 | 2.1 | 20.8 | 4.6 |
LT | 64.4 | 9.3 | 0.6 | 17.6 | 6.8 |
CGF-A | 61.9 | 10.7 † | 0.7 † | 21.6 † | 4.0 † |
CGF-B | 64.6 | 7.9 † | 1.8 † | 21.2 † | 3.6 † |
Nutritional Composition | WR (Reference) | YP | YP-U |
---|---|---|---|
Energy (kJ) a | 917 | 1394 | 1425 |
Protein (g) | 3 † | 22 | 21 |
Fat (g) | 0 † | 2 | 2 |
Total dietary fiber (g) | 2 | 12 | 18 |
Available carbohydrate (g) | 50 † | 50 | 50 |
Sample | RAG (%) |
---|---|
YP | 8.34 ± 1.07 |
YP-U | 8.20 ± 0.88 |
CP | 10.43 ± 2.99 |
LT | 7.53 ± 1.46 |
CGF-A | 9.91 ± 1.56 |
CGF-B | 9.71 ± 1.42 |
WR | 17.32 ± 3.69 * |
Sample | Appearance | Taste | Aroma | Texture | Hardness | Stickiness | Overall Acceptance |
---|---|---|---|---|---|---|---|
YP | 6.23 ± 1.07 a | 5.60 ± 1.25 a | 4.70 ± 1.39 a | 5.20 ± 1.63 a | 5.23 ± 1.65 a | 5.67 ± 1.40 a | 5.30 ±1.32 a |
YP-U | 3.90 ± 1.32 b | 4.80 ± 1.03 a | 4.10 ± 1.24 a | 4.87 ± 1.33 a | 5.40 ± 1.28 a | 5.23 ± 1.22 ab | 4.57 ± 1.28 ab |
CP | 5.23 ± 1.63 a | 4.77 ± 1.76 ab | 4.60 ± 1.29 a | 5.60 ± 2.03 a | 5.50 ± 1.96 a | 5.60 ± 1.81 a | 4.97 ± 1.94 a |
LT | 3.20 ± 1.61 b | 4.60 ± 1.28 ab | 4.63 ± 1.60 a | 4.80 ± 1.45 ac | 4.73 ± 1.51 ab | 4.37 ± 1.50 b | 3.80 ± 1.40 b |
CGF-A | 3.80 ± 1.37 b | 4.10 ± 1.56 b | 4.10 ± 1.36 a | 4.73 ± 1.51 b | 3.17 ± 1.57 b | 3.57 ± 1.23 c | 2.93 ± 1.32 c |
CGF-B | 4.00 ± 1.11 b | 3.73 ± 1.80 b | 3.93 ± 1.56 a | 3.60 ± 1.61 bc | 4.10 ± 1.47 b | 4.00 ± 1.72 c | 3.40 ± 1.67 c |
Characteristic | Mean ± SD | Range of Values |
---|---|---|
Age (yrs) | 37.8 ± 9.5 | 21–47 |
Weight (kg) | 66.9 ± 12.6 | 47.9–91.9 |
Height (cm) | 170.5 ± 9.9 | 156.7–185.6 |
BMI (kg/m2) | 22.9 ± 3.5 | 18.3–28.7 |
Systolic blood pressure (mmHg) | 121.1 ± 12.8 | 100–145 |
Diastolic blood pressure (mmHg) | 73.3 ± 13.5 | 52–105 |
Fasting blood glucose (mg/dL) | 92.3 ± 5.2 | 86–104 |
Triglyceride (mg/dL) | 81.7 ± 35.8 | 27–133 |
Total cholesterol (mg/dL) | 178.4 ± 17.0 | 146–199 |
HDL-C (mg/dL) | 62.6 ± 17.9 | 42–99 |
LDL-C (mg/dL) | 97.9 ± 20.1 | 73–143 |
Sample | GIR | GIG # |
---|---|---|
WR (Reference) | 100 * | 80 |
YP | 50.4 ± 31.6 | 40.3 ± 25.3 |
YP-U | 68.8 ± 12.4 | 55.0 ± 9.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshimoto, J.; Kato, Y.; Ban, M.; Kishi, M.; Horie, H.; Yamada, C.; Nishizaki, Y. Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase. Nutrients 2020, 12, 1839. https://doi.org/10.3390/nu12061839
Yoshimoto J, Kato Y, Ban M, Kishi M, Horie H, Yamada C, Nishizaki Y. Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase. Nutrients. 2020; 12(6):1839. https://doi.org/10.3390/nu12061839
Chicago/Turabian StyleYoshimoto, Joto, Yukiko Kato, Masayasu Ban, Mikiya Kishi, Humitoshi Horie, Chizumi Yamada, and Yasuhiro Nishizaki. 2020. "Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase" Nutrients 12, no. 6: 1839. https://doi.org/10.3390/nu12061839
APA StyleYoshimoto, J., Kato, Y., Ban, M., Kishi, M., Horie, H., Yamada, C., & Nishizaki, Y. (2020). Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase. Nutrients, 12(6), 1839. https://doi.org/10.3390/nu12061839