Caffeine and Caffeine Metabolites in Relation to Insulin Resistance and Beta Cell Function in U.S. Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. HOMA Modelling
2.3. Measurements of Urinary Caffeine and Caffeine Metabolite Levels
2.4. Other Variables of Interest
2.5. Statistical Analysis
2.6. Ethical Approval and Consent to Participate
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Report on Diabetes; WHO: Paris, France, 2016. [Google Scholar]
- CDC. National Diabetes Statistics Report; US Department of Health and Human Services, CDC: Atlanta, GA, USA, 2017.
- Deer, J.; Koska, J.; Ozias, M.; Reaven, P. Dietary models of insulin resistance. Metab. Clin. Exp. 2015, 64, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Agardh, E.E.; Carlsson, S.; Ahlbom, A.; Efendic, S.; Grill, V.; Hammar, N.; Hilding, A.; Ostenson, C.G. Coffee consumption, type 2 diabetes and impaired glucose tolerance in Swedish men and women. J. Intern. Med. 2004, 255, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Ärnlöv, J.; Vessby, B.; Risérus, U. Coffee Consumption and Insulin Sensitivity. JAMA 2004, 291, 1199–1201. [Google Scholar] [CrossRef] [PubMed]
- Keijzers, G.B.; De Galan, B.E.; Tack, C.J.; Smits, P. Caffeine can decrease insulin sensitivity in humans. Diabetes Care 2002, 25, 364–369. [Google Scholar] [CrossRef] [Green Version]
- van Dam, R.M.; Dekker, J.M.; Nijpels, G.; Stehouwer, C.D.; Bouter, L.M.; Heine, R.J. Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: The Hoorn Study. Diabetologia 2004, 47, 2152–2159. [Google Scholar] [CrossRef] [Green Version]
- Emami, M.R.; Khorshidi, M.; Zarezadeh, M.; Safabakhsh, M.; Rezagholizadeh, F.; Alizadeh, S. Acute effects of caffeine ingestion on glycemic indices: A systematic review and meta-analysis of clinical trials. Complement. Ther. Med. 2019, 44, 282–290. [Google Scholar] [CrossRef]
- Shi, X.; Xue, W.; Liang, S.; Zhao, J.; Zhang, X. Acute caffeine ingestion reduces insulin sensitivity in healthy subjects: A systematic review and meta-analysis. Nutr. J. 2016, 15, 103. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Melchert, H.U.; Knopf, H.; Braemer-Hauth, M.; Pabel, E. Association of serum caffeine concentrations with serum glucose levels in caffeine-drug users and non-users—Results of German National Health Surveys. Diabetes Obes. Metab. 2007, 9, 756–758. [Google Scholar] [CrossRef]
- Bhupathiraju, S.N.; Pan, A.; Manson, J.E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Changes in coffee intake and subsequent risk of type 2 diabetes: Three large cohorts of US men and women. Diabetologia 2014, 57, 1346–1354. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, G.D.; Zemdegs, J.C.; Theodoro, J.A.; Mota, J.F. Does long-term coffee intake reduce type 2 diabetes mellitus risk? Diabetol. Metab. Syndr. 2009, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Martinez, E.; Willett, W.C.; Ascherio, A.; Manson, J.E.; Leitzmann, M.F.; Stampfer, M.J.; Hu, F.B. Coffee consumption and risk for type 2 diabetes mellitus. Ann. Intern. Med. 2004, 140, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Hu, G.; Bidel, S.; Lindström, J.; Jousilahti, P. Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA 2004, 291, 1213–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Zhang, Y.; Ge, S.; Lu, H.; Chen, R.; Fang, P.; Shen, Y.; Wang, C.; Jia, W. Coffee consumption is positively related to insulin secretion in the Shanghai High-Risk Diabetic Screen (SHiDS) Study. Nutr. Metab. 2018, 15, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loopstra-Masters, R.C.; Liese, A.D.; Haffner, S.M.; Wagenknecht, L.E.; Hanley, A.J. Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia 2011, 54, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.M.; Nanri, A.; Kochi, T.; Kuwahara, K.; Tsuruoka, H.; Kurotani, K.; Akter, S.; Kabe, I.; Sato, M.; Hayabuchi, H.; et al. Coffee and green tea consumption is associated with insulin resistance in Japanese adults. Metab. Clin. Exp. 2014, 63, 400–408. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, D.; Jiang, W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: A meta-analysis of prospective studies. Eur. J. Nutr. 2014, 53, 25–38. [Google Scholar] [CrossRef]
- Thompson, F.E.; Subar, A.F. Dietary assessment methodology. In Nutrition in the Prevention and Treatment of Disease, 3rd ed.; Coulston, A.M., Boushey, C.J., Ferruzzi, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Vanderlee, L.; Reid, J.L.; White, C.M.; Acton, R.B.; Kirkpatrick, S.I.; Pao, C.I.; Rybak, M.E.; Hammond, D. Evaluation of a 24-Hour Caffeine Intake Assessment Compared with Urinary Biomarkers of Caffeine Intake among Young Adults in Canada. J. Acad. Nutr. Diet. 2018, 118, 2245–2253.e2241. [Google Scholar] [CrossRef]
- Nehlig, A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef] [Green Version]
- U.S. Centers for Disease Control Prevention. National Health and Nutrition Examination Survey. Available online: https://www.Cdc.Gov/nchs/nhanes/index.Htm (accessed on 19 March 2020).
- National Health and Nutrition Examination Survey. 2009–2010 Data Documentation, Codebook, and Frequencies Caffeine & Caffeine Metabolites—Urine (CAFE_F). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2009-2010/CAFE_F.htm (accessed on 19 March 2020).
- National Health and Nutrition Examination Survey. 2011–2012 Data Documentation, Codebook, and Frequencies Caffeine & Caffeine Metabolites—Urine (CAFE_G). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CAFE_G.htm (accessed on 19 March 2020).
- Cersosimo, E.; Solis-Herrera, C.; Trautmann, M.E.; Malloy, J.; Triplitt, C.L. Assessment of pancreatic beta-cell function: Review of methods and clinical applications. Curr. Diabetes Rev. 2014, 10, 2–42. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- National Health and Nutrition Examination Survey. 2011–2012 Data Documentation, Codebook, and Frequencies Plasma Fasting Glucose & Insulin (GLU_G). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/GLU_G.htm (accessed on 19 March 2020).
- U. S. Centers for Disease Control Prevention. Laboratory Data Overview, National Health and Nutrition Examination Survey. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/overviewlab.aspx?BeginYear=2011 (accessed on 19 March 2020).
- U. S. Centers for Disease Control Prevention. 2011–2012 Data Documentation, Codebook, and Frequencies: Plasma Fasting Glucose & Insulin (GLU_G). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/GLU_G.htm (accessed on 2 June 2020).
- Rybak, M.E.; Sternberg, M.R.; Pao, C.I.; Ahluwalia, N.; Pfeiffer, C.M. Urine excretion of caffeine and select caffeine metabolites is common in the U.S. population and associated with caffeine intake. J. Nutr. 2015, 145, 766–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Office for Human Research Protections. Coded Private Information or Specimens Use in Research, Guidance (2008). Available online: https://www.hhs.gov/ohrp/regulations-and-policy/guidance/research-involving-coded-private-information/index.html (accessed on 7 May 2020).
- National Center for Health Statistics. NCHS Research Ethics Review Board (ERB) Approval. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 5 May 2020).
- National Health and Nutrition Examination Survey. Information for Health Professionals. Available online: https://www.cdc.gov/nchs/nhanes/hlthprofess.htm (accessed on 7 May 2020).
- Laughon, S.K.; Powers, R.W.; Roberts, J.M.; Parana, S.; Catov, J. Caffeine and insulin resistance in pregnancy. Am. J. Perinatol. 2011, 28, 571–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewar, L.; Heuberger, R. The effect of acute caffeine intake on insulin sensitivity and glycemic control in people with diabetes. Diabetes Metab. Syndr. 2017, 11 (Suppl. 2), S631–S635. [Google Scholar] [CrossRef]
- Greer, F.; Hudson, R.; Ross, R.; Graham, T. Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans. Diabetes 2001, 50, 2349–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehead, N.; White, H. Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus. J. Hum. Nutr. Diet. 2013, 26, 111–125. [Google Scholar] [CrossRef]
- Guarino, M.P.; Ribeiro, M.J.; Sacramento, J.F.; Conde, S.V. Chronic caffeine intake reverses age-induced insulin resistance in the rat: Effect on skeletal muscle Glut4 transporters and AMPK activity. Age (Dordr. Neth.) 2013, 35, 1755–1765. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Bhupathiraju, S.N.; Chen, M.; van Dam, R.M.; Hu, F.B. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: A systematic review and a dose-response meta-analysis. Diabetes Care 2014, 37, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Floegel, A.; Pischon, T.; Bergmann, M.M.; Teucher, B.; Kaaks, R.; Boeing, H. Coffee consumption and risk of chronic disease in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany study. Am. J. Clin. Nutr. 2012, 95, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Carlstrom, M.; Bahadoran, Z.; Azizi, F. Long-term effects of coffee and caffeine intake on the risk of pre-diabetes and type 2 diabetes: Findings from a population with low coffee consumption. Nutr. Metab. Cardiovasc. Dis. NMCD 2018, 28, 1261–1266. [Google Scholar] [CrossRef]
- Zaharieva, D.P.; Riddell, M.C. Caffeine and glucose homeostasis during rest and exercise in diabetes mellitus. Appl. Physiol. Nutr. Metab. 2013, 38, 813–822. [Google Scholar] [CrossRef]
- Sacramento, J.F.; Ribeiro, M.J.; Yubero, S.; Melo, B.F.; Obeso, A.; Guarino, M.P.; Gonzalez, C.; Conde, S.V. Disclosing caffeine action on insulin sensitivity: Effects on rat skeletal muscle. EUFEPS 2015, 70, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Deibert, D.C.; DeFronzo, R.A. Epinephrine-induced insulin resistance in man. J. Clin. Investig. 1980, 65, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Jacob, P., 3rd; Mayan, H.; Denaro, C. Sympathomimetic effects of paraxanthine and caffeine in humans. Clin. Pharmacol. Ther. 1995, 58, 684–691. [Google Scholar] [CrossRef]
- Johnston, K.L.; Clifford, M.N.; Morgan, L.M. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: Glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nutr. 2003, 78, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.L. Effects of caffeine and acetylcholine on glucose-stimulated insulin release from islet transplants in mice. Cell Transplant. 1997, 6, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Birkett, D.J.; Miners, J.O. Caffeine renal clearance and urine caffeine concentrations during steady state dosing. Implications for monitoring caffeine intake during sports events. Br. J. Clin. Pharmacol. 1991, 31, 405–408. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Mean ± SD or N (%) |
---|---|
No of participants | 994 |
Sex | |
Male | 492 (49.5%) |
Female | 502 (50.5%) |
Age at interview (year) | 48.0 ± 17.5 |
Age categories | |
20–29 | 186 (18.7%) |
30–39 | 171 (17.2%) |
40–49 | 182 (18.3%) |
50–59 | 167 (16.8%) |
60–69 | 141 (14.2%) |
70–79 | 147 (14.8%) |
Ethnicity | |
Non-Hispanic white | 474 (47.7%) |
Non-Hispanic black | 182 (18.3%) |
Hispanic | 257 (25.9%) |
Others | 81 (8.1%) |
Annual Family Income | |
Less than $20,000 | 237 (23.8%) |
$20,000 and over | 757 (76.2%) |
Education | |
Less than high school | 242 (24.4%) |
High school graduate | 220 (22.1%) |
More than high school | 532 (53.5%) |
Marital status | |
Married | 514 (51.7%) |
Never married | 194 (19.5%) |
Widowed/divorced/separated | 286 (28.8%) |
Smoking history | |
Never smoked | 558 (56.1%) |
Ex-Smoker | 240 (24.1%) |
Current Smoker | 196 (19.7%) |
Alcohol consumption 1 | |
Yes | 742 (74.6%) |
No | 252 (25.4%) |
Physical Activity 2 | |
Yes | 419 (42.2%) |
No | 575 (57.8%) |
BMI (kg/m2) | |
Underweight (<18.5) | 7 (0.7%) |
Normal weight (18.5–24.9) | 245 (24.6%) |
Overweight (25.0–29.9) | 357 (35.9%) |
Obesity (>30) | 385 (38.7%) |
Urine creatinine (mg/dL) | 129.6 ± 79.3 |
Fasting glucose, mmol/L | 5.7 ± 1.0 |
Fasting insulin, uU/mL | 15.5 ± 11.7 |
HOMA-IR | 4.1 ± 3.7 |
HOMA-B | 148.8 ± 101.7 |
Total caffeine intake (mg/day) | 163.0 ± 197.7 |
Caffeine intake from coffee | 105.3 ± 173.3 |
Caffeine intake from tea | 25.7 ± 82.5 |
Caffeine intake from soda | 25.4 ± 49.0 |
Caffeine intake from energy drinks | 3.3 ± 24.5 |
Urinary Metabolite | n | Geometric Mean ± SE | p10 | p25 | p50 | p75 | p90 |
---|---|---|---|---|---|---|---|
1-methyluric acid | 1036 | 62.06 ± 3.22 | 11.30 | 25.30 | 60.80 | 135.00 | 276.00 |
1,3-dimethyluric acid | 1016 | 7.08 ± 0.44 | 0.82 | 2.97 | 7.73 | 16.97 | 33.40 |
1,7-dimethyluric acid | 1020 | 23.87 ± 1.52 | 2.67 | 9.96 | 27.44 | 65.95 | 127.88 |
1,3,7-trimethyluric acid | 980 | 1.19 ± 0.08 | 0.14 | 0.45 | 1.41 | 3.40 | 6.80 |
1-methylxanthine | 1036 | 26.86 ± 1.40 | 3.01 | 11.10 | 28.60 | 66.17 | 128.62 |
1,3-dimethylxanthine (theophylline) | 1002 | 1.69 ± 0.09 | 0.28 | 0.80 | 1.90 | 3.80 | 6.56 |
1,7-dimethylxanthine (paraxanthine) | 1019 | 12.88 ± 0.74 | 1.72 | 6.36 | 15.90 | 32.20 | 55.90 |
1,3,7-trimethylxanthine (caffeine) | 994 | 2.71 ± 0.17 | 0.36 | 1.10 | 3.09 | 7.02 | 12.98 |
5-acetylamino-6-amino-3-methyluracil | 1027 | 60.38 ± 3.67 | 7.94 | 24.76 | 63.20 | 155.00 | 296.87 |
HOMA-IR | HOMA-B | 1-MU | 1,3-DMU | 1,7-DMU | 1,3,7-TMU | 1-MX | 1,3-DMX | 1,7-DMX | 1,3,7-TMX | AAMU | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HOMA-IR | r | 1.00 | ||||||||||
p | ||||||||||||
HOMA-B | r | 0.66 | 1.00 | |||||||||
p | <0.0001 | |||||||||||
1-MU | r | 0.08 | 0.06 | 1.00 | ||||||||
p | 0.0138 | 0.0397 | ||||||||||
1,3-DMU | r | 0.10 | 0.08 | 0.91 | 1.00 | |||||||
p | 0.0015 | 0.0153 | <0.0001 | |||||||||
1,7-DMU | r | 0.12 | 0.09 | 0.87 | 0.95 | 1.00 | ||||||
p | 0.0001 | 0.0043 | <0.0001 | <0.0001 | ||||||||
1,3,7-TMU | r | 0.15 | 0.11 | 0.79 | 0.89 | 0.94 | 1.00 | |||||
p | <0.0001 | 0.0004 | <0.0001 | <0.0001 | <0.0001 | |||||||
1-MX | r | 0.08 | 0.07 | 0.94 | 0.91 | 0.91 | 0.83 | 1.00 | ||||
p | 0.0118 | 0.0206 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||||||
1,3-DMX | r | 0.11 | 0.08 | 0.77 | 0.91 | 0.91 | 0.88 | 0.81 | 1.00 | |||
p | 0.0006 | 0.0149 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||||
1,7-DMX | r | 0.12 | 0.10 | 0.78 | 0.86 | 0.91 | 0.88 | 0.86 | 0.93 | 1.00 | ||
p | <0.0001 | 0.0011 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||||
1,3,7-TMX | r | 0.14 | 0.08 | 0.69 | 0.81 | 0.89 | 0.92 | 0.75 | 0.90 | 0.90 | 1.00 | |
p | <0.0001 | 0.0081 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||
AAMU | r | 0.10 | 0.08 | 0.88 | 0.91 | 0.91 | 0.81 | 0.88 | 0.79 | 0.83 | 0.72 | 1.00 |
p | 0.0012 | 0.0094 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Urinary Metabolite Levels | HOMA-IR | HOMA-β 1 | |||||||
---|---|---|---|---|---|---|---|---|---|
Unadjusted Model | Adjusted Model 1 | Unadjusted Model | Adjusted Model 1 | ||||||
Beta ± SE | p | Beta ± SE | p | Beta ± SE | p | Beta ± SE | p | ||
1-methyluric acid | |||||||||
Per two-fold increase | 0.13 ± 0.07 | 0.047 | 0.08 ± 0.08 | 0.293 | 3.88 ± 1.82 | 0.040 | 2.21 ± 1.97 | 0.269 | |
Quartiles | Q1 | Reference | Reference | Reference | Reference | ||||
Q2 | −0.28 ± 0.30 | 0.348 | 0.00 ± 0.31 | 0.993 | −17.08 ± 9.62 | 0.085 | −4.65 ± 9.91 | 0.642 | |
Q3 | 0.03 ± 0.29 | 0.926 | −0.08 ± 0.28 | 0.775 | −2.83 ± 9.57 | 0.769 | −1.79 ± 8.76 | 0.839 | |
Q4 | 0.72 ± 0.36 | 0.053 | 0.59 ± 0.41 | 0.164 | 18.99 ± 10.52 | 0.080 | 18.46 ± 12.04 | 0.135 | |
1,3-dimethyluric acid | |||||||||
Per two-fold increase | 0.18 ± 0.07 | 0.008 | 0.16 ± 0.07 | 0.027 | 4.99 ± 1.62 | 0.004 | 4.23 ± 1.49 | 0.008 | |
Quartiles | Q1 | Reference | Reference | Reference | Reference | ||||
Q2 | 0.07 ± 0.24 | 0.790 | 0.40 ± 0.32 | 0.227 | 2.65 ± 8.00 | 0.743 | 13.12 ± 8.76 | 0.144 | |
Q3 | 0.67 ± 0.24 | 0.008 | 0.58 ± 0.32 | 0.084 | 16.05 ± 6.69 | 0.022 | 13.29 ± 7.75 | 0.096 | |
Q4 | 1.34 ± 0.37 | 0.001 | 1.39 ± 0.41 | 0.002 | 36.38 ± 10.11 | 0.001 | 34.02 ± 8.55 | <0.001 | |
1,7-dimethyluric acid | |||||||||
Per two-fold increase | 0.20 ± 0.05 | 0.001 | 0.18 ± 0.06 | 0.005 | 5.22 ± 1.52 | 0.002 | 4.08 ± 1.35 | 0.005 | |
Quartiles | Q1 | Reference | Reference | Reference | Reference | ||||
Q2 | 0.06 ± 0.29 | 0.825 | 0.35 ± 0.33 | 0.285 | 3.90 ± 6.80 | 0.570 | 12.37 ± 7.03 | 0.088 | |
Q3 | 0.51 ± 0.26 | 0.058 | 0.34 ± 0.29 | 0.249 | 8.88 ± 6.48 | 0.180 | 6.49 ± 8.03 | 0.425 | |
Q4 | 1.50 ± 0.37 | <0.001 | 1.39 ± 0.42 | 0.002 | 40.66 ± 10.90 | 0.001 | 32.21 ± 8.95 | 0.001 | |
1,3,7-trimethyluric acid | |||||||||
Per two-fold increase | 0.28 ± 0.07 | <0.001 | 0.25 ± 0.07 | 0.001 | 7.24 ± 1.90 | 0.001 | 5.62 ± 1.59 | 0.001 | |
Quartiles | Q1 | Reference | Reference | Reference | Reference | ||||
Q2 | 0.39 ± 0.26 | 0.151 | 0.44 ± 0.28 | 0.125 | 19.35 ± 7.87 | 0.019 | 24.38 ± 7.64 | 0.003 | |
Q3 | 0.90 ± 0.32 | 0.008 | 0.72 ± 0.33 | 0.039 | 17.19 ± 8.44 | 0.050 | 17.11 ± 8.94 | 0.064 | |
Q4 | 1.83 ± 0.43 | <0.001 | 1.55 ± 0.42 | 0.001 | 50.61 ± 12.84 | <0.001 | 36.84 ± 9.86 | 0.001 | |
1-methylxanthine | |||||||||
Per two-fold increase | 0.13 ± 0.05 | 0.012 | 0.10 ± 0.06 | 0.105 | 4.21 ± 1.53 | 0.010 | 2.42 ± 1.52 | 0.122 | |
Quartiles | Q1 | Reference | Reference | Reference | Reference | ||||
Q2 | 0.05 ± 0.32 | 0.879 | 0.41 ± 0.31 | 0.190 | 1.04 ± 8.73 | 0.906 | 14.86 ± 7.03 | 0.042 | |
Q3 | 0.41 ± 0.30 | 0.181 | 0.33 ± 0.29 | 0.255 | 8.12 ± 10.07 | 0.426 | 6.32 ± 7.65 | 0.415 | |
Q4 | 0.71 ± 0.33 | 0.037 | 0.60 ± 0.41 | 0.149 | 20.70 ± 9.58 | 0.038 | 14.08 ± 10.04 | 0.170 | |
1,3-dimethylxanthine(theophylline) | |||||||||
Per two-fold increase | 0.23 ± 0.07 | 0.004 | 0.21 ± 0.07 | 0.007 | 5.85 ± 1.99 | 0.006 | 5.40 ± 1.50 | 0.001 | |
Quartiles | Q1 | Reference | Reference | Reference | Reference | ||||
Q2 | 0.24 ± 0.28 | 0.402 | 0.41 ± 0.26 | 0.119 | 12.44 ± 10.54 | 0.247 | 23.22 ± 9.35 | 0.018 | |
Q3 | 0.69 ± 0.27 | 0.017 | 0.83 ± 0.28 | 0.006 | 19.04 ± 9.09 | 0.044 | 26.44 ± 8.54 | 0.004 | |
Q4 | 1.47 ± 0.37 | <0.001 | 1.26 ± 0.38 | 0.002 | 41.31 ± 11.94 | 0.002 | 34.15 ± 8.93 | 0.001 | |
1,7-dimethylxanthine(paraxanthine) | |||||||||
Per two-fold increase | 0.25 ± 0.06 | <0.001 | 0.21 ± 0.06 | 0.003 | 6.59 ± 1.79 | 0.001 | 5.73 ± 1.53 | 0.001 | |
Quartiles | Q1 | Reference | Reference | Reference | Reference | ||||
Q2 | 0.31 ± 0.28 | 0.276 | 0.45 ± 0.23 | 0.066 | 14.52 ± 9.06 | 0.119 | 22.21 ± 7.91 | 0.008 | |
Q3 | 0.81 ± 0.32 | 0.017 | 0.78 ± 0.31 | 0.017 | 13.30 ± 10.25 | 0.204 | 18.40 ± 8.78 | 0.044 | |
Q4 | 1.48 ± 0.34 | <0.001 | 1.18 ± 0.37 | 0.003 | 43.64 ± 11.08 | <0.001 | 34.56 ± 8.92 | 0.001 | |
1,3,7-trimethylxanthine(caffeine) | |||||||||
Per two-fold increase | 0.26 ± 0.06 | <0.001 | 0.24 ± 0.06 | <0.001 | 5.53 ± 1.74 | 0.003 | 5.46 ± 1.57 | 0.002 | |
Quartiles | Q1 | Reference | Reference | Reference | Reference | ||||
Q2 | 0.27 ± 0.19 | 0.174 | 0.40 ± 0.16 | 0.018 | 8.57 ± 7.20 | 0.242 | 17.20 ± 7.52 | 0.029 | |
Q3 | 1.12 ± 0.33 | 0.002 | 1.11 ± 0.33 | 0.002 | 25.37 ± 9.19 | 0.009 | 28.51 ± 9.46 | 0.005 | |
Q4 | 1.51 ± 0.33 | <0.0001 | 1.30 ± 0.32 | <0.001 | 34.25 ± 10.58 | 0.003 | 31.59 ± 9.37 | 0.002 | |
5-acetylamino-6-amino-3-methyluracil | |||||||||
Per two-fold increase | 0.20 ± 0.06 | 0.004 | 0.15 ± 0.07 | 0.037 | 5.37 ± 1.69 | 0.003 | 3.97 ± 1.62 | 0.020 | |
Quartiles | Q1 | Reference | Reference | Reference | Reference | ||||
Q2 | 0.13 ± 0.24 | 0.579 | 0.04 ± 0.27 | 0.874 | 4.11 ± 7.34 | 0.580 | 6.49 ± 7.75 | 0.408 | |
Q3 | 0.34 ± 0.24 | 0.164 | 0.13 ± 0.29 | 0.650 | 7.07 ± 6.21 | 0.263 | 7.01 ± 6.37 | 0.279 | |
Q4 | 1.21 ± 0.36 | 0.002 | 1.03 ± 0.38 | 0.011 | 34.36 ± 10.25 | 0.002 | 26.75 ± 9.32 | 0.007 |
Urinary Metabolite Levels | Total | Normal (Fasting Plasma Glucose < 5.6 mmol/L) | Prediabetes (Fasting Plasma Glucose ≥ 5.6 mmol/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Unadjusted Model | Adjusted Model 1 | n | Unadjusted Model | Adjusted Model 1 | ||||||
Beta ± SE | p | Beta ± SE | p | Beta ± SE | p | Beta ± SE | p | ||||
HOMA-IR | |||||||||||
1-MU | 1036 | 577 | 0.07 ± 0.06 | 0.212 | 0.07 ± 0.05 | 0.118 | 459 | 0.12 ± 0.15 | 0.408 | 0.09 ± 0.18 | 0.645 |
1,3-DMU | 1016 | 563 | 0.08 ± 0.05 | 0.125 | 0.09 ± 0.04 | 0.018 | 453 | 0.26 ± 0.13 | 0.053 | 0.24 ± 0.16 | 0.155 |
1,7-DMU | 1020 | 565 | 0.11 ± 0.04 | 0.015 | 0.11 ± 0.03 | 0.001 | 455 | 0.24 ± 0.11 | 0.036 | 0.21 ± 0.12 | 0.099 |
1,3,7-TMU | 980 | 542 | 0.14 ± 0.05 | 0.005 | 0.14 ± 0.04 | 0.001 | 438 | 0.39 ± 0.14 | 0.011 | 0.31 ± 0.14 | 0.039 |
1-MX | 1036 | 577 | 0.09 ± 0.04 | 0.057 | 0.10 ± 0.03 | 0.004 | 459 | 0.14 ± 0.12 | 0.248 | 0.08 ± 0.13 | 0.549 |
1,3-DMX | 1002 | 557 | 0.09 ± 0.06 | 0.156 | 0.10 ± 0.04 | 0.008 | 445 | 0.38 ± 0.16 | 0.021 | 0.33 ± 0.16 | 0.050 |
1,7-DMX | 1019 | 565 | 0.14 ± 0.05 | 0.006 | 0.14 ± 0.03 | 0.000 | 454 | 0.30 ± 0.13 | 0.022 | 0.22 ± 0.13 | 0.101 |
1,3,7-TMX | 994 | 548 | 0.13 ± 0.05 | 0.009 | 0.14 ± 0.04 | 0.001 | 446 | 0.30 ± 0.13 | 0.034 | 0.29 ± 0.12 | 0.028 |
AAMU | 1027 | 571 | 0.10 ± 0.04 | 0.038 | 0.09 ± 0.04 | 0.016 | 456 | 0.27 ± 0.14 | 0.061 | 0.22 ± 0.18 | 0.236 |
HOMA-B | |||||||||||
1-MU | 1036 | 577 | 4.69 ± 2.97 | 0.124 | 5.13 ± 3.08 | 0.105 | 459 | 3.47 ± 2.92 | 0.243 | -0.61 ± 3.44 | 0.860 |
1,3-DMU | 1016 | 563 | 5.02 ± 2.39 | 0.043 | 5.98 ± 1.72 | 0.002 | 453 | 5.64 ± 2.87 | 0.058 | 2.39 ± 3.09 | 0.445 |
1,7-DMU | 1020 | 565 | 6.15 ± 2.16 | 0.008 | 6.27 ± 1.72 | 0.001 | 455 | 4.61 ± 2.54 | 0.079 | 1.72 ± 2.33 | 0.466 |
1,3,7-TMU | 980 | 542 | 7.82 ± 2.27 | 0.002 | 7.59 ± 1.80 | 0.000 | 438 | 7.76 ± 3.44 | 0.031 | 4.20 ± 2.96 | 0.165 |
1-MX | 1036 | 577 | 5.37 ± 2.34 | 0.028 | 5.99 ± 2.19 | 0.010 | 459 | 2.90 ± 2.34 | 0.224 | -1.34 ± 2.38 | 0.578 |
1,3-DMX | 1002 | 557 | 5.65 ± 2.66 | 0.041 | 6.79 ± 1.63 | 0.000 | 445 | 6.93 ± 3.52 | 0.057 | 4.11 ± 3.02 | 0.182 |
1,7-DMX | 1019 | 565 | 7.58 ± 2.30 | 0.002 | 8.10 ± 1.76 | <0.0001 | 454 | 5.96 ± 2.88 | 0.046 | 2.83 ± 2.46 | 0.258 |
1,3,7-TMX | 994 | 548 | 7.10 ± 2.22 | 0.003 | 7.75 ± 1.86 | 0.000 | 446 | 4.43 ± 3.20 | 0.176 | 3.35 ± 2.69 | 0.222 |
AAMU | 1027 | 571 | 5.21 ± 2.33 | 0.032 | 5.17 ± 2.07 | 0.018 | 456 | 6.39 ± 2.96 | 0.039 | 2.55 ± 3.31 | 0.446 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Min, J.-y.; Min, K.-b. Caffeine and Caffeine Metabolites in Relation to Insulin Resistance and Beta Cell Function in U.S. Adults. Nutrients 2020, 12, 1783. https://doi.org/10.3390/nu12061783
Lee S, Min J-y, Min K-b. Caffeine and Caffeine Metabolites in Relation to Insulin Resistance and Beta Cell Function in U.S. Adults. Nutrients. 2020; 12(6):1783. https://doi.org/10.3390/nu12061783
Chicago/Turabian StyleLee, Sohyae, Jin-young Min, and Kyoung-bok Min. 2020. "Caffeine and Caffeine Metabolites in Relation to Insulin Resistance and Beta Cell Function in U.S. Adults" Nutrients 12, no. 6: 1783. https://doi.org/10.3390/nu12061783
APA StyleLee, S., Min, J.-y., & Min, K.-b. (2020). Caffeine and Caffeine Metabolites in Relation to Insulin Resistance and Beta Cell Function in U.S. Adults. Nutrients, 12(6), 1783. https://doi.org/10.3390/nu12061783