Mangosteen Concentrate Drink Supplementation Promotes Antioxidant Status and Lactate Clearance in Rats after Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diets and Experimental Groups
2.3. Treadmill Running Exercise Test
2.4. Determination of Exhaustion Time
2.5. Analysis of Plasma Glucose, Cholesterol, Triglycerides, and Lactate
2.6. Analysis of Antioxidant Enzymes Activities and Malondialdehyde (MDA) Levels
2.7. Statistical Analysis
3. Results
3.1. Body Weight and Fasting Plasma Glucose, Lipids, and MDA Levels
3.2. Plasma Lactate Levels of the Rats in the 30 Min Running Test
3.3. Running Time and Lactate Levels of the Rats in the Exhaustive Running Test
3.4. Hepatic and Muscular MDA Levels and Antioxidant Enzymes Activities of the Rats after the Exhaustive Running Test
4. Discussion
4.1. Effect of MCD Supplementation on Fasting Plasma Biochemical Parameters
4.2. Effect of MCD Supplementation on the Lactate Clearance of the Rats after Running Tests
4.3. Effect of MCD Supplementation on Hepatic and Muscular Antioxidant Enzymes Activities and the MDA Levels of the Rats after Running Tests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Robergs, R.A.; Ghiasvand, F.; Parker, D. Biochemistry of exercise-induced metabolic acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R502–R516. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.C.; Gruetter, R.; Sonnewald, U.; Waagepetersen, H.S.; Schousboe, A. Energy metabolism of the brain. In Basic Neurochemistry: Molecular, Cellular, and Medical Aspects; Siegel, G.J., Albers, R.W., Bradey, S.T., Price, D.P., Eds.; Elsevier Academic Press: New York, NY, USA, 2006. [Google Scholar]
- Brooks, G.A. Cell-cell and intracellular lactate shuttles. J. Physiol. 2009, 587, 5591–5600. [Google Scholar] [CrossRef] [PubMed]
- Van Hall, G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol. 2010, 199, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, N.; Hoffman-Goetz, L. Immune cell inflammatory cytokine responses differ between central and systemic compartments in response to acute exercise in mice. Exerc. Immunol. Rev. 2012, 18, 142–157. [Google Scholar]
- Huang, K.C.; Wu, W.T.; Yang, F.L.; Chiu, Y.H.; Peng, T.C.; Hsu, B.G.; Liao, K.W.; Lee, R.P. Effects of freshwater clam extract supplementation on time to exhaustion, muscle damage, pro/anti-inflammatory cytokines, and liver injury in rats after exhaustive exercise. Molecules 2013, 18, 3825–3838. [Google Scholar] [CrossRef] [Green Version]
- Chang, Q.; Miao, X.; Ju, X.; Zhu, L.; Huang, C.; Huang, T.; Zuo, X.; Gao, C. Effects of pulse current on endurance exercise and its anti-fatigue properties in the hepatic tissue of trained rats. PLoS ONE 2013, 8, e75093. [Google Scholar] [CrossRef] [Green Version]
- Marín, C.; Yubero-Serrano, E.M.; López-Miranda, J.; Pérez-Jiménez, F. Endothelial aging associated with oxidative stress can be modulated by a healthy mediterranean diet. Int. J. Mol. Sci. 2013, 14, 8869–8889. [Google Scholar] [CrossRef]
- Bumrungpert, A.; Kalpravidh, R.W.; Chitchumroonchokchai, C.; Chuang, C.C.; West, T.; Kennedy, A.; McIntosh, M. Xanthones from mangosteen prevent lipopolysaccharide-mediated inflammation and insulin resistance in primary cultures of human adipocytes. J. Nutr. 2009, 139, 1185–1191. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.Y.; Kwon, O.K.; Oh, S.R.; Lee, H.K.; Ahn, K.S.; Chin, Y.W. Mangosteen xanthones mitigate ovalbumin-induced airway inflammation in a mouse model of asthma. Food Chem. Toxicol. 2012, 50, 4042–4050. [Google Scholar] [CrossRef]
- Williams, P.; Ongsakul, M.; Proudfoot, J.; Croft, K.; Beilin, L. Mangostin inhibits the oxidative modification of human low density lipoprotein. Free Radic. Res. 1995, 23, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Sukatta, U.; Takenaka, M.; Ono, H.; Okadome, H.; Sotome, I.; Nanayama, K.; Thanapase, W.; Isobe, S. Distribution of major xanthones in the pericarp, aril, and yellow gum of mangosteen (Garcinia mangostana linn.) fruit and their contribution to antioxidative activity. Biosci. Biotechnol. Biochem. 2013, 77, 984–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soya, H.; Mukai, A.; Deocaris, C.C.; Ohiwa, N.; Chang, H.; Nishijima, T.; Fujikawa, T.; Togashi, K.; Saito, T. Threshold-like pattern of neuronal activation in the hypothalamus during treadmill running: Establishment of a minimum running stress (MRS) rat model. Neurosci. Res. 2007, 58, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.S.; Peerson, J.; Mishra, A.T.; Sadasiva Rao, M.V.; Rajeswari, K.P. Efficacy and tolerability of a novel herbal formulation for weight management. Obesity 2013, 21, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; Wang, Y.; Ma, X.; Liang, Y.; Tian, W.; Ma, Q.; Jiang, H.; Zhao, Y. α-Mangostin induces apoptosis and suppresses differentiation of 3T3-L1 cells via inhibiting fatty acid synthase. PLoS ONE 2012, 7, e33376. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.H.; Bae, J.K.; Chae, H.S.; Kim, Y.M.; Sreymom, Y.; Han, L.; Jang, H.Y.; Chin, Y.W. α-Mangostin regulates hepatic steatosis and obesity through SirT1-AMPK and PPARγ pathways in high-hat diet-induced obese mice. J. Agric. Food Chem. 2015, 63, 8399–8406. [Google Scholar] [CrossRef]
- Battezzati, A.; Caumo, A.; Martino, F.; Sereni, L.P.; Coppa, J.; Romito, R.; Ammatuna, M.; Regalia, E.; Matthews, D.E.; Mazzaferro, V.; et al. Nonhepatic glucose production in humans. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E129–E135. [Google Scholar] [CrossRef]
- Lemire, J.; Mailloux, R.J.; Appanna, V.D. Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1). PLoS ONE 2008, 3, e1550. [Google Scholar] [CrossRef] [Green Version]
- Kreisberg, R.A. Lactate homeostasis and lactic acidosis. Ann. Intern. Med. 1980, 92, 227–237. [Google Scholar] [CrossRef]
- Goodwin, M.L.; Harris, J.E.; Hernández, A.; Gladden, L.B. Blood lactate measurements and analysis during exercise: A guide for clinicians. J. Diabetes Sci. Technol. 2007, 1, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Jorfeldt, L. Metabolism of L (+)-lactate in human skeletal muscle during exercise. Acta Physiol. Scand. Suppl. 1970, 338, 1–67. [Google Scholar] [PubMed]
- Stanley, W.C.; Gertz, E.W.; Wisneski, J.A.; Neese, R.A.; Morris, D.L.; Brooks, G.A. Lactate extraction during net lactate release in legs of humans during exercise. J. Appl. Physiol. 1986, 60, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Consoli, A.; Nurjhan, N.; Reilly, J.J.; Jr Bier, D.M.; Gerich, J.E. Contribution of liver and skeletal muscle to alanine and lactate metabolismin humans. Am. J. Physiol. 1990, 259, E677–E684. [Google Scholar] [PubMed]
- Perriello, G.; Jorde, R.; Nurjhan, N.; Stumvoll, M.; Dailey, G.; Jenssen, T.; Bier, D.M.; Gerich, J.E. Estimation of glucose-alanine-lactate-glutamine cycles in postabsorptive humans: Role of skeletal muscle. Am. J. Physiol. 1995, 269, E443–E450. [Google Scholar] [CrossRef]
- Ahlborg, G.; Felig, P.; Hagenfeldt, L.; Hendler, R.; Wahren, J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J. Clin. Investig. 1974, 53, 1080–1090. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Clemmesen, J.O.; Skak, C.; Ott, P.; Secher, N.H. Attenuated hepatosplanchnic uptake of lactate during intense exercise in humans. J. Appl. Physiol. 2002, 92, 1677–1683. [Google Scholar] [CrossRef] [Green Version]
- Bergman, B.C.; Wolfel, E.E.; Butterfield, G.E.; Lopaschuk, G.D.; Casazza, G.A.; Horning, M.A.; Brooks, G.A. Active muscle and whole body lactate kinetics after endurance training in men. J. Appl. Physiol. 1999, 87, 1684–1696. [Google Scholar] [CrossRef] [Green Version]
- Messonnier, L.A.; Emhoff, C.A.; Fattor, J.A.; Horning, M.A.; Carlson, T.J.; Brooks, G.A. Lactate kinetics at the lactate threshold in trained and untrained men. J. Appl. Physiol. 2013, 114, 1593–1602. [Google Scholar] [CrossRef]
- Vasilaki, A.; Mansouri, A.; Van Remmen, H.; Van der Meulen, J.H.; Larkin, L.; Richardson, A.G.; McArdle, A.; Faulkner, J.A.; Jackson, M.J. Free radical generation by skeletal muscle of adult and old mice: Effect of contractile activity. Aging Cell 2006, 5, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Long, W.; Liu, G.; Zhang, X.; Yang, X. Effect of seabuckthorn (Hippophae rhamnoides ssp. sinensis) leaf extract on the swimming endurance and exhaustive exercise-induced oxidative stress of rats. J. Sci. Food. Agric. 2012, 92, 736–742. [Google Scholar] [CrossRef]
- Küçükgergin, C.; Aydin, A.F.; Ozdemirler-Erata, G.; Mehmetçik, G.; Koçak-Toker, N.; Uysal, M. Effect of artichoke leaf extract on hepatic and cardiac oxidative stress in rats fed on high cholesterol diet. Biol. Trace Elem. Res. 2010, 135, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Peng, C.; Xie, X.; Mao, Y.; Li, M.; Cao, Z.; Fan, D. Antidiabetic effect of flavonoids from Malus toringoides (Rehd.) Hughes leaves in diabetic mice and rats. J. Ethnopharmacol. 2014, 153, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Hellsten, Y.; Frandsen, U.; Ortehenblad, N.; Sjodin, B.; Richter, E.A. Xanthine xidase in human skeletal muscle following eccentric exercise: A role in inflammation. J. Physiol. Lond. 1997, 498, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Viña, J.; Gimeno, A.; Sastre, J.; Desco, C.; Asensi, M.; Pallardó, F.V.; Cuesta, A.; Ferrero, J.A.; Terada, L.S.; Repine, J.E. Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life 2000, 49, 539–544. [Google Scholar] [PubMed]
- Gomez-Cabrera, M.C.; Pallardo, F.V.; Sastre, J.; Viña, J.; Garcia-del-Moral, L. Allopurinol and markers of muscle damage among participants in the Tour de France. JAMA 2003, 289, 2503–2504. [Google Scholar] [CrossRef]
N | C | M1 | M5 | M10 | |
---|---|---|---|---|---|
Initial | |||||
Weight (g) | 318.3 ± 12.3 | 313.4 ± 8.2 | 317.6 ± 14.6 | 312.0 ± 10.2 | 318.4 ± 9.1 |
Glucose (mg/dL) | 136.6 ± 16.3 | 139.5 ± 14.0 | 141.0 ± 7.4 | 130.8 ± 6.8 | 134.5 ± 13.4 |
Triglycerides (mg/dL) | 56.22 ± 5.39 | 58.40 ± 6.80 | 60.50 ± 5.45 | 57.92 ± 3.61 | 55.20 ± 5.26 |
Cholesterol (mg/dL) | 65.34 ± 8.67 | 70.20 ± 7.15 | 71.40 ± 5.35 | 65.00 ± 3.28 | 65.23 ± 4.50 |
MDA (nmole/mL) | 0.52 ± 0.03 | 0.52 ± 0.02 | 0.53 ± 0.03 | 0.52 ± 0.02 | 0.53 ± 0.02 |
After 3 weeks feeding | |||||
Weight (g) | 414.0 ± 14.7 | 417.3 ± 21.9 | 418.2 ± 25.8 | 425.1 ± 12.1 | 428.4 ± 20.7 |
Glucose (mg/dL) | 154.1 ± 12.8 | 142.1 ± 12.1 | 150.8 ± 13.7 | 145.8 ± 12.0 | 139.2 ± 15.1 |
Triglycerides (mg/dL) | 82.02 ± 7.93 c | 57.83 ± 9.68 b | 58.45 ± 3.87 b | 48.50 ± 8.65 a | 50.41 ± 9.75 ab |
Cholesterol (mg/dL) | 64.71 ± 5.37 b | 60.21 ± 3.24 ab | 63.46 ± 4.37 b | 64.50 ± 3.89 b | 56.40 ± 6.12 a |
MDA (nmole/mL) | 0.57 ± 0.04 | 0.55 ± 0.02 | 0.55 ± 0.03 | 0.54 ± 0.05 | 0.54 ± 0.03 |
After 6 weeks feeding | |||||
Weight (g) | 473.1 ± 23.5 | 450.3 ± 20.0 | 467.5 ± 29.8 | 470.3 ± 15.9 | 464.9 ± 22.6 |
Glucose (mg/dL) | 158.0 ± 10.0 b | 136.8 ± 7.1 a | 140.8 ± 15.9 a | 144.4 ± 12.2 a | 135.1 ± 9.7 a |
Triglycerides (mg/dL) | 87.60 ± 8.91 c | 58.13 ± 6.10 b | 57.60 ± 3.60 b | 52.87 ± 2.42 ab | 48.12 ± 3.30 a |
Cholesterol (mg/dL) | 63.84 ± 5.91 c | 55.67 ± 8.38 b | 55.76 ± 8.30 b | 51.92 ± 7.48 ab | 45.03 ± 3.18 a |
MDA (nmole/mL) | 0.65 ± 0.03 c | 0.60 ± 0.02 b | 0.57 ± 0.03 ab | 0.54 ± 0.04 a | 0.53 ± 0.05 a |
C | M1 | M5 | M10 | |
---|---|---|---|---|
Lactate (mg/dL) | After 2 weeks feeding | |||
Before running (a) | 16.19 ± 2.19 | 15.23 ± 3.50 | 16.40 ± 3.31 | 17.13 ± 1.98 |
After 30 min running (b) | 27.41 ± 2.16 | 25.88 ± 3.25 | 26.28 ± 2.80 | 27.20 ± 2.05 |
Lactate increase during running (b-a) | 11.22 ± 3.58 | 10.66 ± 1.48 | 9.88 ± 1.44 | 10.07 ± 1.37 |
After resting (c) | 18.71 ± 2.27 | 15.72 ± 3.39 | 16.53 ± 2.61 | 16.36 ± 1.68 |
Lactate decrease during resting (c-b) | 9.07 ± 0.59 | 10.16 ± 0.82 | 9.92 ± 0.78 | 10.84 ± 1.41 |
Lactate (mg/dL) | After 4 weeks feeding | |||
Before running (a) | 15.40 ± 3.56 | 15.08 ± 2.42 | 14.73 ± 2.58 | 14.66 ± 1.64 |
After 30 min running (b) | 25.13 ± 2.81 | 24.99 ± 2.93 | 24.65 ± 3.11 | 24.53 ± 2.62 |
Lactate increase during running (b-a) | 9.73 ± 1.13 | 9.91 ± 1.01 | 9.92 ± 1.28 | 9.97 ± 1.16 |
After resting (c) | 15.54 ± 2.03 b | 14.67 ± 1.74 ab | 13.85 ± 1.15 a | 12.58 ± 1.94 a |
Lactate decrease during resting (c-b) | 9.60 ± 0.90 a | 10.32 ± 1.59 ab | 10.80 ± 2.18 b | 12.05 ± 1.08 b |
C | M1 | M5 | M10 | |
---|---|---|---|---|
Running time (seconds) | 2331 ± 329 | 2361 ± 190 | 2354 ± 159 | 2585 ± 130 |
Lactate (mg/dL) | ||||
Before running (a) | 14.36 ± 2.58 | 14.00 ± 2.49 | 15.92 ± 3.62 | 16.32 ± 1.57 |
After 30 min running (b) | 138.51 ± 41.14 | 152.39 ± 17.47 | 133.65 ± 26.65 | 170.61 ± 23.60 |
Lactate increase during running (b-a) | 124.16 ± 43.20 | 138.39 ± 15.79 | 117.72 ± 28.29 | 154.29 ± 23.52 |
After resting (c) | 45.69 ± 10.15 | 53.71 ± 17.33 | 37.74 ± 10.70 | 43.54 ± 5.97 |
Lactate decrease during resting (c-b) | 92.82 ± 33.47 a | 98.69 ± 12.66 a | 95.91 ± 27.79 a | 127.07 ± 25.30 b |
N | C | M1 | M5 | M10 | |
---|---|---|---|---|---|
Hepatic MDA (nmole/mg protein) | 1.26 ± 0.09 b | 1.33 ± 0.11 b | 1.30 ± 0.15 b | 1.06 ± 0.05 a | 1.11 ± 0.09 a |
Hepatic SOD (unit/mg protein) | 142.6 ± 19.7b | 148.2 ± 16.9 b | 149.6 ± 9.9 b | 123.3 ± 11.0 a | 119.3 ± 13.6 a |
Hepatic GPx (unit/mg protein) | 163.5 ± 7.6 a | 178.2 ± 9.9 b | 177.4 ± 10.7 b | 182.3 ± 19.9 b | 182.9 ± 11.0 b |
Hepatic CAT (mmole/min/mg protein) | 48.5 ± 16.0 a | 126.8 ± 7.4 c | 115.5 ± 15.9 bc | 104.4 ± 8.8 b | 108.0 ± 11.2 b |
Muscular MDA (nmole/mg protein) | 0.46 ± 0.13 | 0.55 ± 0.10 | 0.45 ± 0.06 | 0.45 ± 0.09 | 0.45 ± 0.09 |
Muscular SOD (unit/mg protein) | 87.90 ± 7.00 a | 96.98 ± 11.58 b | 96.30 ± 5.82 b | 86.99 ± 6.68 ab | 80.20 ± 6.87 a |
Muscular GPx (unit/mg protein) | 7.24 ± 1.49 a | 7.41 ± 1.08 a | 7.52 ± 1.20 a | 9.08 ± 1.72 b | 11.66 ± 1.85 c |
Muscular CAT (mmole/min/mg protein) | 3.04 ± 0.55 a | 3.79 ± 0.34 b | 4.37 ± 0.97 b | 4.12 ± 0.57 b | 5.11 ± 0.64 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-C.; Chen, C.-W.; Owaga, E.; Lee, W.-T.; Liu, T.-N.; Hsieh, R.-H. Mangosteen Concentrate Drink Supplementation Promotes Antioxidant Status and Lactate Clearance in Rats after Exercise. Nutrients 2020, 12, 1447. https://doi.org/10.3390/nu12051447
Chang C-C, Chen C-W, Owaga E, Lee W-T, Liu T-N, Hsieh R-H. Mangosteen Concentrate Drink Supplementation Promotes Antioxidant Status and Lactate Clearance in Rats after Exercise. Nutrients. 2020; 12(5):1447. https://doi.org/10.3390/nu12051447
Chicago/Turabian StyleChang, Ching-Chien, Chia-Wen Chen, Eddy Owaga, Wan-Ting Lee, Ting-Ni Liu, and Rong-Hong Hsieh. 2020. "Mangosteen Concentrate Drink Supplementation Promotes Antioxidant Status and Lactate Clearance in Rats after Exercise" Nutrients 12, no. 5: 1447. https://doi.org/10.3390/nu12051447
APA StyleChang, C. -C., Chen, C. -W., Owaga, E., Lee, W. -T., Liu, T. -N., & Hsieh, R. -H. (2020). Mangosteen Concentrate Drink Supplementation Promotes Antioxidant Status and Lactate Clearance in Rats after Exercise. Nutrients, 12(5), 1447. https://doi.org/10.3390/nu12051447