Assessing Non-Invasive Liver Function in Patients with Intestinal Failure Receiving Total Parenteral Nutrition—Results from the Prospective PNLiver Trial
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Concept
2.2. Clinical Management
2.3. Liver Assessment
2.4. Nutritional Status Assessment
2.5. Quality of Life Assessment
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Quality of Life
3.3. Comparison between Reduced vs. Stable Parenteral Nutrition Group at Baseline
3.4. Longitudinal Assessment
3.5. Liver Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pironi, L.; Arends, J.; Bozzetti, F.; Cuerda, C.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. ESPEN guidelines on chronic intestinal failure in adults. Clin. Nutr. 2016, 35, 247–307. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, P.B.; Sanguinetti, E.L.; Buchman, A.; Howard, L.; Scolapio, J.S.; Ziegler, T.R.; Gregory, J.; Tappenden, K.A.; Holst, J.; Mortensen, P.B. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut 2005, 54, 1224–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pironi, L.; Joly, F.; Forbes, A.; Colomb, V.; Lyszkowska, M.; Baxter, J.; Gabe, S.; Hebuterne, X.; Gambarara, M.; Gottrand, F.; et al. Long-term follow-up of patients on home parenteral nutrition in Europe: Implications for intestinal transplantation. Gut 2011, 60, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Cavicchi, M.; Beau, P.; Crenn, P.; Degott, C.; Messing, B. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann. Intern. Med. 2000, 132, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.L.; Iyer, K.; Fryer, J. Parenteral nutrition-associated liver disease and the role for isolated intestine and intestine/liver transplantation. Hepatology 2006, 43, 9–19. [Google Scholar] [CrossRef]
- Naini, B.V.; Lassman, C.R. Total parenteral nutrition therapy and liver injury: A histopathologic study with clinical correlation. Hum. Pathol. 2012, 43, 826–833. [Google Scholar] [CrossRef]
- Castéra, L.; Vergniol, J.; Foucher, J.; Le Bail, B.; Chanteloup, E.; Haaser, M.; Darriet, M.; Couzigou, P.; De Lédinghen, V. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 2005, 128, 343–350. [Google Scholar] [CrossRef]
- Blüthner, E.; Bednarsch, J.; Pape, U.-F.; Karber, M.; Maasberg, S.; Gerlach, U.A.; Pascher, A.; Wiedenmann, B.; Pratschke, J.; Stockmann, M. Advanced liver function assessment in patients with intestinal failure on long-term parenteral nutrition. Clin. Nutr. 2020, 39, 540–547. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Lamprecht, G.; Pape, U.-F.; Witte, M.; Pascher, A. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin e. V. in Zusammenarbeit mit der AKE, der GESKES und der DGVS Klinische Ernährung in der Gastroenterologie (Teil 3)–Chronisches Darmversagen. Aktuel. Ernahrungsmed. 2014, 39, e57–e71. [Google Scholar]
- Messing, B.; Crenn, P.; Beau, P.; Boutron-Ruault, M.C.; Rambaud, J.C.; Matuchansky, C. Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology 1999, 117, 1043–1050. [Google Scholar] [CrossRef]
- Crenn, P.; Coudray–Lucas, C.; Thuillier, F.; Cynober, L.; Messing, B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 2000, 119, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.S.; Sulkowski, M.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Stockmann, M.; Lock, J.F.; Riecke, B.; Heyne, K.; Martus, P.; Fricke, M.; Lehmann, S.; Niehues, S.M.; Schwabe, M.; Lemke, A.-J.; et al. Prediction of Postoperative Outcome After Hepatectomy With a New Bedside Test for Maximal Liver Function Capacity. Ann. Surg. 2009, 250, 119–125. [Google Scholar] [CrossRef]
- Jara, M.; Bednarsch, J.; Valle, E.; Lock, J.F.; Malinowski, M.; Schulz, A.; Seehofer, D.; Jung, T.; Stockmann, M. Reliable assessment of liver function using LiMAx. J. Surg. Res. 2015, 193, 184–189. [Google Scholar] [CrossRef]
- Sakka, S.G. Assessing liver function. Curr. Opin. Crit. Care 2007, 13, 207–214. [Google Scholar] [CrossRef]
- Sandrin, L.; Fourquet, B.; Hasquenoph, J.-M.; Yon, S.; Fournier, C.; Mal, F.; Christidis, C.; Ziol, M.; Poulet, B.; Kazemi, F.; et al. Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med. Biol. 2003, 29, 1705–1713. [Google Scholar] [CrossRef]
- Matarese, L.E. Indirect calorimetry: Technical aspects. J. Am. Diet. Assoc. 1997, 97, S154–S160. [Google Scholar] [CrossRef]
- Maasberg, S.; Knappe-Drzikova, B.; Vonderbeck, D.; Jann, H.; Weylandt, K.H.; Grieser, C.; Pascher, A.; Schefold, J.C.; Pavel, M.; Wiedenmann, B.; et al. Malnutrition Predicts Clinical Outcome in Patients with Neuroendocrine Neoplasia. Neuroendocrinology 2017, 104, 11–25. [Google Scholar] [CrossRef] [Green Version]
- McHorney, C.A.; Ware, J.E.; Lu, J.F.; Sherbourne, C.D. The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med. Care 1994, 32, 40–66. [Google Scholar] [CrossRef] [PubMed]
- Berghofer, P.; Fragkos, K.C.; Baxter, J.P.; Forbes, A.; Joly, F.; Heinze, H.; Loth, S.; Pertkiewicz, M.; Messing, B.; Jeppesen, P.B. Development and validation of the disease-specific Short Bowel Syndrome-Quality of Life (SBS-QoL) scale. Clin. Nutr 2013, 32, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Dibb, M.; Teubner, A.; Theis, V.; Shaffer, J.; Lal, S. Review article: The management of long-term parenteral nutrition. Aliment. Pharmacol. Ther. 2013, 37, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Beyer-Berjot, L.; Joly, F.; Dokmak, S.; Bretagnol, F.; Corcos, O.; Bouhnik, Y.; Belghiti, J.; Panis, Y. Intestinal transplantation: Indications and prospects. J. Visc. Surg. 2012, 149, 380–384. [Google Scholar] [CrossRef]
- Gabe, S.M.; Culkin, A. Abnormal liver function tests in the parenteral nutrition fed patient. Frontline Gastroenterol. 2010, 1, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Gerlach, U.A.; Reutzel-Selke, A.; Pape, U.-F.; Joerres, D.; Denecke, T.; Neuhaus, P.; Pascher, A. Waitlist characteristics of patients at a single-center intestinal and multivisceral transplant program. Transpl. Int. 2013, 26, 392–401. [Google Scholar] [CrossRef]
- Sudan, D.; Dibaise, J.; Torres, C.; Thompson, J.; Raynor, S.; Gilroy, R.; Horslen, S.; Grant, W.; Botha, J.; Langsas, A. A multidisciplinary approach to the treatment of intestinal failure. J. Gastrointest. Surg. 2005, 9, 165–177. [Google Scholar] [CrossRef]
- Schmöcker, C.; Weylandt, K.H.; Kahlke, L.; Wang, J.; Lobeck, H.; Tiegs, G.; Berg, T.; Kang, J.X. Omega-3 fatty acids alleviate chemically induced acute hepatitis by suppression of cytokines. Hepatology 2007, 45, 864–869. [Google Scholar] [CrossRef]
- Picot, D.; Layec, S.; Dussaulx, L.; Trivin, F.; Thibault, R. Chyme reinfusion in patients with intestinal failure due to temporary double enterostomy: A 15-year prospective cohort in a referral centre. Clin. Nutr. 2017, 36, 593–600. [Google Scholar] [CrossRef]
- Fitzgibbons, S.C.; Jones, B.A.; Hull, M.A.; Zurakowski, D.; Duro, D.; Duggan, C.; Boctor, D.; Sigalet, D.L.; Jaksic, T. Relationship between biopsy-proven parenteralnutrition-associated liver fibrosis and biochemical cholestasis in children with short bowel syndrome. J. Pediatr. Surg. 2010, 45, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Van Gossum, A.; Pironi, L.; Messing, B.; Moreno, C.; Colecchia, A.; D’Errico, A.; Demetter, P.; De Gos, F.; Cazals-Halem, D.; Joly, F. Transient Elastography (FibroScan) Is Not Correlated With Liver Fibrosis but With Cholestasis in Patients With Long-Term Home Parenteral Nutrition. J. Parenter. Enter. Nutr. 2015, 39, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Hukkinen, M.; Kivisaari, R.; Lohi, J.; Heikkilä, P.; Mutanen, A.; Merras-Salmio, L.; Pakarinen, M.P. Transient elastography and aspartate aminotransferase to platelet ratio predict liver injury in paediatric intestinal failure. Liver Int. 2016, 36, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.A. Intestinal Failure–Associated Liver Disease: What Do We Know Today? Gastroenterology 2006, 130, S70–S77. [Google Scholar] [CrossRef] [PubMed]
- Alizai, P.H.; Wendl, J.; Roeth, A.A.; Klink, C.D.; Luedde, T.; Steinhoff, I.; Neumann, U.P.; Schmeding, M.; Ulmer, F. Functional Liver Recovery After Bariatric Surgery—A Prospective Cohort Study with the LiMAx Test. Obes. Surg. 2015, 25, 2047–2053. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef] [Green Version]
- Knop, V.; Neuberger, S.-C.; Marienfeld, S.; Bojunga, J.; Herrmann, E.; Poynard, T.; Zeuzem, S.; Blumenstein, I.; Friedrich-Rust, M. Intestinal failure-associated liver disease in patients with short bowel syndrome: Evaluation by transient elastography. Nutrition 2019, 63–64, 134–140. [Google Scholar] [CrossRef]
- Kaffarnik, M.F.; Lock, J.F.; Vetter, H.; Ahmadi, N.; Lojewski, C.; Malinowski, M.; Neuhaus, P.; Stockmann, M. Early diagnosis of sepsis-related hepatic dysfunction and its prognostic impact on survival: A prospective study with the LiMAx test. Crit. Care 2013, 17, R259. [Google Scholar] [CrossRef] [Green Version]
- Stockmann, M.; Lock, J.F.; Malinowski, M.; Seehofer, D.; Puhl, G.; Pratschke, J.; Neuhaus, P. How to define initial poor graft function after liver transplantation? A new functional definition by the LiMAx test. Transpl. Int. 2010, 23, 1023–1032. [Google Scholar] [CrossRef]
- Malinowski, M.; Jara, M.; Lüttgert, K.; Orr, J.; Lock, J.F.; Schott, E.; Stockmann, M. Enzymatic liver function capacity correlates with disease severity of patients with liver cirrhosis: A study with the LiMAx test. Dig. Dis. Sci. 2014, 59, 2983–2991. [Google Scholar] [CrossRef]
- Theilig, D.; Tsereteli, A.; Elkilany, A.; Raabe, P.; Lüdemann, L.; Malinowski, M.; Stockmann, M.; Pratschke, J.; Hamm, B.; Denecke, T.; et al. Gd-EOB-DTPA-enhanced MRI T1 relaxometry as an imaging-based liver function test compared with 13C-methacetin breath test. Acta Radiol. 2020, 61, 291–301. [Google Scholar] [CrossRef]
- Luman, W.; Shaffer, J.L. Prevalence, outcome and associated factors of deranged liver function tests in patients on home parenteral nutrition. Clin. Nutr. 2002, 21, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Blüthner, E.; Bednarsch, J.; Stockmann, M.; Karber, M.; Pevny, S.; Maasberg, S.; Gerlach, U.A.; Pascher, A.; Wiedenmann, B.; Pratschke, J.; et al. Determinants of Quality of Life in Patients With Intestinal Failure Receiving Long-Term Parenteral Nutrition Using the SF-36 Questionnaire: A German Single-Center Prospective Observational Study. J. Parenter. Enter. Nutr. 2020, 44, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Malone, M. Longitudinal assessment of outcome, health status, and changes in lifestyle associated with long-term home parenteral and enteral nutrition. J. Parenter. Enter. Nutr. 2002, 26, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Paganelli, F.; Labate, A.M.M.; Merli, C.; Guidetti, C.; Spinucci, G.; Miglioli, M. Safety and efficacy of home parenteral nutrition for chronic intestinal failure: A 16-year experience at a single centre. Dig. Liver Dis. 2003, 35, 314–324. [Google Scholar] [CrossRef]
- Buechter, M.; Thimm, J.; Baba, H.A.; Bertram, S.; Willuweit, K.; Gerken, G.; Kahraman, A. Liver Maximum Capacity: A Novel Test to Accurately Diagnose Different Stages of Liver Fibrosis. Digestion 2019, 100, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Amiot, A.; Messing, B.; Corcos, O.; Panis, Y.; Joly, F. Determinants of home parenteral nutrition dependence and survival of 268 patients with non-malignant short bowel syndrome. Clin. Nutr. 2013, 32, 368–374. [Google Scholar] [CrossRef]
- Joly, F.; Baxter, J.; Staun, M.; Kelly, D.G.; Hwa, Y.L.; Corcos, O.; De Francesco, A.; Agostini, F.; Klek, S.; Santarpia, L.; et al. Five-year survival and causes of death in patients on home parenteral nutrition for severe chronic and benign intestinal failure. Clin. Nutr. 2017, 37, 1415–1422. [Google Scholar] [CrossRef]
Descriptive Data | Total Cohort | SPN (n = 9) | RPN (n = 11) | p-Value |
---|---|---|---|---|
Age, years | 58 (38–70) | 50 (27–62) | 68 (57–73) | 0.112 |
Sex, f/m | 10/10 | 6/3 | 4/7 | 0.178 |
BMI, kg/m2 | 21.5 (18.5–22.3) | 18.8 (15.8–22.1) | 21.5 (20.5–26.3) | 0.080 |
Primary disease, n (%) | 0.246 | |||
Mesenteric ischemia | 7 (35.0) | 3 (33.3) | 4 (36.4) | |
Obstructive ileus | 6 (30.0) | 1 (11.1) | 5 (45.5) | |
Inflammatory bowel disease | 4 (20.0) | 3 (33.3) | 1 (9.1) | |
Post-surgical complications | 1 (5.0) | 0 (0) | 1 (9.1) | |
Abdominal trauma | 1 (5.0) | 1 (11.1) | 0 (0) | |
Benign abdominal tumor | 1 (5.0) | 1 (11.1) | 0 (0) | |
Bioelectrical Impedance Analysis | ||||
Body cell mass, kg | 20.1 (15.2–23.7) | 17.8 (12.5–20.3) | 21.7 (19.8–28.8) | 0.025 |
Phase angle, ° | 3.7 (4.3–4.9) | 4.0 (3.3–4.3) | 4.5 (4.1–5.4) | 0.046 |
Calculated REE, kcal | 1250 (1098–1360) | 1180 (1010–1255) | 1300 (1240–1530) | 0.025 |
Calorimetry | ||||
CO2 volume, L/min | 182 (149–212) | 168 (128–208) | 182 (149–227) | 0.545 |
O2 volume, L/min | 209 (192–255) | 199 (187–250) | 213 (202–280) | 0.272 |
Measured REE, kcal | 1440 (1303–1764) | 1372 (1247–1732) | 1440 (1371–1927) | 0.310 |
Parenteral Nutrition Program | ||||
Oral intake, n (%) | 19 (95) | 8 (88.9) | 11 (100) | 0.257 |
Duration of PN, months | 2.0 (0.3–3.0) | 1.0 (0–2.5) | 3.0 (1.0–3.0) | 0.131 |
Infusions per week, n | 7.0 (5.5–7.0) | 7.0 (5.5–7.0) | 7.0 (5.0–7.0) | 0.941 |
Total PN, kcal/infusion | 1518 (1240–1600) | 1240 (1100–1505) | 1600 (1435–1600) | 0.046 |
Total PN, kcal/week | 9485 (7175–11,200) | 8680 (5980–10,535) | 11,200 (8000–11,200) | 0.230 |
Amino acid, g/infusion | 68 (56–85) | 60 (50–78) | 85 (60–85) | 0.131 |
Glucose, g/infusion | 140 (125–165) | 135 (125–158) | 155 (125–165) | 0.456 |
Lipids, g/infusion | 58 (43–74) | 50 (39–58) | 60 (56–76) | 0.031 |
Soybean oil, g/infusion | 16 (12–22) | 15 (12–17) | 17 (12–24) | 0.766 |
Olive oil, g/infusion | 14 (10–36) | 10 (9–14) | 20 (14–48) | 0.046 |
MCT, g/infusion | 14 (3–22) | 12 (11–16) | 17 (0–24) | 0.882 |
Fish oil, g/infusion | 6 (0–8) | 6 (3–8) | 6 (0–11) | 0.882 |
Anatomy | ||||
Length of remaining small intestine, cm | 104 (75–132) | 94 (60–112) | 117 (104–144) | 0.046 |
Length of remaining small-intestine, n (%) | 0.031 | |||
≤50 cm | 1 (5) | 1 (11) | 0 (0) | |
51–100 cm | 6 (30) | 5 (56) | 1 (9) | |
>100 cm | 10 (50) | 3 (33) | 7 (64) | |
Unknown | 3 (15) | 0 (0) | 3 (27) | |
Digestive anatomy groups, n (%) | 0.930 | |||
Type I | 8 (40) | 4 (44) | 4 (36) | |
Type II | 7 (35) | 3 (33) | 4 (36) | |
Type III | 5 (25) | 2 (22) | 3 (27) | |
Presence of intestinal fistula, n (%) | 2 (10) | 1 (11) | 1 (9) | 0.881 |
Presence of ileo-cecal valve, n (%) | 2 (10) | 0 (0) | 2 (18) | 0.178 |
Stoma, n (%) | 9 (45) | 5 (56) | 4 (36) | 0.391 |
Colon anatomy, n (%) | 0.611 | |||
Intact colon | 2 (10) | 1 (11) | 1 (9) | |
(Extended) colectomy | 9 (45) | 3 (33) | 6 (55) | |
Subtotal colectomy | 1 (5) | 1 (11) | 0 (0) | |
Total Colectomy | 8 (40) | 4 (44) | 4 (36) | |
Liver Assessment | ||||
LiMAx, µg/kg/h | 483 (374–639) | 580 (411–671) | 470 (350–569) | 0.370 |
ICG, %/min | 21.5 (16.7–26.6) | 25.4 (18.7–29.5) | 20.3 (15.6–23.9) | 0.131 |
FibroScan, kPa | 5.6 (4.5–7.3) | 4.9 (4.1–7.1) | 6.8 (5.0–7.8) | 0.200 |
Complications | ||||
CRBSI, n | 4 (20) | 2 (22.2) | 2 (18.2) | 0.822 |
Laboratory Tests | ||||
NAFLD | −2.65 (−4.53–−1.22) | −3.62 (−5.34–−1.96) | −1.74 (−2.91–−0.78) | 0.095 |
FIB-4 | 1.02 (0.53–1.89) | 0.53 (0.35–1.38) | 1.51 (0.72–2.10) | 0.038 |
AST, U/L | 32 (23–42) | 30 (21–36) | 37 (24–50) | 0.261 |
ALT, U/L | 37 (24–74) | 36 (22–65) | 41 (28–104) | 0.412 |
AP, U/L | 107 (78–156) | 108 (86–378) | 98 (71–150) | 0.456 |
GGT, U/L | 110 (37–286) | 191 (41–472) | 100 (31–194) | 0.503 |
Total bilirubin, mg/dL | 0.40 (0.26–0.47) | 0.44 (0.26–1.00) | 0.39 (0.24–0.44) | 0.412 |
Conjugated bilirubin, mg/dL | 0.22 (0.18–0.32) | 0.26 (0.18–0.51) | 0.21 (0.18–0.23) | 0.370 |
Serum albumin, g/l | 37 (33–41) | 36 (32–39) | 37 (33–43) | 0.370 |
Cholinesterase, kU/L | 5.6 (4.1–6.7) | 5.6 (4.0–6.4) | 5.7 (4.0–6.9) | 0.766 |
Factor II, % | 83 (74–101) | 83 (73–88) | 97 (73–106) | 0.331 |
Factor VII, % | 118 (99–145) | 117 (93–139) | 122 (100–187) | 0.603 |
INR | 1.1 (1.0–1.2) | 1.1 (1.0–1.1) | 1.0 (1.0–1.3) | 0.824 |
Creatinine, mg/dL | 0.9 (0.6–1.1) | 0.8 (0.5–1.0) | 0.9 (0.7–1.1) | 0.331 |
CRP, mg/L | 0.5 (0.2–1.5) | 0.4 (0.1–1.9) | 0.7 (0.2–1.4) | 0.824 |
WBC, /nL | 6.7 (5.5–9.0) | 5.8 (4.9–8.8) | 6.9 (6.0–9.0) | 0.175 |
Citrulline, µmol/L | 22 (16–29) | 25 (15–41) | 21 (16–23) | 0.503 |
Parameter | Baseline | 6 Months | 12 Months | 24 Months |
---|---|---|---|---|
Number of patients, n (%) | ||||
SPN | 9 (100) | 9 (100) | 7 (78) | 5 (56) |
RPN | 11 (100) | 11 (100) | 7 (64) | 3 (27) |
BMI, kg/m2 | #, Ω | |||
SPN | 18.8 (15.8–22.1) | 21.7 (18.1–23.6) | 23.2 (18.0–26.8) | 21.4 (17.2–23.6) |
RPN | 21.5 (20.5–26.3) | 23.5 (20.3–25.1) | 23.2 (20.1–26.7) | 22.5 (19.8–) |
Body cell mass, kg | * | # | ||
SPN | 17.8 (12.5–20.3) | 22.9 (18.4–26.2) | 20.6 (15.7–26.8) | 20.1 (16.1–31.5) |
RPN | 21.7 (19.8–28.8) | 24.8 (19.8–30.8) | 21.7 (17.8–24.9) | 23.9 (19.3–) |
Phase angle, ° | * | # | ||
SPN | 4.0 (3.3–4.3) | 5.3 (4.5–6.5) | 4.7 (4.1–6.0) | 4.8 (4.0–5.6) |
RPN | 4.5 (4.1–5.4) | 4.8 (4.5 – 5.5) | 4.3 (3.5 – 4.7) | 5.2 (3.9–) |
Calculated REE, kcal | * | |||
SPN | 1180 (1010–1255) | 1340 (1195–1440) | 1270 (1010–1460) | 1250 (1125–1615) |
RPN | 1300 (1240–1530) | 1400 (1240–1590) | 1300 (1180–1400) | 1370 (1230–) |
Infusions per week, n | # | |||
SPN | 7.0 (5.5–7.0) | 7.0 (4.0–7.0) | 7.0 (2.0–7.0) | 7.0 (4.5–7.0) |
RPN | 7.0 (5.0–7.0) | 4.0 (2.0–5.0) | 4.0 (2.0–7.0) | 2.0 (2.0–) |
Total PN, kcal/infusion | * | Ω | ||
SPN | 1240 (1100–1505) | 1410 (1302–1506) | 1560 (1400–1665) | 1400 (1338–1830) |
RPN | 1600 (1435–1600) | 1600 (1390–1600) | 1440 (1390–1600) | 1440 (1300–) |
Total PN, kcal/week | # | |||
SPN | 8680 (5980–10,535) | 8460 (5502–9982) | 9800 (3330–11,550) | 9450 (6993–10,675) |
RPN | 11,200 (8000–11,200) | 6080 (2200–7200) | 5200 (3200–10,045) | 3200 (2880–) |
Amino acid, g/infusion | Ω | |||
SPN | 60 (50–78) | 65 (62–73) | 75 (65–75) | 65 (57–81) |
RPN | 85 (60–85) | 75 (63–87) | 63 (60–75) | 70 (60–) |
Glucose, g/infusion | Ω | |||
SPN | 135 (125–158) | 150 (128–175) | 160 (130–175) | 130 (123–180) |
RPN | 155 (125–165) | 138 (120–175) | 136 (120–180) | 140 (120–) |
Lipids, g/infusion | * | * | Ω | γ |
SPN | 50 (39–58) | 55 (51–58) | 62 (56 – 75) | 65 (59–81) |
RPN | 60 (56–76) | 68 (56–70) | 68 (56 – 76) | 56 (50–) |
LiMAx, µg/kg/h | # | *, Ω | ||
SPN | 580 (411–671) | 433 (335–532) | 439 (287–455) | 328 (251–370) |
RPN | 470 (350–569) | 603 (398–786) | 610 (515–767) | 528 (385–) |
ICG, %/min | ||||
SPN | 25.4 (18.7–29.5) | 17.5 (14.9–22.6) | 16.0 (13.1–23.2) | 16.9 (9.7–20.4) |
RPN | 20.3 (15.6–23.9) | 15.9 (13.4–18.0) | 15.7 (12.4–17.3) | 17.1 (15.1–) |
FibroScan, kPa | ||||
SPN | 4.9 (4.1–7.1) | 5.8 (4.2–10.2) | 5.7 (4.3–8.8) | 6.8 (4.2–18.2) |
RPN | 6.8 (5.0–7.8) | 5.6 (4.3–10.6) | 6.6 (4.3–9.6) | 12.5 (5.7–) |
NAFLD Score | ||||
SPN | −3.62 (−5.34–−1.96) | −2.32 (−4.49–−1.76) | −2.86 (−4.35–−1.18) | −3.24 (−5.21–−0.84) |
RPN | −1.74 (−2.91–−0.78) | −1.26 (−2.64–−0.75) | −1.26 (−2.46–−0.74) | −0.69 (−4.01–) |
FIB-4 Score | ||||
SPN | 0.53 (0.35–1.38) | 1.15 (0.62–1.49) | 0.80 (0.51–2.12) | 1.27 (0.58–2.35) |
RPN | 1.51 (0.72–2.10) | 1.86 (1.20–2.15) | 1.65 (0.82–2.31) | 2.18 (0.56–) |
AST, U/L | ||||
SPN | 30 (21–36) | 30 (22–54) | 28 (25–40) | 29 (22–152) |
RPN | 37 (24–50) | 32 (27–45) | 29 (22–32) | 19 (26–) |
ALT, U/L | ||||
SPN | 36 (22–65) | 31 (24–73) | 36 (22–61) | 31 (25–149) |
RPN | 41 (28–104) | 30 (19–87) | 28 (18–35) | 21 (28–) |
AP, U/L | ||||
SPN | 108 (86–378) | 93 (73–153) | 93 (66–199) | 130 (82–188) |
RPN | 98 (71–150) | 101 (74–189) | 138 (92–172) | 178 (77–) |
GGT, U/L | ||||
SPN | 191 (41–472) | 48 (36–135) | 61 (38–130) | 64 (38–570) |
RPN | 100 (31–194) | 63 (32–120) | 63 (37–311) | 42 (32–) |
Total Bilirubin, mg/dL | ||||
SPN | 0.44 (0.26–1.00) | 0.48 (0.37–1.47) | 0.71 (0.24–1.55) | 0.91 (0.30–5.1) |
RPN | 0.39 (0.24–0.44) | 0.48 (0.27–0.78) | 0.38 (0.26–0.51) | 0.38 (0.27–) |
Cholinesterase, kU/L | ||||
SPN | 5.6 (4.0–6.4) | 6.2 (4.9–7.6) | 5.5 (4.9–7.3) | 5.3 (3.4–6.6) |
RPN | 5.7 (4.0–6.9) | 7.5 (5.4–8.9) | 5.7 (4.7–6.9) | 4.9 (4.9–) |
Citrulline, µmol/L | # | |||
SPN | 25 (15–41) | 28 (17–41) | 30 (26–57) | 37 (26–65) |
RPN | 21 (16–23) | 24 (22–28) | 28 (23–51) | 51 (29–) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blüthner, E.; Pape, U.-F.; Stockmann, M.; Karber, M.; Maasberg, S.; Pevny, S.; Gerlach-Runge, U.; Pascher, A.; Pratschke, J.; Tacke, F.; et al. Assessing Non-Invasive Liver Function in Patients with Intestinal Failure Receiving Total Parenteral Nutrition—Results from the Prospective PNLiver Trial. Nutrients 2020, 12, 1217. https://doi.org/10.3390/nu12051217
Blüthner E, Pape U-F, Stockmann M, Karber M, Maasberg S, Pevny S, Gerlach-Runge U, Pascher A, Pratschke J, Tacke F, et al. Assessing Non-Invasive Liver Function in Patients with Intestinal Failure Receiving Total Parenteral Nutrition—Results from the Prospective PNLiver Trial. Nutrients. 2020; 12(5):1217. https://doi.org/10.3390/nu12051217
Chicago/Turabian StyleBlüthner, Elisabeth, Ulrich-Frank Pape, Martin Stockmann, Mirjam Karber, Sebastian Maasberg, Sophie Pevny, Undine Gerlach-Runge, Andreas Pascher, Johann Pratschke, Frank Tacke, and et al. 2020. "Assessing Non-Invasive Liver Function in Patients with Intestinal Failure Receiving Total Parenteral Nutrition—Results from the Prospective PNLiver Trial" Nutrients 12, no. 5: 1217. https://doi.org/10.3390/nu12051217