Does ENaC Work as Sodium Taste Receptor in Humans?
Abstract
1. Introduction
2. Psychophysics
3. Electrophysiology
4. Molecular Biology and Immunohistochemistry
5. Genetics
6. Salt Taste Enhancers
7. Salivary Proteins
8. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Schiffman, S.S.; Erickson, R.P. A psychophysical model for gustatory quality. Physiol. Behav. 1971, 7, 617–633. [Google Scholar] [CrossRef]
- Mattes, R.D. The taste for salt in humans. Am. J. Clin. Nutr. 1997, 65, 692S–697S. [Google Scholar] [CrossRef]
- Lindemann, B. Taste reception. Physiol. Rev. 1996, 76, 718–766. [Google Scholar] [CrossRef]
- McCaughey, S.A.; Scott, T.R. The taste of sodium. Neurosci. Biobehav. Rev. 1998, 22, 663–676. [Google Scholar] [CrossRef]
- Bigiani, A. Salt taste. In The Senses. Olfaction and Taste, 2nd ed.; Meyerhof, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume III, in press. [Google Scholar] [CrossRef]
- Breslin, P.A.; Huang, L. Human taste: Peripheral anatomy, taste transduction, and coding. Adv. Otorhinolaryngol. 2006, 63, 152–190. [Google Scholar] [CrossRef]
- Witt, M. Anatomy and development of the human taste system. In Handbook of clinical neurology. Smell and taste; Doty, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 164, pp. 147–171. [Google Scholar]
- Bigiani, A. Electrophysiology of sodium receptors in taste cells. J. Biomed. Sci. Eng. 2016, 9, 367–383. [Google Scholar] [CrossRef]
- Heck, G.L.; Mierson, S.; DeSimone, J.A. Salt taste transduction occurs through an amiloride-sensitivesodium transport pathway. Science 1984, 223, 403–405. [Google Scholar] [CrossRef]
- Chandrashekar, J.; Kuhn, C.; Oka, Y.; Yarmolinsky, D.A.; Hummler, E.; Ryba, N.J.P.; Zuker, C.S. The cells and peripheral representation of sodium taste in mice. Nature 2010, 464, 297–301. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Lockhead, E.; Maes, F.W. Amiloride redcuces the taste intensity of Na+ and Li+ salts and sweeteners. Proc. Natl. Acad. Sci. USA 1983, 80, 6136–6140. [Google Scholar] [CrossRef]
- Tennissen, A.M. Amiloride reduces intensity responses of human fungiform papillae. Physiol. Behav. 1992, 51, 1061–1068. [Google Scholar] [CrossRef]
- McCutcheon, N.B. Human psychophysical studies of saltiness suppression by amiloride. Physiol. Behav. 1992, 51, 1069–1074. [Google Scholar] [CrossRef]
- Tennissen, A.M.; McCutcheon, N.B. Anterior tongue stimulation with amiloride suppress NaCl saltiness, but not citric acid sourness in humans. Chem. Senses 1996, 21, 113–120. [Google Scholar] [CrossRef]
- Anand, K.K.; Zuniga, J.R. Effect of amiloride on suprathreshold NaCl, LiCl, and KCl salt taste in humans. Physiol. Behav. 1997, 62, 925–929. [Google Scholar] [CrossRef]
- Desor, J.A.; Finn, J. Effects of amiloride on salt taste in humans. Chem. Senses 1989, 14, 793–803. [Google Scholar] [CrossRef]
- Ossebaard, C.A.; Smith, D.V. Effect of amiloride on the taste of NaCl, Na-gluconate and KCl in humans: Implications for Na+ receptor mechanisms. Chem. Senses 1995, 20, 37–46. [Google Scholar] [CrossRef]
- Smith, D.V.; Ossebaard, C.A. Amiloride suppression of the taste intensity of sodium chloride: Evidence from direct magnitude scaling. Physiol. Behav. 1995, 4, 773–777. [Google Scholar] [CrossRef]
- Ossebaard, C.A.; Smith, D.V. Amiloride suppresses the sourness of NaCl and LiCl. Physiol. Behav. 1996, 60, 1317–1322. [Google Scholar] [CrossRef]
- Ossebaard, C.A.; Polet, I.A.; Smith, D.V. Amiloride effects on taste quality: Comparison of single and multiple response category procedures. Chem. Senses 1997, 22, 267–275. [Google Scholar] [CrossRef]
- Halpern, B.P.; Darlington, R.B. Effects of amiloride on gustatory quality descriptions and temporal patterns produced by NaCl. Chem. Senses 1998, 23, 501–511. [Google Scholar] [CrossRef]
- Simon, S.A.; de Araujo, I.E.; Stapleton, J.R.; Nicolelis, M.A. Multisensory processing of gustatory stimuli. Chemosens. Percept. 2008, 1, 95–102. [Google Scholar] [CrossRef]
- Kleyman, T.R.; Cragoe, E.J., Jr. Amiloride and its analogs as tools in the study of ion transport. J. Membr. Biol. 1988, 105, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-M.; Presser, F.; Morad, M. Amiloride selectively blocks the low threshold (T) calcium channel. Science 1988, 240, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Béhé, P.; DeSimone, J.A.; Avenet, P.; Lindemann, B. Membrane currents in taste cells of the rat fungiform papilla. J. Gen. Physiol. 1990, 96, 1061–1084. [Google Scholar] [CrossRef] [PubMed]
- Bigiani, A.; Cuoghi, V. Localization of amiloride-sensitive sodium current and voltage-gated calcium currents in rat fungiform taste cells. J. Neurophysiol. 2007, 98, 2483–2487. [Google Scholar] [CrossRef]
- Kinsella, J.L.; Aronson, P.S. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 1981, 241, F374–F379. [Google Scholar] [CrossRef]
- Lundy, R.F., Jr.; Pittman, D.W.; Contreras, R.J. Role for epithelial Na+ channels and putative Na+/H+ exchangers in salt taste transduction in rats. Am. J. Physiol. 1997, 273, R1923–R1931. [Google Scholar] [CrossRef]
- Vinnikova, A.K.; Alam, R.I.; Malik, S.A.; Ereso, G.L.; Feldman, G.M.; McCarty, J.M.; Knepper, M.A.; Heck, G.L.; DeSimone, J.A.; Lyall, V. Na+-H+ exchange activity in taste receptor cells. J. Neurophysiol. 2004, 91, 1297–1313. [Google Scholar] [CrossRef] [PubMed]
- Lyall, V.; Alam, R.I.; Malik, S.A.; Phan, T.H.; Vinnikova, A.K.; Heck, G.L.; DeSimone, J.A. Basolateral Na+-H+ exchanger-1 in rat taste receptor cells is involved in neural adaptation to acidic stimuli. J. Physiol. 2004, 556, 159–173. [Google Scholar] [CrossRef]
- Kuijpers, G.A.; De Pont, J.J.; Van Nooy, I.G.; Fleuren-Jakobs, A.M.; Bonting, S.L.; Rodrigues de Miranda, J.F. Amiloride is a cholinergic antagonist in the rabbit pancreas. Biochim. Biophys. Acta 1984, 804, 237–244. [Google Scholar] [CrossRef]
- Ogura, T. Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors. J. Neurophysiol. 2002, 87, 2643–2649. [Google Scholar] [CrossRef]
- Eguchi, K.; Ohtubo, Y.; Yoshii, K. Functional expression of M3, a muscarinic acetylcholine receptor subtype, in taste bud cells of mouse fungiform papillae. Chem. Senses 2008, 33, 47–55. [Google Scholar] [CrossRef] [PubMed][Green Version]
- DeSimone, J.A.; Heck, G.L.; DeSimone, S.K. Active ion transport in dog tissue: A possible role in taste. Science 1981, 214, 1039–1041. [Google Scholar] [CrossRef] [PubMed]
- DeSimone, J.A.; Heck, G.L.; Mierson, S.; DeSimone, S.K. The active ion transport properties of canine lingual epithelia in vitro. Implications forgustatory transduction. J. Gen. Physiol. 1984, 83, 633–656. [Google Scholar] [CrossRef]
- Feldman, G.M.; Mogyorósi, A.; Heck, G.L.; DeSimone, J.A.; Santos, C.R.; Clary, R.A.; Lyall, V. Salt-evoked lingual surface potential in humans. J. Neurophysiol. 2003, 90, 2060–2064. [Google Scholar] [CrossRef] [PubMed]
- Feldman, G.M.; Heck, G.L.; Smith, N.L. Human salt taste and the lingual surface potential correlate. Chem. Senses 2009, 34, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Benos, D.J.; Stanton, B.A. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J. Physiol. 1999, 520, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Kellenberger, S.; Schild, L. International Union of Basic and Clinical Pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol. Rev. 2015, 67, 1–35. [Google Scholar] [CrossRef]
- Canessa, C.M.; Schild, L.; Buell, G.; Thorens, B.; Gautschi, I.; Horisberger, J.D.; Rossier, B.C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994, 367, 463–467. [Google Scholar] [CrossRef]
- Lossow, K.; Hermans-Borgmeyer, I.; Meyerhof, W.; Behrens, M. Segregated expression of ENaC subunits in taste cells. Chem. Senses 2020, in press. [Google Scholar] [CrossRef]
- Simon, S.A.; Holland, V.F.; Benos, D.J.; Zampighi, G.A. Transcellular and paracellular pathways in lingual epithelia and their influence in taste transduction. Microsc. Res. Tech. 1993, 26, 196–208. [Google Scholar] [CrossRef]
- Kretz, O.; Barbry, P.; Bock, R.; Lindemann, B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem. 1999, 47, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Finger, T.E.; Rossier, B.C.; Kinnamon, S.C. Epithelial Na+ channel subunits in rat taste cells: Localization and regulation by aldosterone. J. Comp. Neurol. 1999, 405, 406–420. [Google Scholar] [CrossRef]
- Shigemura, N.; Islam, A.A.; Sadamitsu, C.; Yoshida, R.; Yasumatsu, K.; Ninomiya, Y. Expression of amiloride-sensitive epithelial sodium channels in mouse taste cells after chorda tympani nerve crush. Chem. Senses 2005, 30, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, R.; Horio, N.; Murata, Y.; Yasumatsu, K.; Shigemura, N.; Ninomiya, Y. NaCl responsive taste cells in the mouse fungiform taste buds. Neuroscience 2009, 159, 795–803. [Google Scholar] [CrossRef]
- Rossier, O.; Cao, J.; Huque, T.; Spielman, A.I.; Feldman, R.S.; Medrano, J.F.; Brand, J.G.; le Coutre, J. Analysis of a human fungiform papillae cDNA library and identification of taste-related genes. Chem. Senses 2004, 29, 13–23. [Google Scholar] [CrossRef][Green Version]
- Stähler, F.; Riedel, K.; Demgensky, S.; Neumann, K.; Dunkel, A.; Täubert, A.; Raab, B.; Behrens, M.; Raguse, J.-D.; Hofmann, T.; et al. A role of the epithelial sodium channel in human salt taste transduction? Chemosens. Percept. 2008, 1, 78–90. [Google Scholar] [CrossRef]
- Huque, T.; Cowart, B.J.; Dankulich-Nagrudny, L.; Pribitkin, E.A.; Bayley, D.L.; Spielman, A.I.; Feldman, R.S.; Mackler, S.A.; Brand, J.G. Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS ONE 2009, 4, e7347. [Google Scholar] [CrossRef]
- Waldmann, R.; Champigny, G.; Bassilana, F.; Voilley, N.; Lazdunski, M. Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J. Biol. Chem. 1995, 270, 27411–27414. [Google Scholar] [CrossRef]
- Ji, H.-L.; LaToya, R.; Bishop, L.R.; Anderson, S.J.; Catherine, M.; Fuller, C.M.; Benos, D.J. The role of Pre-H2 domains of α- and δ-epithelial Na+ channels in ion permeation, conductance, and amiloride sensitivity. J. Biol. Chem. 2004, 279, 8428–8440. [Google Scholar] [CrossRef]
- Ji, H.-L.; Su, X.-F.; Kedar, S.; Li, J.; Barbry, P.; Smith, P.R.; Matalon, S.; Benos, D.J. δ-subunit confers novel biophysical features to αβγ-human epithelial sodium channel (ENaC) via a physical interaction. J. Biol. Chem. 2006, 281, 8233–8241. [Google Scholar] [CrossRef]
- Bachmanov, A.A.; Bosak, N.P.; Lin, C.; Matsumoto, I.; Ohmoto, M.; Reed, D.R.; Nelson, T.M. Genetics of taste receptors. Curr. Pharmaceut. Des. 2014, 20, 2669–2683. [Google Scholar] [CrossRef] [PubMed]
- Petrik, D.; Myoga, M.H.; Grade, S.; Gerkau, N.J.; Pusch, M.; Rose, C.R.; Grothe, B.; Götz, M. Epithelial sodium channel regulates adult neural stem cell proliferation in a flow-dependent manner. Cell Stem Cell 2018, 22, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Huang, L.; Wang, H. Taste bud homeostasis in health, disease, and aging. Chem. Senses 2014, 39, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Barlow, L.A. Progress and renewal in gustation: New insights into taste bud development. Development 2015, 142, 3620–3629. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.G.; Rousseau, D.; Duizer, L.; Cockburn, M.; Chiu, W.; Nielsen, D.; El-Sohemy, A. Genetic variation in putative salt taste receptors and salt taste perception in humans. Chem. Senses 2013, 38, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Firsov, D.; Schild, L.; Gautschi, I.; Mérillat, A.M.; Schneeberger, E.; Rossier, B.C. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: A quantitative approach. Proc. Natl. Acad. Sci. USA 1996, 93, 15370–15375. [Google Scholar] [CrossRef] [PubMed]
- Konstas, A.A.; Korbmacher, C. The γ-subunit of ENaC is more important for channel surface expression than the β-subunit. Am. J. Physiol. Cell Physiol. 2003, 284, C447–C456. [Google Scholar] [CrossRef][Green Version]
- Contreras, A.C. Salt taste and disease. Am. J. Clin. Nutr. 1978, 31, 1088–1097. [Google Scholar] [CrossRef]
- Beauchamp, G.K. The human preference for excess salt. Am. Sci. 1987, 75, 27–33. [Google Scholar]
- Duncan, C.J. Salt preference of birds and mammals. Physiol. Zool. 1962, 35, 120–132. [Google Scholar] [CrossRef]
- Oka, Y.; Butnaru, M.; von Buchholtz, L.; Ryba, N.J.; Zuker, C.S. High salt recruits aversive taste pathways. Nature 2013, 494, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Dötsch, M.; Busch, J.; Batenburg, M.; Liem, G.; Tareilus, E.; Mueller, R.; Meijer, G. Strategies to reduce sodium consumption: A food industry perspective. Crit. Rev. Food Sci. Nutr. 2009, 49, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Burnier, M.; Wuerzner, G.; Bochud, M. Salt, blood pressure and cardiovascular risk: What is the most adequate preventive strategy? A Swiss perspective. Front. Physiol. 2015, 6, 227. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Fahimi, S.; Singh, G.M.; Micha, R.; Khatibzadeh, S.; Engell, R.E.; Lim, S.; Danaei, G.; Ezzati, M.; Powles, J. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 2014, 371, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Elkaddi, N.; Garcia-Blanco, A.; Spielman, A.I.; Bachmanov, A.A.; Chung, H.Y.; Ozdener, M.H. Arginyl dipeptides increase the frequency of NaCl-elicited responses via epithelial sodium channel alpha and delta subunits in cultured human fungiform taste papillae cells. Sci. Rep. 2017, 7, 7483. [Google Scholar] [CrossRef]
- Schindler, A.; Dunkel, A.; Stähler, F.; Backes, M.; Ley, J.; Meyerhof, W.; Hofmann, T. Discovery of salt taste enhancing arginyl dipeptides in protein digests and fermented fish sauces by means of a sensomics approach. J. Agric. Food Chem. 2011, 59, 12578–12588. [Google Scholar] [CrossRef]
- Kellenberger, S.; Schild, L. Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiol. Rev. 2002, 82, 735–767. [Google Scholar] [CrossRef]
- Ogawa, T.; Nakamura, T.; Tsuji, E.; Miyanaga, Y.; Nakagawa, H.; Hirabayashi, H.; Uchida, T. The combination effect of L-arginine and NaCl on bitterness suppression of amino acid solutions. Chem. Pharm. Bull. 2004, 52, 172–177. [Google Scholar] [CrossRef]
- Carpenter, G.H. The secretion, components, and properties of saliva. Annu. Rev. Food Sci. Technol. 2013, 4, 267–276. [Google Scholar] [CrossRef]
- Stolle, T.; Grondinger, F.; Dunkel, A.; Meng, C.; Médard, G.; Kuster, B.; Hofmann, T. Salivary proteome patterns affecting human salt taste sensitivity. J. Agric. Food Chem. 2017, 65, 9275–9286. [Google Scholar] [CrossRef]
- Hughey, R.P.; Carattino, M.D.; Kleyman, T.R. Role of proteolysis in the activation of epithelial sodium channels. Curr. Opin. Nephrol. Hypertens. 2007, 16, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Kleyman, T.R.; Carattino, M.D.; Hughey, R.P. ENaC at the cutting edge: Regulation of epithelial sodium channels by proteases. J. Biol. Chem. 2009, 284, 20447–20451. [Google Scholar] [CrossRef] [PubMed]
- Stolle, T.; Grondinger, F.; Dunkel, A.; Hofmann, T. Quantitative proteomics and SWATH-MS to elucidate peri-receptor mechanisms in human salt taste sensitivity. Food Chem. 2018, 254, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-J.; Blackshaw, S.; Snyder, S.H. Expression and localization of amiloride-sensitive sodium channel indicate a role for non-taste cells in taste perception. Proc. Natl. Acad. Sci. USA 1994, 91, 1814–1818. [Google Scholar] [CrossRef]
- Weisz, O.A.; Johnson, J.P. Noncoordinate regulation of ENaC: Paradigm lost? Am. J. Physiol. Ren. Physiol. 2002, 285, F833–F842. [Google Scholar] [CrossRef][Green Version]
Molecular Target | Ki (µM) | Cell/Tissue | Occurrence in Rodent Taste Cells |
---|---|---|---|
T-type calcium channel | 30 | Mouse neuroblastoma and chick DRG 1 neurons [24] | [25,26] |
Na+/H+ exchanger | 30 | Rabbit renal microvillous membrane [27] | [28,29,30] |
Muscarinic receptors | 40–80 | Rabbit pancreatic acini [31] | [32,33] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigiani, A. Does ENaC Work as Sodium Taste Receptor in Humans? Nutrients 2020, 12, 1195. https://doi.org/10.3390/nu12041195
Bigiani A. Does ENaC Work as Sodium Taste Receptor in Humans? Nutrients. 2020; 12(4):1195. https://doi.org/10.3390/nu12041195
Chicago/Turabian StyleBigiani, Albertino. 2020. "Does ENaC Work as Sodium Taste Receptor in Humans?" Nutrients 12, no. 4: 1195. https://doi.org/10.3390/nu12041195
APA StyleBigiani, A. (2020). Does ENaC Work as Sodium Taste Receptor in Humans? Nutrients, 12(4), 1195. https://doi.org/10.3390/nu12041195