Hot, Tired and Hungry: The Snacking Behaviour and Food Cravings of Firefighters during Multi-Day Simulated Wildfire Suppression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Experimental Procedures
2.4. Measures
2.4.1. Snack Amount and Type
2.4.2. Hunger
2.4.3. Craving, Craving Type, and Craving Intensity
2.5. Statistical Analysis
3. Results
3.1. Total Intake Per Day from Snack Opportunities
3.2. Total Intake Per Food Opportunity
3.3. Ratings of Hunger, Fullness, and Craving Intensity
3.4. Ratings of Craving and Craving Type
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Phillips, M.; Payne, W.; Lord, C.; Netto, K.; Nichols, D.; Aisbett, B. Identification of physically demanding tasks performed during bushfire suppression by Australian rural firefighters. Appl. Ergon. 2012, 43, 435–441. [Google Scholar] [CrossRef]
- Van den Berg, M.J.; Wu, L.J.; Gander, P.H. Subjective Measurements of In-Flight Sleep, Circadian Variation, and Their Relationship with Fatigue. Aerosp. Med. Hum. Perform. 2016, 87, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.A.; Dodd, M.J.; Taylor, E.A.; Donohoe, A.M. A retrospective evaluation of injuries to Australian urban firefighters (2003 to 2012). J. Occup. Envion. Med. 2015, 57, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Aisbett, B.; Wolkow, A.; Sprajcer, M.; Ferguson, S.A. “Awake, smoky, and hot”: Providing an evidence-base for managing the risks associated with occupational stressors encountered by wildland firefighters. Appl. Ergon. 2012, 43, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Raines, J.; Snow, R.; Petersen, A.; Harvey, J.; Nichols, D.; Aisbett, B. Pre-shift fluid intake: Effect on physiology, work and drinking during emergency wildfire fighting. Appl. Ergon. 2012, 43, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Cater, H.; Clancy, D.; Duffy, K.; Holgate, A.; Wilison, B.; Wood, J. Fatigue on the fireground: The DPI experience. In Proceedings of the Australasian Fire Authorities Council/Bushfire Co-Operative Research Centre Annual Conference (2007), Hobart, Tasmania, 18–20 July 2007. [Google Scholar]
- Cuddy, J.S.; Gaskill, S.E.; Sharkey, B.J.; Harger, S.G.; Ruby, B.C. Supplemental feedings increase self-selected work output during wildfire suppression. Med. Sci. Sports Exerc. 2007, 39, 1004–1012. [Google Scholar] [CrossRef]
- Wolkow, A.; Ferguson, S.A.; Vincent, G.E.; Larsen, B.; Aisbett, B.; Main, L.C. The Impact of Sleep Restriction and Simulated Physical Firefighting Work on Acute Inflammatory Stress Responses. PLoS ONE 2015, 10, e0138128. [Google Scholar] [CrossRef]
- Wolkow, A.; Aisbett, B.; Reynolds, J.; Ferguson, S.A.; Main, L.C. The impact of sleep restriction while performing simulated physical firefighting work on cortisol and heart rate responses. Int. Arch. Occup. Environ. Health 2016, 89, 461–475. [Google Scholar] [CrossRef]
- Wolkow, A.; Aisbett, B.; Jefferies, S.; Main, L.C. Effect of Heat Exposure and Simulated Physical Firefighting Work on Acute Inflammatory and Cortisol Responses. Ann. Work Expo. Health 2017, 61, 600–603. [Google Scholar] [CrossRef]
- Guy, J.H.; Vincent, G.E.J.S. Nutrition and supplementation considerations to limit endotoxemia when exercising in the heat. Sports (Basel) 2018, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Larsen, B.; Snow, R.; Vincent, G.; Tran, J.; Wolkow, A.; Aisbett, B. Multiple Days of Heat Exposure on Firefighters’ Work Performance and Physiology. PLoS ONE 2015, 10, e0136413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, B.P.; Browne, M.; Armstrong, T.A.; Ferguson, S.A. The accuracy of subjective measures for assessing fatigue related decrements in multi-stressor environments. Saf. Sci. 2016, 86, 238–244. [Google Scholar] [CrossRef]
- Ferguson, S.A.; Smith, B.P.; Browne, M.; Rockloff, M.J. Fatigue in Emergency Services Operations: Assessment of the Optimal Objective and Subjective Measures Using a Simulated Wildfire Deployment. Int. J. Environ. Res. Public Health 2016, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Cvirn, M.A.; Dorrian, J.; Smith, B.P.; Vincent, G.E.; Jay, S.M.; Roach, G.D.; Charli, S.; Brianna, L.; Brad Aisbett, S.A.F. The effects of hydration on cognitive performance during a simulated wildfire suppression shift in temperate and hot conditions. Appl. Ergon. 2019, 77, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Vincent, G.E.; Aisbett, B.; Hall, S.J.; Ferguson, S.A. Sleep quantity and quality is not compromised during planned burn shifts of less than 12 h. Chronobiol. Int. 2016, 33, 657–666. [Google Scholar] [CrossRef]
- Vincent, G. Fighting Fires and Fatigue: Sleep, Physical Activity, and Physical Task Performance. Ph.D. Thesis, Deakin Univeristy, Melbourne, VIC, Australia, 2015. [Google Scholar]
- Vincent, G.E.; Aisbett, B.; Wolkow, A.; Jay, S.M.; Ridgers, N.D.; Ferguson, S.A. Sleep in wildland firefighters: What do we know and why does it matter? Int. J. Wildland Fire 2018, 27, 73. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Miller, M.A. Sleep and cardio-metabolic disease. Curr. Cardiol. Rep. 2017, 19, 110. [Google Scholar] [CrossRef] [Green Version]
- Rajaratnam, S.M.; Howard, M.E.; Grunstein, R.R. Sleep loss and circadian disruption in shift work: Health burden and management. Med. J. Aust. 2013, 199, S11-5. [Google Scholar] [CrossRef]
- Achmat, G.; Leach, L.; Onagbiye, S.O. Prevalence of the risk factors for cardiometabolic disease among firefighters in the Western Cape province of South Africa. J. Sports Med. Phys. Fit. 2019, 59, 1577–1583. [Google Scholar] [CrossRef]
- Soteriades, E.S.; Smith, D.L.; Tsismenakis, A.J.; Baur, D.M.; Kales, S.N. Cardiovascular disease in US firefighters: A systematic review. Cardiol Rev. 2011, 19, 202–215. [Google Scholar] [CrossRef]
- Lowden, A.; Moreno, C.; Holmbäck, U.; Lennernäs, M.; Tucker, P. Eating and shift work—effects on habits, metabolism, and performance. Scand. J. Work Environ. Health 2010, 36, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Binks, H.; Vincent, G.E.; Gupta, C.; Irwin, C.; Khalesi, S. Effects of Diet on Sleep: A Narrative Review. Nutrients 2020, 12, 936. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.C.; Coates, A.M.; Dorrian, J.; Banks, S. The factors influencing the eating behaviour of shiftworkers: What, when, where and why. Ind. Health 2019, 57, 419–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bes-Rastrollo, M.; Sanchez-Villegas, A.; Basterra-Gortari, F.J.; Nunez-Cordoba, J.M.; Toledo, E.; Serrano-Martinez, M. Prospective study of self-reported usual snacking and weight gain in a Mediterranean cohort: The SUN project. Clin Nutr. 2010, 29, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Nyamdorj, R. Obesity and Type 2 Diabetes. In Epidemiology of Type 2 Diabetes, 1st ed.; Qiao, Q., Ed.; Bentham Science Publishers Ltd.: Sharjah, UAE, 2012; pp. 39–64. [Google Scholar]
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheer, F.A.; Morris, C.J.; Shea, S.A. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity (Silver Spring) 2013, 21, 421–423. [Google Scholar] [CrossRef]
- Schmid, S.M.; Hallschmid, M.; Jauch-Chara, K.; Born, J.; Schultes, B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J. Sleep Res. 2008, 17, 331–334. [Google Scholar] [CrossRef]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef]
- Reinberg, A.; Migraine, C.; Apfelbaum, M.; Brigant, L.; Ghata, J.; Vieux, N.; Laporte, A.; Nicolai. Circadian and ultradian rhythms in the feeding behaviour and nutrient intakes of oil refinery operators with shift-work every 3–4 days. Diabete Metab. 1979, 5, 33–41. [Google Scholar]
- Nedeltcheva, A.V.; Kilkus, J.M.; Imperial, J.; Kasza, K.; Schoeller, D.A.; Penev, P.D. Sleep curtailment is accompanied by increased intake of calories from snacks. Am. J. Clin. Nutr. 2009, 89, 126–133. [Google Scholar] [CrossRef]
- Cain, S.W.; Filtness, A.J.; Phillips, C.L.; Anderson, C. Enhanced preference for high-fat foods following a simulated night shift. Scand. J. Work. Environ. Health 2015, 41, 288–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heath, G.; Roach, G.D.; Dorrian, J.; Ferguson, S.A.; Darwent, D.; Sargent, C. The effect of sleep restriction on snacking behaviour during a week of simulated shiftwork. Accid. Anal. Prev. 2012, 45, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.E.; Kark, R.M. Environment and food intake in man. Science 1947, 105, 378–379. [Google Scholar] [CrossRef] [PubMed]
- Mandic, I.; Ahmed, M.; Rhind, S.; Goodman, L.; L’Abbe, M.; Jacobs, I. The effects of exercise and ambient temperature on dietary intake, appetite sensation, and appetite regulating hormone concentrations. Nutr. Metab. (Lond.) 2019, 16, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Li, K.; Wang, Y. The effects of high-temperature weather on human sleep quality and appetite. Int. J. Environ. Res. Public Health 2019, 16, 270. [Google Scholar] [CrossRef] [Green Version]
- Wasse, L.K.; King, J.A.; Stensel, D.J.; Sunderland, C. Effect of ambient temperature during acute aerobic exercise on short-term appetite, energy intake, and plasma acylated ghrelin in recreationally active males. Appl. Physiol. Nutr. Metab. 2013, 38, 905–909. [Google Scholar] [CrossRef] [Green Version]
- Shorten, A.L.; Wallman, K.E.; Guelfi, K.J. Acute effect of environmental temperature during exercise on subsequent energy intake in active men. Am. J. Clin. Nutr. 2009, 90, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Chappel, S.E.; Aisbett, B.; Vincent, G.E.; Ridgers, N.D. Firefighters’ physical activity across multiple shifts of planned burn work. Int. J. Environ. Res. Public Health 2016, 13, 973. [Google Scholar] [CrossRef] [Green Version]
- Gold, A.J.; Zornitzer, A.; Samueloff, S. Influence of season and heat on energy expenditure during rest and exercise. J. Appl. Physiol. 1969, 27, 9–12. [Google Scholar] [CrossRef]
- Mudambo, K.S.; Scrimgeour, C.M.; Rennie, M.J. Adequacy of food rations in soldiers during exercise in hot, day-time conditions assessed by doubly labelled water and energy balance methods. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 346–351. [Google Scholar] [CrossRef]
- Barf, R.; Van Dijk, G.; Scheurink, A.; Hoffmann, K.; Novati, A.; Hulshof, H.; Fuchs, E.; Meerlo, P. Metabolic consequences of chronic sleep restriction in rats: Changes in body weight regulation and energy expenditure. Physiol. Behav. 2012, 107, 322–328. [Google Scholar] [CrossRef] [Green Version]
- McNeil, J.; Doucet, É.; Brunet, J.-F.; Hintze, L.J.; Chaumont, I.; Langlois, É.; Maitland, R.; Riopel, A.; Forest, G. The effects of sleep restriction and altered sleep timing on energy intake and energy expenditure. Physiol. Behav. 2016, 164, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; Caudwell, P.; Gibbons, C.; Hopkins, M.; Naslund, E.; King, N.; Finlayson, G. Role of resting metabolic rate and energy expenditure in hunger and appetite control: A new formulation. Dis. Model. Mech. 2012, 5, 608–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnell, E.K.; Huggins, C.E.; Huggins, C.T.; McCaffrey, T.A.; Palermo, C.; Bonham, M.P.J.N. Influences on dietary choices during day versus night shift in shift workers: A mixed methods study. Nutrients 2017, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Vincent, G.; Ferguson, S.A.; Tran, J.; Larsen, B.; Wolkow, A.; Aisbett, B. Sleep restriction during simulated wildfire suppression: Effect on physical task performance. PLoS ONE 2015, 10, e0115329. [Google Scholar] [CrossRef] [Green Version]
- Vincent, G.E.; Aisbett, B.; Larsen, B.; Ridgers, N.D.; Snow, R.; Ferguson, S.A. The impact of heat exposure and sleep restriction on firefighters’ work performance and physiology during simulated wildfire suppression. Int. J. Environ. Res. Public Health 2017, 14, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvirn, M.; Smith, B.; Jay, S.; Vincent, G.; Ferguson, S. (Eds.) The impact of temperature on the sleep characteristics of volunteer firefighters during a wildland fireground tour simulation. In Proceedings of the 14th Annual Scientific Meeting of the Australasian Chronobiology, Waiheke Island, New Zealand, 23–24 October 2017. [Google Scholar]
- Cvirn, M.A.; Dorrian, J.; Smith, B.P.; Jay, S.M.; Vincent, G.E.; Ferguson, S.A. The sleep architecture of Australian volunteer firefighters during a multi-day simulated wildfire suppression: Impact of sleep restriction and temperature. Accid. Anal. Prev. 2017, 99, 389–394. [Google Scholar] [CrossRef]
- Larsen, B.; Snow, R.; Aisbett, B. Effect of heat on firefighters' work performance and physiology. J. Therm. Biol. 2015, 53, 1–8. [Google Scholar] [CrossRef]
- Wolkow, A.; Aisbett, B.; Ferguson, S.A.; Reynolds, J.; Main, L.C. Psychophysiological relationships between a multi-component self-report measure of mood, stress and behavioural signs and symptoms, and physiological stress responses during a simulated firefighting deployment. Int. J. Psychophysiol. 2016, 110, 109–118. [Google Scholar] [CrossRef]
- Wolkow, A.; Aisbett, B.; Reynolds, J.; Ferguson, S.A.; Main, L.C. Acute psychophysiological relationships between mood, inflammatory and cortisol changes in response to simulated physical firefighting work and sleep restriction. Appl. Psychophysiol Biofeedback 2016, 41, 165–180. [Google Scholar] [CrossRef]
- Wolkow, A.; Aisbett, B.; Reynolds, J.; Ferguson, S.A.; Main, L.C. Relationships between inflammatory cytokine and cortisol responses in firefighters exposed to simulated wildfire suppression work and sleep restriction. Physiol. Rep. 2015, 3, e12604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolkow, A.; Ferguson, S.; Aisbett, B.; Main, L.J. Effects of work-related sleep restriction on acute physiological and psychological stress responses and their interactions: A review among emergency service personnel. Int. J. Occup. Med. Environ. Health 2015, 28, 183–208. [Google Scholar] [CrossRef] [PubMed]
- Vincent, G.E.; Ferguson, S.; Larsen, B.; Ridgers, N.D.; Snow, R.; Aisbett, B. Adding sleep restriction to the equation: Impact on wildland firefighters’ work performance and physiology in hot conditions. Int. Arch. Occup. Environ. Health 2018, 91, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Bonham, M.P.; Bonnell, E.K.; Huggins, C.E. Energy intake of shift workers compared to fixed day workers: A systematic review and meta-analysis. Chronobiol. Int. 2016, 33, 1086–1100. [Google Scholar] [CrossRef]
- Kosmadopoulos, A.; Kervezee, L.; Boudreau, P.; Gonzales-Aste, F.; Vujovic, N.; Scheer, F.A.J.L.; Boivin, D.B. Effects of Shift Work on the Eating Behavior of Police Officers on Patrol. Nutrients 2020, 12, 999. [Google Scholar] [CrossRef] [Green Version]
- Blundell, J.E.; Stubbs, R.J.; Hughes, D.A.; Whybrow, S.; King, N.A. Cross talk between physical activity and appetite control: Does physical activity stimulate appetite? Proc. Nutr. Soc. 2003, 62, 651–661. [Google Scholar] [CrossRef] [Green Version]
- Hubert, P.; King, N.; Blundell, J.J.A. Uncoupling the effects of energy expenditure and energy intake: Appetite response to short-term energy deficit induced by meal omission and physical activity. Appetite 1998, 31, 9–19. [Google Scholar] [CrossRef]
- Akerstedt, T. Work hours, sleepiness and the underlying mechanisms. J. Sleep Res. 1995, 4, 15–22. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef]
- Sargent, C.; Zhou, X.; Matthews, R.W.; Darwent, D.; Roach, G.D. Daily rhythms of hunger and satiety in healthy men during one week of sleep restriction and circadian misalignment. Int. J. Environ. Res. Public Health 2016, 13, 170. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, J.; Tahbaz, R.; Lippl, F.; Wagenpfeil, S.; Schusdziarra, V. Plasma ghrelin levels during exercise—effects of intensity and duration. Regul. Pept. 2007, 143, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Haus, E.; Reinberg, A.; Mauvieux, B.; Le Floc’h, N.; Sackett-Lundeen, L.; Touitou, Y. Risk of obesity in male shift workers: A chronophysiological approach. Chronobiol. Int. 2016, 33, 1018–1036. [Google Scholar] [CrossRef] [PubMed]
- Jentjens, R.L.; Wagenmakers, A.J.; Jeukendrup, A.E. Heat stress increases muscle glycogen use but reduces the oxidation of ingested carbohydrates during exercise. J. Appl. Physiol. 2002, 92, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Fayet-Moore, F.; McConnell, A.; Cassettari, T.; Tuck, K.; Petocz, P.; Kim, J. Discretionary intake among Australian adults: Prevalence of intake, top food groups, time of consumption and its association with sociodemographic, lifestyle and adiposity measures. Public Health Nutr. 2019, 22, 1576–1589. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.C.; Dorrian, J.; Liu, P.Y.; Van Dongen, H.P.; Wittert, G.A.; Harmer, L.J.; Banks, S. Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men. PLoS ONE 2012, 7, e41218. [Google Scholar] [CrossRef] [Green Version]
- Omisade, A.; Buxton, O.M.; Rusak, B. Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol. Behav. 2010, 99, 651–656. [Google Scholar] [CrossRef]
- Torquati, L.; Kolbe-Alexander, T.; Pavey, T.; Persson, C.; Leveritt, M. Diet and physical activity behaviour in nurses: A qualitative study. Int. J. Health Promot. Educ. 2016, 54, 268–282. [Google Scholar] [CrossRef] [Green Version]
- Novak, R.D.; Auvil-Novak, S.E. Focus group evaluation of night nurse shiftwork difficulties and coping strategies. Chronobiol. Int. 1996, 13, 457–463. [Google Scholar] [CrossRef]
- Morikawa, Y.; Miura, K.; Sasaki, S.; Yoshita, K.; Yoneyama, S.; Sakurai, M.; Nakagawa, H. Evaluation of the effects of shift work on nutrient intake: A cross-sectional study. J. Occup. Health 2008, 50, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Jack, F.R.; Piacentini, M.G.; Schröder, M.J. Perception and role of fruit in the workday diets of Scottish lorry drivers. Appetite 1998, 30, 139–149. [Google Scholar] [CrossRef]
- Perrin, S.L.; Dorrian, J.; Gupta, C.; Centofanti, S.; Coates, A.; Marx, L.; Beyne, K.; Banks, S. Timing of australian flight attendant food and beverage while crewing: A preliminary investigation. Ind. Health 2019, 57, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Condition | ||||
---|---|---|---|---|
CON (n = 18) | SR (n = 16) | HO T(n = 18) | HOT + SR (n = 14) | |
Age (y) | 39 ± 16 | 39 ± 15 | 36 ± 13 | 41 ± 17 |
Male:Female | 15:3 | 15:2 | 14:4 | 12:1 |
Body mass (kg) | 85 ± 18 | 94 ± 20 | 88 ± 18 | 84 ± 14 |
Height (cm) | 178 ± 8 | 178 ± 7 | 178 ± 9 | 176 ± 4 |
Body mass index (kg·m2) | 27 ± 5 | 30 ± 6 | 28 ± 4 | 27 ± 4 |
Snack (Quantity) | Total Energy (kJ) Per Serving | Total Protein (g) Per Serving | Total Fat (g) Per Serving | Total Carbohydrate (g) Per Serving |
---|---|---|---|---|
Granny smith apple (1) | 309.0 | 0.5 | 0 | 16.1 |
Packet of Sunbeam sultanas (1) | 532.0 | 1.0 | 0.4 | 27 |
Jatz crackers (3) | 216.0 | 0.7 | 1.9 | 7.1 |
Packet of barbeque Shapes (1) | 530.0 | 1.9 | 5.6 | 15.8 |
Packet of vegemite (1) | 34.0 | 1.4 | 0.1 | 0.6 |
Arnott’s scotch finger biscuit (1) | 380.0 | 1.1 | 3.8 | 11.7 |
Arnott’s nice biscuit (1) | 216.0 | 0.7 | 1.7 | 8.8 |
Natural Confectionary Company snakes (5) | 351.0 | 2.1 | 0.6 | 47.2 |
Uncle Toby’s raspberry yogurt top muesli bar (1) | 517.0 | 2 | 5 | 19.5 |
Condition | Day | Block | Condition × Day | Condition × Block | Day × Block | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F(df) | p | F(df) | p | F(df) | p | F(df) | p | F(df) | p | F(df) | p | |
Total Intake Per Day from Snack Opportunities (n = 50) | ||||||||||||
Total Energy (kJ) | 1.16(3, 50.86) | 0.333 | 0.14(1, 41.23) | 0.710 | - | - | 2.21(3, 43.65) | 0.100 | - | - | - | - |
Carbohydrate (g) | 1.42(3, 51.40) | 0.248 | 0.05(1, 41.05) | 0.842 | - | - | 1.93(3, 43.31) | 0.140 | - | - | - | - |
Total Fat (g) | 0.98(3, 50.96) | 0.409 | 0.02(1, 46.04) | 0.897 | - | - | 0.66(3, 49.91) | 0.583 | - | - | - | - |
Protein (g) | 1.21(3, 85.00) | 0.313 | 1.35(1, 85.00) | 0.248 | - | - | 1.23(3, 85.00) | 0.303 | - | - | - | - |
Total Intake Per Snack Opportunity (n = 50) | ||||||||||||
Total Energy (kJ) | 11.52(3, 435.00) | < 0.001 * | 1.08(1, 435.00) | 0.300 | 18.57(4, 435.00) | < 0.001 * | 0.34(3, 435.00) | 0.797 | 2.55(12, 435.00) | 0.003 * | 0.22(4, 435.00) | 0.130 |
Carbohydrate (g) | 11.89(3, 435.00) | < 0.001 * | 1.23(1, 435.00) | 0.268 | 18.273(4, 435.00) | < 0.001 * | 0.26(3, 435.00) | 0.854 | 2.40(12, 435.00) | 0.01 * | 0.32(4, 435.00) | 0.866 |
Total Fat (g) | 3.15(3, 47.93) | 0.033 * | 2.03(1, 408.89) | 0.155 | 8.67(4, 392.63) | < 0.001 * | 0.31(3, 407.50) | 0.819 | 1.59(12, 392.63) | 0.093 | 0.39(4, 392.63) | 0.819 |
Protein (g) | 1.77(3, 47.81) | 0.165 | 1.46(1, 406.50) | 0.228 | 4.29(4, 391.98) | 0.002 * | 0.51(3, 405.17) | 0.67 | 1.42(12, 4391.89) | 0.154 | 0.33(4, 391.89) | 0.984 |
Ratings of Hunger, Fullness, and Craving Intensity (n = 66) | ||||||||||||
Hunger | 0.43(3, 83.14) | 0.732 | 2.09(1, 739.80) | 0.149 | 79.07(4, 738.21) | < 0.001 * | 0.39(3, 739.78) | 0.762 | 1.67(12, 738.21) | 0.069 | 1.55(4, 738.21) | 0.186 |
Fullness | 0.79(3, 82.83) | 0.502 | 0.11(1, 739.85) | 0.745 | 71.30(4, 737.92) | < 0.001 * | 0.55(3, 739.83) | 0.651 | 1.64(12, 737.92) | 0.076 | 2.15(4. 737.92) | 0.073 |
Craving Intensity | 0.02(3, 83.09) | 0.996 | 6.00(1, 731.28) | 0.015* | 12.23(4, 730.21) | < 0.001 * | 2.10(3, 731.27) | 0.099 | 0.88(12, 730.21) | 0.568 | 1.17(4, 730.26) | 0.322 |
Total Energy (kJ) | Carbohydrate (g) | % of Total Energy | Total Fat (g) | % of Total Energy | Protein (g) | % of Total Energy | |
---|---|---|---|---|---|---|---|
CON | |||||||
Day 2 | 1935.37 ± 208.17 | 82.12 ± 8.49 | 71.01 | 13.76 ± 3.37 | 11.90 | 9.08 ± 3.05 | 17.67 |
Day 3 | 1552.73 ± 208.15 | 68.43 ± 8.49 | 73.76 | 16.53 ± 3.37 | 17.81 | 12.98 ± 3.05 | 31.4 |
SR | |||||||
Day 2 | 1558.73 ± 208.15 | 56.10 ± 7.64 | 60.23 | 8.04 ± 3.03 | 8.63 | 4.71 ± 2.74 | 11.38 |
Day 3 | 1733.72 ± 200.01 | 70.12 ± 8.15 | 67.69 | 11.44 ± 3.24 | 11.04 | 6.44 ± 2.93 | 13.99 |
HOT | |||||||
Day 2 | 1333.46 ± 187.50 | 62.32 ± 9.66 | 78.22 | 10.86 ± 3.84 | 13.63 | 5.17 ± 3.47 | 14.60 |
Day 3 | 1733.72 ± 200.01 | 73.19 ± 9.65 | 70.65 | 12.58 ± 3.84 | 12.14 | 7.03 ± 3.47 | 15.27 |
HOT + SR | |||||||
Day 2 | 1469.06 ± 250.68 | 60.64 ± 10.22 | 69.08 | 12.95 ± 4.04 | 14.75 | 6.28 ± 3.66 | 16.10 |
Day 3 | 1039.09 ± 92.01 | 44.77 ± 10.73 | 72.11 | 6.43 ± 4.29 | 10.36 | 3.86 ± 3.88 | 13.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, C.C.; Ferguson, S.A.; Aisbett, B.; Dominiak, M.; Chappel, S.E.; Sprajcer, M.; Fullagar, H.H.K.; Khalesi, S.; Guy, J.H.; Vincent, G.E. Hot, Tired and Hungry: The Snacking Behaviour and Food Cravings of Firefighters during Multi-Day Simulated Wildfire Suppression. Nutrients 2020, 12, 1160. https://doi.org/10.3390/nu12041160
Gupta CC, Ferguson SA, Aisbett B, Dominiak M, Chappel SE, Sprajcer M, Fullagar HHK, Khalesi S, Guy JH, Vincent GE. Hot, Tired and Hungry: The Snacking Behaviour and Food Cravings of Firefighters during Multi-Day Simulated Wildfire Suppression. Nutrients. 2020; 12(4):1160. https://doi.org/10.3390/nu12041160
Chicago/Turabian StyleGupta, Charlotte C., Sally A. Ferguson, Brad Aisbett, Michelle Dominiak, Stephanie E. Chappel, Madeline Sprajcer, Hugh H. K. Fullagar, Saman Khalesi, Joshua H. Guy, and Grace E. Vincent. 2020. "Hot, Tired and Hungry: The Snacking Behaviour and Food Cravings of Firefighters during Multi-Day Simulated Wildfire Suppression" Nutrients 12, no. 4: 1160. https://doi.org/10.3390/nu12041160