Evidence for Dietary Agmatine Sulfate Effectiveness in Neuropathies Associated with Painful Small Fiber Neuropathy. A Pilot Open-Label Consecutive Case Series Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Therapeutic Intervention
2.4. Study Measures
2.5. Data Handling and Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Effects of Treatment on Neuropathic Pain
3.2.1. Analysis of Results for Individual Patients
3.2.2. Analysis of Results by Pain Category
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dahlhamer, J.; Lucas, J.; Zelaya, C.; Nahin, R.; Mackey, S.; DeBar, L.; Kerns, R.; Von Korff, M.; Porter, L.; Helmick, C. Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1001–1006. [Google Scholar] [CrossRef]
- DiBonaventura, M.D.; Sadosky, A.; Concialdi, K.; Hopps, M.; Kudel, I.; Parsons, B.; Cappelleri, J.C.; Hlavacek, P.; Alexander, A.H.; Stacey, B.R.; et al. The prevalence of probable neuropathic pain in the US: Results from a multimodal general-population health survey. J. Pain Res. 2017, 10, 2525–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, T.D. Small fiber neuropathy: Disease classification beyond pain and burning. J. Cent. Nerv. Syst. Dis. 2018, 10, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Meng, W.; Deshmukh, H.A.; van Zuydam, N.R.; Liu, Y.; Donnelly, L.A.; Zhou, K.; Wellcome Trust Case Control Consortium 2 (WTCCC2); Surrogate Markers for Micro- and Macro-Vascular Hard Endpoints for Innovative Diabetes Tools (SUMMIT) Study Group; Morris, A.D.; Colhoun, H.M.; et al. A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur. J. Pain 2015, 19, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Binder, A.; Baron, R. The pharmacological therapy of chronic neuropathic pain. Dtsch. Arztebl. Int. 2016, 113, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Gilron, I.; Baron, R.; Jensen, T. Neuropathic pain: Principles of diagnosis and treatment. Mayo Clin. Proc. 2015, 90, 532–545. [Google Scholar] [CrossRef] [Green Version]
- Chiang, M.C.; Tseng, M.T.; Pan, C.L.; Chao, C.C.; Hsieh, S.T. Progress in the treatment of small fiber peripheral neuropathy. Expert Rev. Neurother. 2015, 15, 305–313. [Google Scholar] [CrossRef]
- Brouwer, B.A.; de Greef, B.T.; Hoeijmakers, J.G.; Geerts, M.; van Kleef, M.; Merkies, I.S.; Faber, C.G. Neuropathic pain due to small fiber neuropathy in aging: Current management and future prospects. Drugs Aging 2015, 32, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Freynhagen, R.; Bennett, M.I. Diagnosis and management of neuropathic pain. Brit. Med. J. 2009, 339, b3002. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Qian, C.; Liu, Y. Suboptimal treatment of Diabetic Peripheral Neuropathic Pain in the United States. Pain Med. 2015, 16, 2075–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, C.W.; Brett, A.S. Gabapentin and Pregabalin for pain—Is increased prescribing a cause for concern? N. Engl. J. Med. 2017, 377, 411–414. [Google Scholar] [CrossRef]
- Xi-Ding, Y.; Ping-Fei, F.; Da-Xiong, X.; Yong-Yu, Y. Topical treatments for diabetic neuropathic pain. Exp. Ther. Med. 2019, 17, 1963–1976. [Google Scholar] [CrossRef]
- Volkow, N.D.; Koroshetz, W. Lack of evidence for benefit from long-term use of opioid analgesics for patients with neuropathy. JAMA Neurol. 2017, 74, 761–762. [Google Scholar] [CrossRef] [PubMed]
- Irving, G.; Tanenberg, R.J.; Raskin, J.; Risser, R.C.; Malcolm, S. Comparative safety and tolerability of duloxetine vs. pregabalin vs. duloxetine plus gabapentin in patients with diabetic peripheral neuropathic pain. Int. J. Clin. Pract. 2014, 68, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Oaklander, A.L.; Nolano, M. Scientific Advances in and Clinical Approaches to Small-Fiber Polyneuropathy: A Review. JAMA Neurol. 2019, 76, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Gilad, G.M.; Salame, K.; Rabey, J.M.; Gilad, V.H. Agmatine treatment is neuroprotective in rodent brain injury models. Life Sci. 1995, 58, PL41–PL46. [Google Scholar] [CrossRef]
- Xu, W.; Gao, L.; Li, T.; Shao, A.; Zhang, J. Neuroprotective Role of Agmatine in Neurological Diseases. Curr. Neuropharmacol. 2018, 16, 1296–1305. [Google Scholar] [CrossRef]
- Kotagale, N.R.; Taksande, B.G.; Inamdar, N.N. Neuroprotective offerings by agmatine. Neurotoxicology 2019, 73, 228–245. [Google Scholar] [CrossRef]
- Piletz, J.E.; Aricioglu, F.; Cheng, J.-T.; Fairbanks, C.A.; Gilad, V.H.; Haenisch, B.; Halaris, A.; Hong, S.; Lee, J.U.; Li, J.; et al. Agmatine: Clinical applications after 100 years in translation. Drug Discov. Today 2013, 18, 880–893. [Google Scholar] [CrossRef]
- Neis, V.B.; Rosa, P.B.; Olescowicz, G.; Rodrigues, A.L.S. Therapeutic potential of agmatine for CNS disorders. Neurochem. Int. 2017, 108, 318–331. [Google Scholar] [CrossRef]
- Gilad, G.M.; Gilad, V.H. Long-Term (5 Years), High Daily Dosage of Dietary Agmatine—Evidence of Safety: A Case Report. J. Med. Food. 2014, 17, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keynan, O.; Mirovsky, Y.; Dekel, S.; Gilad, V.H.; Gilad, G.M. Safety and efficacy of dietary agmatine sulfate in lumbar disc-associated radiculopathy. an open-label, dose-escalating study followed by a randomized, double-blind, placebo-controlled trial. Pain Med. 2010, 11, 356–368. [Google Scholar] [CrossRef] [Green Version]
- Galgano, F.; Caruso, M.; Condelli, N.; Favati, F. Focused review: Agmatine in fermented foods. Front. Microbiol. 2012, 7, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molderings, G.J.; Heinen, A.; Menzel, S.; Lubbecke, F.; Homann, J.; Gothert, M. Gastrointestinal uptake of agmatine: Distribution in tissues and organs and pathophysiologic relevance. Ann. N. Y. Acad. Sci. 2003, 1009, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Haenisch, B.; von Kügelgen, I.; Bönisch, H.; Göthert, M.; Sauerbruch, T.; Schepke, M.; Marklein, G.; Höfling, K.; Schröder, D.; Molderings, G.J. Regulatory mechanisms underlying agmatine homeostasis in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G1104–G1110. [Google Scholar] [CrossRef]
- Huisman, H.; Wynveen, P.; Nichkova, M.; Kellermann, G. Novel ELISAs for screening of the biogenic amines GABA, glycine, beta-phenylethylamine, agmatine, and taurine using one derivatization procedure of whole urine samples. Anal. Chem. 2010, 82, 6526–6533. [Google Scholar] [CrossRef]
- Gilad, G.M.; Gilad, V.H.; Rabey, J.M. Arginine and ornithine decarboxylation in rodent brain; coincidental changes during development and after ischemia. Neurosci. Lett. 1996, 216, 33–36. [Google Scholar] [CrossRef]
- Satriano, J.; Schwartz, D.; Ishizuka, S.; Lortie, M.J.; Thomson, S.C.; Gabbai, F.; Kelly, J.; Blantz, R.C. Suppression of inducible nitric oxide generation by agmatine aldehyde: Beneficial effects in sepsis. J. Cell Physiol. 2001, 188, 313–320. [Google Scholar] [CrossRef]
- Bhagvat, K.; Blaschko, H.; Richter, D. Amine oxidase. Biochem. J. 1939, 33, 1338–1341. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.L.; Leiber, E.R. In vitro inhibition of rat intestinal histamine-metabolizing enzymes. Food Cosmetics Toxicol. 1979, 17, 237–240. [Google Scholar] [CrossRef]
- Lauria, G.; Lombardi, R. Skin biopsy: A new tool for diagnosing peripheral neuropathy. Br. Med. J. 2007, 334, 1159–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, P.A.; Caskey, P.E.; Tuck, R.R.; Fealey, R.D.; Dyck, P.J. Quantitative sudomotor axon reflex test in normal and neuropathic subjects. Ann. Neurol. 1983, 14, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Namer, B.; Pfeffer, S.; Handwerker, H.O.; Schmelz, M.; Bickel, A. Axon reflex flare and quantitative sudomotor axon reflex contribute in the diagnosis of small fiber neuropathy. Muscle Nerve 2013, 47, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Thaisetthawatkul, P.; Fernandes Filho, J.A.; Herrmann, D.N. Contribution of QSART to the diagnosis of small fiber neuropathy. Muscle Nerve 2013, 48, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Krause, S.J.; Backonja, M.-M. Development of a Neuropathic Pain Questionnaire. Clin. J. Pain 2003, 19, 306–314. [Google Scholar] [CrossRef]
- Backonja, M.-M.; Krause, S.J. Neuropathic Pain Questionnaire—Short Form. Clin. J. Pain 2003, 19, 315–316. [Google Scholar] [CrossRef]
- Sopacua, M.; Hoeijmakers, J.G.J.; Merkies, I.S.J.; Lauria, G.; Waxman, S.G.; Faber, C.G. Small-fiber neuropathy: Expanding the clinical pain universe. J. Peripher. Nerv. Syst. 2019, 24, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Shopsin, B. The clinical antidepresant effect of exogenous agmatine is not reversed by parachlorophenylalanine: A pilot study. Acta Neuropsychiatr. 2013, 25, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Piletz, J.E.; May, P.J.; Wang, G.; Zhu, H. Agmatine crosses the blood-brain barrier. Ann. N. Y. Acad. Sci. 2003, 1009, 64–74. [Google Scholar] [CrossRef]
- Meacham, K.; Shepherd, A.; Mohapatra, D.P.; Haroutounian, S. Neuropathic pain: Central vs. peripheral mechanisms. Curr. Pain Headache Rep. 2017, 21, 28–39. [Google Scholar] [CrossRef] [PubMed]
Patient Number | Gender | Age (Years) | BMI 1 | Neuropathy Type | Skin Biopsy 2 | Autonomic Functions | Concurrent Pain Medications | |
---|---|---|---|---|---|---|---|---|
QSART 3 | ANSAR 4 | |||||||
1 | Female | 81 | 39.13 | Diabetic | Abnormal | Normal | Abnormal | Duloxetine |
2 | Male | 69 | 39.31 | Diabetic | Abnormal | Abnormal | Abnormal | Gabapentin, Indomethacin |
3 | Male | 64 | 33.25 | Diabetic | Abnormal | Abnormal | Abnormal | Duloxetine, Gabapentin, Topical Lidocaine |
4 | Male | 77 | 28.13 | Idiopathic | Abnormal | Lost Record | Lost Record | Gabapentin, Pregabalin, Tramadol, Cyclobenzaprin, Topical Lidocaine |
5 | Male | 57 | 27.13 | Diabetic | Abnormal | Abnormal | Normal | None |
6 | Female | 52 | 31.00 | Diabetic | Abnormal | Abnormal | Abnormal | Amitriptyline, Pregabalin, Baclofen |
7 | Male | 58 | 27.40 | Diabetic | Abnormal | Abnormal | Normal | None |
8 | Male | 61 | 35.13 | Diabetic | Abnormal | Abnormal | Abnormal | Gabapentin, Meloxicam |
9 | Female | 56 | 27.22 | Inflammatory | Abnormal | Normal | Abnormal | None |
10 | Female | 55 | 35.56 | Diabetic | Abnormal | Abnormal | Abnormal | Celecoxib, Tramadol |
11 | Female | 58 | 27.20 | Idiopathic | Abnormal | Normal | Abnormal | Pregabalin |
Patient | Average Pain Before Treatment | Average Pain After Treatment | Absolute Decrease (Rating Points) | Percent Decrease |
---|---|---|---|---|
1 | 78.3 | 44.2 | 34.1 | 43.6% |
2 | 64.2 | 59.1 | 5.1 | 29.2% |
3 | 55.6 | 34.2 | 21.4 | 38.5% |
4 | 38.3 | 35.8 | 2.5 | 6.5% |
5 | 71.3 | 6.7 | 64.7 | 90.7% |
6 | 83.3 | 2.3 | 81 | 97.2% |
7 | 60 | 47.5 | 12.5 | 20.8% |
8 | 48.3 | 40.0 | 8.3 | 17.2% |
9 | 15.8 | 11.7 | 4.2 | 26.3% |
10 | 45.3 | 34.2 | 11.1 | 24.4% |
11 | 56.7 | 28.7 | 28 | 49.3% |
Average (SD) | 56.1 (18.2) | 30.1 (16.9) | 26.0 * | 46.4% * |
Patient Number | Before Treatment | After Treatment |
---|---|---|
1 | 1.477 | −0.138 |
2 | 1.632 | 0.852 |
3 | 1.992 | −1.138 |
4 | 1.052 | 0.272 |
5 | 1.162 | 0.532 |
6 | 2.634 | −1.123 |
7 | 1.562 | 1.812 |
8 | 2.009 | 0.731 |
9 | 1.933 | 0.691 |
10 | 1.862 | 0.707 |
11 | 2.022 | 0.337 |
Average (SD) | 1.731 (0.44) | 0.3198 (0.32) * |
Pain Category | Mean Pain Ratings Before Treatment | Mean Pain Ratings After Treatment | Average Decrease in Pain Levels (SD) | p Value * |
---|---|---|---|---|
Burning | 70.8 | 32.5 | 38.3 (28.8) | 0.0008 |
Oversensitivity to Touch | 46.4 | 20.9 | 25.5 (40.1) | 0.022 |
Shooting Pain | 62.1 | 30.8 | 31.3 (40.3) | 0.01 |
Numbness | 76.4 | 44.7 | 31.7 (323) | 0.001 |
Electric | 52.5 | 34.1 | 18.4 (43.3) | 0.11 |
Tingling | 76.4 | 43.4 | 33.0 (30.3) | 0.002 |
Freezing | 41.0 | 23.6 | 17.4 (403) | 0.038 |
Unpleasantness | 69.9 | 40.5 | 29.4 (35.4) | 0.01 |
Overwhelming | 65.0 | 37.0 | 28.0 (37.2) | 0.015 |
Squeezing | 31,8 | 15.1 | 16.7 (45.3) | 0.194 |
Increased Pain Due to Touch | 42.9 | 22.3 | 20.6 (36.7) | 0.27 |
Increased Pain Due to Weather Changes | 38.1 | 15.9 | 22.2 (35.7) | 0.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenberg, M.L.; Tohidi, V.; Sherwood, K.; Gayen, S.; Medel, R.; Gilad, G.M. Evidence for Dietary Agmatine Sulfate Effectiveness in Neuropathies Associated with Painful Small Fiber Neuropathy. A Pilot Open-Label Consecutive Case Series Study. Nutrients 2020, 12, 576. https://doi.org/10.3390/nu12020576
Rosenberg ML, Tohidi V, Sherwood K, Gayen S, Medel R, Gilad GM. Evidence for Dietary Agmatine Sulfate Effectiveness in Neuropathies Associated with Painful Small Fiber Neuropathy. A Pilot Open-Label Consecutive Case Series Study. Nutrients. 2020; 12(2):576. https://doi.org/10.3390/nu12020576
Chicago/Turabian StyleRosenberg, Michael L., Vahid Tohidi, Karna Sherwood, Sujoy Gayen, Rosina Medel, and Gad M. Gilad. 2020. "Evidence for Dietary Agmatine Sulfate Effectiveness in Neuropathies Associated with Painful Small Fiber Neuropathy. A Pilot Open-Label Consecutive Case Series Study" Nutrients 12, no. 2: 576. https://doi.org/10.3390/nu12020576