Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa)
Abstract
1. Introduction
2. Phenolic Compounds
3. Macro- and Microelements
4. Antioxidant Potential
5. Effect on Enzyme Activity
6. Cytotoxic Activity
7. Antimicrobial and Antifungal Activities
8. Health-Promoting Properties and Application in Medicine
9. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.M.; Sineiro, J.; Dominguez, H. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Cvetkovic, D.; Stanojevic, L.; Zvezdanovic, J.; Savic, S.; Ilic, D.; Karabegovic, I. Aronia leaves at the end of harvest season—Promising source of phenolic compounds, macro- and microelements. Sci. Hortic. 2018, 239, 17–25. [Google Scholar] [CrossRef]
- Ferlemi, A.V.; Lamari, F.N. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 2016, 5, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Amibigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Randhir, R.; Lin, Y.T.; Shetty, K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 2004, 39, 637–646. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.O.; Robles-Sánchez, M.; Astiazaran-garcia, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014, 5, 189–197. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: www.fao.org/faostat/en/#data (accessed on 24 January 2020).
- Paunović, S.M.; Masković, P.; Nikolić, M.; Miletić, R. Bioactive compounds and antimicrobial activity of black currant (Ribes nigrum L.) berries and leaves extract obtained by different soil management system. Sci. Hortic. 2017, 222, 69–75. [Google Scholar] [CrossRef]
- Patel, A.V.; Rojas-Vera, J.; Dacke, C.G. Therapeutic constituents and actions of Rubus species. Curr. Med. Chem. 2004, 11, 1501–1512. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef]
- Buricova, L.; Andjelkovic, M.; Cermakova, A.; Reblova, Z.; Jurcek, O.; Kolehmainen, E.; Verhe, R.; Kvasnicka, F. Antioxidant capacity and antioxidants of strawberry, blackberry and raspberry leaves. Czech J. Food Sci. 2011, 29, 181–189. [Google Scholar] [CrossRef]
- Costea, T.; Lupu, A.R.; Vlase, L.; Nencu, J.; Gird, C.E. Phenolic content and antioxidant activity of a raspberry leaf dry extract. Rom. Biotechnol. Lett. 2016, 21, 11345–11355. [Google Scholar]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. Plant polyphenols: Chemical properties, biological activities and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Parus, A. Antioxidant and pharmacological properties of phenolic acids. Postępy Fitoter. 2013, 1, 48–53. [Google Scholar]
- Ferreyra, M.L.F.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar]
- Thi, N.D.; Hwang, E.S. Bioactive compound contents and antioxidant activity in Aronia (Aronia melanocarpa) leaves collected at different growth stages. Prev. Nutr. Food Sci. 2014, 19, 204–212. [Google Scholar] [CrossRef]
- Szopa, A.; Kokotkiewicz, A.; Kubica, P.; Banaszczak, P.; Wojtanowska-Krośniak, A.; Krośniak, M.; Marzec-Wróblewska, U.; Badura, A.; Zagrodzki, P.; Bucinski, A. Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. ×prunifolia and their antioxidant activities. Eur. Food Res. Technol. 2017, 243, 1645–1657. [Google Scholar] [CrossRef]
- Pavlovic, A.V.; Papetti, A.; Zagorac, D.C.D.; Gasic, U.M.; Misic, D.M.; Tesic, Z.L.; Natic, M.M. Phenolics composition of leaf extracts of raspberry and blackberry cultivars grown in Serbia. Ind. Crops Prod. 2016, 87, 304–314. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Ind. Crops Prod. 2014, 53, 133–139. [Google Scholar] [CrossRef]
- Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem. 2015, 172, 135–142. [Google Scholar] [CrossRef]
- Skupień, K.; Oszmiański, J.; Kostrzewa-Nowak, D.; Tarasiuk, J. In vitro antileukaemic activity of extracts from berry plant leaves against sensitive and multidrug resistant HL60 cells. Cancer Lett. 2006, 236, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Milenkovic-Andjelkovic, A.S.; Andjelkovic, M.Z.; Radovanovic, A.N.; Radovanovic, B.C.; Randjelovic, V. Phenol composition, radical scavenging activity and antimicrobial activity of berry leaf extracts. Bulg. Chem. Commun. 2016, 48, 27–32. [Google Scholar]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity of black currant varies, with organ season and cultivar. J. Agric. Food Chem. 2006, 54, 6271–6276. [Google Scholar] [CrossRef] [PubMed]
- Cvetanović, A.; Zenginb, G.; Zekovića, Z.; Švarc-Gajića, J.; Ražić, S.; Damjanović, A.; Mašković, P.; Mitić, M. Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa’s extracts obtained by subcritical water extraction. Food Chem. Toxicol. 2018, 121, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Wojdyło, A.; Gorzelany, J.; Kapusta, I. Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J. Agric. Food Chem. 2011, 59, 12830–12835. [Google Scholar] [CrossRef] [PubMed]
- Vagiri, M.; Ekholm, A.; Anderson, S.C.; Johansson, E.; Rumpunen, K. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.). J. Agric. Food Chem. 2012, 60, 10501–10510. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E. Phenolics and carotenoid contents in the leaves of different organic and conventional raspberry (Rubus idaeus L.) cultivars and their in vitro activity. Antioxidants 2019, 8, 458. [Google Scholar] [CrossRef]
- Yang, J.; Han, H.; Chen, J.; Yao, J.; Liu, Y. Determination of active compounds in raspberry leaf extracts and the effects of extract intake on mice. Food Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Skupień, K.; Kostrzewa-Nowak, D.; Oszmiański, J.; Tarasiuk, J. In vitro antileukaemic activity of extracts from chokeberry (Aronia melanocarpa [Michx] Elliot) and mulberry (Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phytother. Res. 2008, 22, 689–694. [Google Scholar] [CrossRef]
- Materska, M.; Perucka, I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. 2005, 53, 1750–1756. [Google Scholar] [CrossRef]
- Stern, B.R.; Solioz, M.; Krewski, D.; Aggett, P.; Aw, T.C.; Baker, S.; Crump, K.; Durson, M.; Haber, L.; Hertzberg, R. Copper and human health: Biochemistry, genetics, and strategies for modelling dose-response relationships. J. Toxicol. Environ. Health Part B 2007, 10, 157–222. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Virtanen, M.J.; Mars, M.; Männisto, S.J.; Pietinen, P.; Albanes, D.; Virtamo, J. Magnesium, calcium, potassium and sodium intakes and risk of stroke in male smokers. Arch. Int. Med. 2008, 168, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Janz, T.G.; Johnson, R.L.; Rubenstein, S.D. Anemia in the emergency department: Evaluation and treatment. Emerg. Med. Pract. 2013, 15, 1–15. [Google Scholar] [PubMed]
- Pavlovic, A.N.; Brcanovic, J.M.; Veljkovic, J.N.; Mitic, S.S.; Tošic, S.B.; Kalicanin, B.M.; Kostic, D.A.; Ðordevic, M.S.; Velimirovic, D.S. Characterization of commercially available products of aronia according to their metal content. Fruits 2015, 70, 385–393. [Google Scholar] [CrossRef]
- Food and Drug Administration. Vitamins and Minerals. Available online: http://www.fda.gov/nutritioneducation (accessed on 24 January 2020).
- Niskanen, R. Nutritional status in commercial currant fields. Agric. Food Sci. 2002, 11, 301–310. [Google Scholar] [CrossRef]
- Karaklajić-Stajić, Z.; Glišić, I.S.; Ružić, D.; Vujović, T.; Pešaković, M. Microelements content in leaves of raspberry cv. Willamette as affected by foliar nutrition and substrates. Hortic. Sci. 2012, 39, 67–73. [Google Scholar]
- Biel, W.; Jaroszewska, A. The nutritional value of leaves of selected berry species. Sci. Agric. 2017, 74, 405–410. [Google Scholar] [CrossRef]
- Panic, M.; Radić-Stojkovic, M.; Kraljić, K.; Skevin, D.; Radojcic-Redovnikovic, I.; Srcek, V.G.; Radosevic, K. Ready-to-use green polyphenolic extracts from food by-products. Food Chem. 2019, 283, 628–636. [Google Scholar] [CrossRef]
- Veljković, B.; Đorđević, N.; Dolićanin, Z.; Ličina, B.; Topuzović, M.; Stanković, M.; Zlatić, N.; Dajić-Stevanović, Z. Antioxidant and anticancer properties of leaf and fruit extracts of the wild raspberry (Rubus idaeus L.). Not. Bot. Horti Agrobot. 2019, 47, 359–367. [Google Scholar] [CrossRef]
- Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.O.; Dommes, J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012, 131, 1116–1122. [Google Scholar] [CrossRef]
- Luzak, B.; Boncler, M.; Rywaniak, J.; Dudzińska, D.; Rozalski, M.; Krajewska, U.; Balcerczak, J.; Podsedek, A.; Redzynia, M.; Watala, C. Extracts from Ribes nigrum leaves in vitro activates nitric oxide synthase (eNOS) and increases CD39 expression in human endothelial cells. J. Physiol. Biochem. 2014, 70, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Durgo, K.; Belscak-Cvitanovic, A.; Stancic, A.; Franekic, J.; Komes, D. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma. J. Med. Food 2012, 15, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp, P.; Koskar, J.; Anton, D.; Meremae, K.; Kapp, K.; Laurson, P.; Bleive, U.; Kaldmae, H.; Roasto, M.; Pussa, T. Antibacterial and antioxidative properties of different parts of garden rhubarb, blackcurrant, chokeberry and blue honeysuckle. J. Sci. Food Agric. 2018, 99, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Alves, M.J.; Ferreira, I.C.F.R.; Froufe, H.J.C.; Abre, R.M.V.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol. 2013, 115, 346–357. [Google Scholar] [CrossRef]
- Declume, C. Anti-inflammatory evaluation of a hydroalcoholic extract of black currant leaves (Ribes nigrum). J. Ethnopharmacol. 1989, 27, 91–98. [Google Scholar] [CrossRef]
- Tripoli, E.; Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Choi, J.S.; Yokozawa, T.; Oura, H. Antihyperlipidemic effect of flavonoids from Prunus davidiana. J. Nat. Prod. 1991, 54, 218–224. [Google Scholar] [CrossRef]
- Jung, U.J.; Lee, M.K.; Jeong, K.S.; Choi, M.S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr. 2004, 134, 2499–2503. [Google Scholar] [CrossRef]
- Jadhav, R.; Puchchakayala, G. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocinnicotinamide induced type 2 diabetic rats. Int. J. Pharm. Pharm. Sci. 2012, 4, 251–256. [Google Scholar]
- Pilar Nicasio-Torres, M.; Meckes-Fische, M.; Aguilar-Santamaría, L.; Garduno-Ramírez, M.; Chávez-Ávila, V.; Cruz-Sosa, F. Production of chlorogenic acid and isoorientin hypoglycemic compounds in Cecropia obtusifolia calli and in cell suspension cultures with nitrate deficiency. Acta Physiol. Plant. 2012, 34, 307–316. [Google Scholar] [CrossRef]
- Folador, P.; Cazarolli, L.; Gazola, A.; Reginatto, F.; Schenkel, E.; Silva, F. Potential insulin secretagogue effects of isovitexin and swertisin isolated from Wilbrandia ebracteata roots in non-diabetic rats. Fitoterapia 2010, 81, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Brahmachari, G. Bio-flavonoids with promising antidiabetic potentials: A critical survey. In Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry; Res Signpost: Kerala, India, 2011; pp. 187–221. [Google Scholar]
- Garbacki, N.; Tits, M.; Angenot, N.; Damas, J. Inhibitory effects of proanthocyanidins from Ribes nigrum leaves on carrageenan acute inflammatory reactions induced in rats. BMC Pharmacol. 2004, 4, 1471–2210. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Gu, Y.; Ye, C.; Cao, Y.; Liu, Z.; Yin, J. Antithrombotic activity of fractions and components obtained from raspberry leaves (Rubus chingii). Food Chem. 2011, 132, 181–185. [Google Scholar] [CrossRef]
- Kruczek, M.; Kostecka-Gugała, A.; Augustynowicz, J.; Ledwożyw-Smoleń, I.; Orzeł, A.; Król-Dyrek, K.; Kaszycki, P. Raspberry and blackberry leaves as a raw material for pharmaceutical industry. Przem. Chem. 2015, 94, 1431–1436. [Google Scholar]
- Rojas-Vera, J.; Patel, A.V.; Dacke, C.G. Relaxant activity of raspberry (Rubus idaeus) leaf extract in guinea-pig ileum in vitro. Phytother. Res. 2002, 16, 665–668. [Google Scholar] [CrossRef]
- Pirvu, L.; Panteli, M.; Rasit, I.; Grigore, A.; Bubueanu, C. The leaves of Aronia melanocarpa L. and Hippophae rhamnoides L. as source of active ingredients for biopharmaceutical engineering. Agric. Agric. Sci. Procedia. 2015, 6, 593–600. [Google Scholar] [CrossRef]
- Cuvorova, I.N.; Davydov, V.V.; Prozorovskiĭ, V.N.; Shvets, V.N. Peculiarity of the antioxidant action of the extract from Aronia melanocarpa leaves antioxidant on the brain. Biomeditsinskaia Khimiia 2005, 51, 66–71. [Google Scholar]
- Kokotkiewicz, A.; Jaremicz, Z.; Luczkiewicz, M. Aronia plants: A review of traditional use, biological activities and perspectives for modern medicine. J. Med. Food 2010, 13, 255–269. [Google Scholar] [CrossRef]
- Maslov, D.L.; Ipatova, O.M.; Abakumova, O.; Tsvetkova, T.A.; Prozorovskiĭ, V.N. Hypoglycemic effect of an extract from Aronia melanocarpa leaves. Vopr. Meditsinskoi khimii 2002, 48, 271–277. [Google Scholar]
- Stefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic compounds from five Ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef] [PubMed]
- Calinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
Compound | Black Currant | Raspberry | Aronia | |||
---|---|---|---|---|---|---|
Leaves | Extract | Leaves | Extract | Leaves | Extract | |
Caffeic acid | 9 [20] | 0.3–77 [13,19,22,28] | 27 [23] | 52 [30] | ||
Chlorogenic acid | 1–10 [20,21] | 21 [23] | 2.9–23 [13,28,29] | 39 [23] | 64–706 [18,30] | 3 [25] |
Neochlorogenic acid | 14 [21] | 13–17 [19] | 41–483 [18,30] | |||
Ferulic acid | 2 [20] | 17.6–19 [19] | 5 [25] | |||
Gallic acid | 20 [20] | 18 [23] | 2.3–31 [19,22] | 27 [23] | ||
p-Coumaric acid | 29 [20] | 0.9–67 [19,22,28] | 4 [30] | 9 [25] | ||
Salicylic acid | 24 [20] | 41 [28] | ||||
Sinapic acid | 1 [20] | 55 [25] | ||||
Rosmarinic acid | 1–3 [13] | 23–155 [18] | 16 [25] | |||
Ellagic acid | 415 [23] | 19–281 [19,22,28,29] | 438 [23] | |||
Apigenin | 21 [25] | |||||
Luteolin | 49 [28] | 33 [25] | ||||
Quercetin | 5–136 [20,24] | 352 [23] | 2–62 [19,22,28] | 301 [23] | 29–316 [18,30] | 11 [25] |
Quercetin 3-O-rutinoside | 16–210 [20,21,24] | 584 [23] | 5–59 [13,19,28,29] | 478 [23] | 62–103 [18] | 69 [25] |
Quercetin 3-O-galactoside | 7 [21] | 3–72 [13] | ||||
Quercetin 3-O-glucoside | 5–132 [21,24] | 714 [23] | 83 [28] | 811 [23] | ||
Quercetin 3-O-malonylglucoside | 301 [21] | |||||
Kaempferol | 1 [24] | 0.5–37 [19,22] | 7 [25] | |||
Kaempferol 3-O-rutinoside | 2 [21] | 3 [29] | ||||
Kaempferol 3-O-glucoside | 2–75 [21,24] | 410 [23] | 27–126 [13] | 278 [23] | ||
Myricetin | 8–83 [20,24] | 23 [28] | ||||
Myricetin 3-O-malonylglucoside | 5 [21] | |||||
Catechin | 92 [23] | 169–191 [19] | 247 [23] | |||
Epicatechin | 127 [23] | 0.4–13 [19,29] | 378 [23] | |||
Epigallocatechin | 1 [21] | 46 [23] | 0.5–1.5 [19] | |||
Procyanidin B2 | 278 [23] |
Element | Black | Raspberry | Aronia |
---|---|---|---|
Currant | |||
N | 24 [37] | 22 [39] | 18.5 [39] |
Ca | 17–21 [20,37] | 8 [39] | 3.6–9.2 [2,35,39] |
Mg | 5–6 [20,37] | 5.4 [39] | 0.8–4.7 [2,35,39] |
K | 11–17 [20,37] | 17 [39] | 0.76–15.8 [2,35,39] |
B | 0.034–0.06 [20,37] | 0.098 [38] | 0.005 [35] |
Fe | 0.28–0.43 [20] | 0.064–0.183 [38,39] | 0.017–0.023 [2,35,39] |
Mn | 0.041–0.077 [20] | 0.064 [39] | 0.006–0.151 [2,35,39] |
P | 6 [37] | 4 [39] | 1–3.3 [2,35,39] |
Na | 0.013–0.063 [20] | 4 [39] | 0.018–0.35 [2,35,39] |
Mo | 0.004–0.021 [38,39] | 0.0008–0.025 [35,39] | |
Cu | 0.004–0.007 [20] | 0.004–0.029 [38,39] | 0.001–0.02 [2,35,39] |
Zn | 0.03 [39] | 0.008–0.025 [2,35,39] | |
Al | 0.1–0.19 [20] | 0.011 [35] | |
Cr | 0.003–0.004 [20] | 0.001 [39] | 0.0005–0.001 [35,39] |
Ni | 0.005 [39] | 0.00014–0.004 [35,39] | |
Cd | 0.003 [39] | 0.00002–0.003 [35,39] | |
Pb | 0.006 [39] | 0.0001–0.009 [35,39] | |
Co | 0.0004 [39] | 0.0005 [39] |
Biological Activity | Black Currant | Raspberry | Aronia |
---|---|---|---|
Enzymes inhibition Enzymes enhance | Myeloperoxidase (MPO) [42] Nitric oxide synthase (eNOS) [43] | Acetylocholinoesterase [25] Elastase [25] | |
Cytotoxic effects | HCT-116 [41] HEp2 [44] HL60 [22] SW 480 [44] | A-549 [25] HeLa [25] HL60 [18,30] L1210 [18] LS-174T [25] SK-Hep1 [17] | |
Antibacterial activity | Aspergillus niger [8] Bacillus cereu [45] Campylobacter jejuni [45] Candida albicans [8] Listeria monocytogenes [23,45] Proteus vulgaris [8] Sarcina lutea [23] Staphyloccus aureus [23] Yersinia ruckeri [45] | Listeria monocytogenes [11,23] Sarcina lutea [23] Staphyloccus aureus [11,23] Salmonella enterica [11] | Listeria monocytogenes [11] Proteus mirabilis [25] Proteus vulgaris [25] Staphyloccus aureus [11] Salmonella enterica [11] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staszowska-Karkut, M.; Materska, M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. https://doi.org/10.3390/nu12020463
Staszowska-Karkut M, Materska M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients. 2020; 12(2):463. https://doi.org/10.3390/nu12020463
Chicago/Turabian StyleStaszowska-Karkut, Monika, and Małgorzata Materska. 2020. "Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa)" Nutrients 12, no. 2: 463. https://doi.org/10.3390/nu12020463
APA StyleStaszowska-Karkut, M., & Materska, M. (2020). Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients, 12(2), 463. https://doi.org/10.3390/nu12020463