The 25(OH)Vitamin D Status Affected the Effectiveness of Oligo Fucoidan in Patients with Chronic Hepatitis B Virus Infection with Immune Tolerance Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Analysis of Basic and Biochemical Data of Subjects
2.3. 25(OH)Vitamin D Concentration Measurement
2.4. Analysis of T Cell Subtypes
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Biochemical Values Before and After Oligo Fucoidan Supplementation
3.3. Effect of Serum 25(OH)Vitamin D Concentration on Hepatitis B Virus Data during Oligo Fucoidan Supplementation
3.4. Immmunocyte Markers Before andAafter Oligo Fucoidan Supplementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liaw, Y.F.; Chu, C.M. Hepatitis B virus infection. Lancet 2009, 373, 582–592. [Google Scholar] [CrossRef]
- Ganem, D.; Prince, A.M. Hepatitis B virus infection--natural history and clinical consequences. N. Engl. J. Med. 2004, 350, 1118–1129. [Google Scholar] [CrossRef] [Green Version]
- Marcellin, P.; Castelnau, C.; Martinot-Peignoux, M.; Boyer, N. Natural history of hepatitis B. Minerva Gastroenterol. Dietol. 2005, 51, 63–75. [Google Scholar] [PubMed]
- Zoulim, F.; Durantel, D. Antiviral therapies and prospects for a cure of chronic hepatitis B. Cold Spring Harb. Perspect. Med. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Rehermann, B.; Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat. Rev. Immunol. 2005, 5, 215–229. [Google Scholar] [CrossRef] [PubMed]
- You, J.H.; Chan, F.W. Pharmacoeconomics of entecavir treatment for chronic hepatitis B. Expert Opin. Pharmacother. 2008, 9, 2673–2681. [Google Scholar] [CrossRef]
- Carrasco, J.; Godelaine, D.; Van Pel, A.; Boon, T.; van der Bruggen, P. CD45RA on human CD8 T cells is sensitive to the time elapsed since the last antigenic stimulation. Blood 2006, 108, 2897–2905. [Google Scholar] [CrossRef]
- Fuller, M.J.; Hildeman, D.A.; Sabbaj, S.; Gaddis, D.E.; Tebo, A.E.; Shang, L.; Goepfert, P.A.; Zajac, A.J. Cutting edge: Emergence of CD127high functionally competent memory T cells is compromised by high viral loads and inadequate T cell help. J. Immunol. 2005, 174, 5926–5930. [Google Scholar] [CrossRef] [Green Version]
- Fry, T.J.; Mackall, C.L. The many faces of IL-7: From lymphopoiesis to peripheral T cell maintenance. J. Immunol. 2005, 174, 6571–6576. [Google Scholar] [CrossRef]
- Jung, M.C.; Pape, G.R. Immunology of hepatitis B infection. Lancet Infect. Dis. 2002, 2, 43–50. [Google Scholar] [CrossRef]
- Fisher, L.; Fisher, A. Vitamin D and parathyroid hormone in outpatients with noncholestatic chronic liver disease. Clin. Gastroenterol. Hepatol. 2007, 5, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Arteh, J.; Narra, S.; Nair, S. Prevalence of vitamin D deficiency in chronic liver disease. Dig. Dis. Sci. 2010, 55, 2624–2628. [Google Scholar] [CrossRef] [PubMed]
- Kusaykin, M.; Bakunina, I.; Sova, V.; Ermakova, S.; Kuznetsova, T.; Besednova, N.; Zaporozhets, T.; Zvyagintseva, T. Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol. J. 2008, 3, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhang, Q.; Zhang, Z.; Song, H.; Li, P. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2010, 46, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Nakano, T.; Hashimoto, M.; Kanekiyo, K.; Hayashi, T. Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int. Immunopharmacol. 2008, 8, 109–116. [Google Scholar] [CrossRef]
- Zhang, Z.; Teruya, K.; Eto, H.; Shirahata, S. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways. PLoS ONE 2011, 6, e27441. [Google Scholar] [CrossRef]
- Fitton, J.H. Therapies from fucoidan; multifunctional marine polymers. Mar. Drugs 2011, 9, 1731–1760. [Google Scholar] [CrossRef]
- Hayashi, S.; Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Yagi, K. Fucoidan partly prevents CCl4-induced liver fibrosis. Eur. J. Pharmacol. 2008, 580, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Saito, A.; Yoneda, M.; Yokohama, S.; Okada, M.; Haneda, M.; Nakamura, K. Fucoidan prevents concanavalin A-induced liver injury through induction of endogenous IL-10 in mice. Hepatol. Res. 2006, 35, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meenakshi, S.; Umayaparvathi, S.; Saravanan, R.; Manivasagam, T.; Balasubramanian, T. Hepatoprotective effect of fucoidan isolated from the seaweed Turbinaria decurrens in ethanol intoxicated rats. Int. J. Biol. Macromol. 2014, 67, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.D.; Lee, S.R.; Kim, T.; Jang, S.A.; Kang, S.C.; Koo, H.J.; Sohn, E.; Bak, J.P.; Namkoong, S.; Kim, H.K.; et al. Fucoidan from Fucus vesiculosus protects against alcohol-induced liver damage by modulating inflammatory mediators in mice and HepG2 cells. Mar. Drugs 2015, 13, 1051–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roshan, S.; Liu, Y.Y.; Banafa, A.; Chen, H.J.; Li, K.X.; Yang, G.X.; He, G.Y.; Chen, M.J. Fucoidan induces apoptosis of HepG2 cells by down-regulating p-Stat3. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2014, 34, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Lee, H.S.; Jung, K.H.; Lee, H.; Hong, S.S. Protective effect of fucoidan against acetaminophen-induced liver injury. Arch. Pharm. Res. 2012, 35, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Nakasone, K.; Tomimori, K.; Ishikawa, C. Beneficial effects of fucoidan in patients with chronic hepatitis C virus infection. World J. Gastroenterol. 2012, 18, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, K.; Li, S.; Liu, T.; Wang, F.; Xia, Y.; Lu, J.; Zhou, Y.; Guo, C. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS ONE 2016, 11, e0152570. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Tang, Y.; Lin, L.; Xie, Z.; Zhou, J.; Zhang, L.; Zhang, X.; Zhao, X.; Chen, Z.; et al. Fucoidan from Fucus vesiculosus suppresses hepatitis B virus replication by enhancing extracellular signal-regulated Kinase activation. Virol. J. 2017, 14, 178. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S.; Kang, H.J.; Park, J.Y.; Lee, J. Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells. Exp. Mol. Med. 2015, 47, e128. [Google Scholar] [CrossRef]
- Sapharikas, E.; Lokajczyk, A.; Fischer, A.M.; Boisson-Vidal, C. Fucoidan stimulates Monocyte migration via ERK/p38 signaling pathways and MMP9 secretion. Mar. Drugs 2015, 13, 4156–4170. [Google Scholar] [CrossRef]
- Maruyama, H.; Tamauchi, H.; Iizuka, M.; Nakano, T. The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls (Mekabu). Planta Med. 2006, 72, 1415–1417. [Google Scholar] [CrossRef] [Green Version]
- Negishi, H.; Mori, M.; Mori, H.; Yamori, Y. Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J. Nutr. 2013, 143, 1794–1798. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Lu, Z.; Wang, K.; Bie, L.; Shen, Q. Elevated expression of lymphocyte activation gene-3 on peripheral blood CD8(+) T lymphocytes in patients with chronic hepatitis B virus infection. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2016, 32, 532–537. [Google Scholar] [PubMed]
- Yu, R.; Tan, D.; Ning, Q.; Niu, J.; Bai, X.; Chen, S.; Cheng, J.; Yu, Y.; Wang, H. Association of baseline vitamin D level with genetic determinants and virologic response in patients with chronic hepatitis B. Hepatol. Res. 2018, 48, E213–E221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiefke, I.; Fach, A.; Wiedmann, M.; Aretin, A.V.; Schenker, E.; Borte, G.; Wiese, M.; Moessner, J. Reduced bone mineral density and altered bone turnover markers in patients with non-cirrhotic chronic hepatitis B or C infection. World J. Gastroenterol. 2005, 11, 1843–1847. [Google Scholar] [CrossRef] [PubMed]
- Corazza, G.R.; Trevisani, F.; Di Stefano, M.; De Notariis, S.; Veneto, G.; Cecchetti, L.; Minguzzi, L.; Gasbarrini, G.; Bernardi, M. Early increase of bone resorption in patients with liver cirrhosis secondary to viral hepatitis. Dig. Dis. Sci. 2000, 45, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
Variable | All (n = 51) | |
---|---|---|
Age | 44.86 ± 10.81 | a |
BMI | 24.78 ± 4.38 | a |
Gender | b | |
Female | 23 (45.1) | |
Male | 28 (54.9) | |
Education | b | |
junior | 5 (9.8) | |
senior | 16 (31.4) | |
college | 30 (58.8) | |
Nutrition Supplements | b | |
No | 19 (37.3) | |
Yes | 32 (62.7) | |
Exercise Per Week Frequency | b | |
No | 23 (45.1) | |
once a week | 14 (27.5) | |
2–3 times a week | 9 (17.6) | |
over 3 times a week | 5 (9.8) | |
Smoke | b | |
No | 48 (94.1) | |
Yes | 3 (5.9) | |
Drink | b | |
No | 38 (74.5) | |
Yes | 13 (25.5) | |
Vitamin D (ng/mL) | 20.6 ± 6.1 |
Variable | 0 Week | 4th Week | 12th Week | 24th Week | 48th Week | P4Wth Week * | P12Wth Week * |
---|---|---|---|---|---|---|---|
Hb (g/dl) | 14.0 ± 1.6 | 14.0 ± 1.8 | 14.0 ± 1.9 | 14.0 ± 1.7 | 13.8 ± 1.9 | 13.7 ± 1.8 abcd | 13.7 ± 2.0 bcd |
WBC (mm3) | 5538.8 ± 1788.4 | 5325.0 ± 1527.9 | 5319.2 ± 1360.0 | 5247.1 ± 1589.3 | 5165.8 ± 1544.7 a | 5311.3 ± 1406.1 | 5582.9 ± 1525.7 de |
Platelets (103/μL) | 210.6 ± 50.7 | 205.3 ± 47.2 | 194.9 ± 49.7 a | 199.5 ± 51.6 a | 196.0 ± 45.5 a | 211.2 ± 52.9 ce | 221.7 ± 52.4 abcdef |
Albumin (g/dl) | 4.8 ± 0.3 | - | 4.7 ± 0.2 | 4.7 ± 0.3 | 4.6 ± 0.3 ad | 4.6 ± 0.3 ac | 4.6 ± 0.6 ac |
AC sugar (mg/dl) | 101.8 ± 7.6 | 90.1 ± 7.5 a | 102.5 ± 8.4 b | 106.4 ± 19.6 b | 104.7 ± 9.1 b | 92.5 ± 7.4 acde | 102.3 ± 7.1 bef |
ALT (IU/L) | 31.3 ± 13.3 | 33.7 ± 26.6 | 32.9 ± 15.6 | 36.6 ± 19.1 | 33.0 ± 18.7 | 34.5 ± 18.3 | 34.1 ± 20.3 |
AST (IU/L) | 25.5 ± 6.1 | 27.4 ± 14.8 | 28.9 ± 11.5 | 31.7 ± 14.6 a | 31.9 ± 32.5 | 25.8 ± 5.9 | 27.2 ± 10.9 |
TG (mg/dl) | 92.0 ± 58.9 | 99.2 ± 43.9 | 97.0 ± 56.9 | 88.8 ± 54.6 | 92.2 ± 55.1 | 100.0 ± 45.8 d | 88.4 ± 48.4 |
Cholesterol (mg/dl) | 190.7 ± 39.9 | 183.0 ± 41.8 | 194.6 ± 45.2 | 186.3 ± 43.3 | 182.3 ± 37.0 c | 178.3 ± 34.6 ac | 182.3 ± 36.1 |
Creatinine (mg/dl) | 0.78 ± 0.18 | 0.82 ± 0.20 a | 0.76 ± 0.18 b | 0.80 ± 0.20 c | 0.78 ± 0.18 b | 0.84 ± 0.18 ace | 0.79 ± 0.19 f |
HBV-DNA (log 10 IU/mL) | 3.5 ± 1.6 | - | 3.5 ± 1.8 | 3.3 ± 1.7 | 3.6 ± 1.5 | - | 3.6 ± 1.6 |
HBsAg (IU/mL) | 1817.7 ± 3974.6 | - | 2178.9 ± 5234.3 | 2417.2 ± 6648.8 | 1676.1 ± 3424.6 | - | 1792.6 ± 3936.9 |
HBeAg positive (n, %) | 4/51 (7.8) | - | 3/51 (5.9) | 3/51 (5.9) | 3/45 (6.7) | - | 2/26 (7.7) |
Variable | 0 Week | 4th Week | 12th Week | 24th Week | 48th Week | P4Wth Week | P12Wth Week |
---|---|---|---|---|---|---|---|
Vitamin D normal group | |||||||
HBV-DNA (log 10 IU/mL) | 5 | - | 4.7 | 4.3 | 4.3 | - | 4 |
HBsAg (IU/mL) | 272.8 ± 18.1 | - | 394.4 ± 25.0 | 297.8 ± 65.8 | 282.1 ± 30.9 | - | 266.9 ± 36.8 |
HBeAg postive (n, %) | 1/6 (16.7) | - | 0/6 (0) | 0/6 (0) | 0/4 (0) | - | 0/2 (0) |
Vitamin D indeficiency group | |||||||
HBV-DNA (log 10 IU/mL) | 3.8 ± 1.8 | - | 3.8 ± 2.1 | 3.6 ± 2.0 | 3.9 ± 1.8 | - | 3.9 ± 2.0 |
HBsAg (IU/mL) | 2515.3 ± 5240.7 | - | 3114.7 ± 6938.3 | 3497.3 ± 8845.9 | 2281.9 ± 4501.3 | - | 2453.4 ± 5186.8 |
HBeAg postive (n, %) | 1/20 (5) | - | 1/20 (5) | 1/20 (5) | 1/19 (5.3) | - | 1/14 (7) |
Vitamin D deficiency group | |||||||
HBV-DNA (log 10 IU/mL) | 3.0 ± 1.3 | - | 3.0 ± 1.1 | 2.8 ± 1.0 | 3.1 ± 1.0 | - | 3.1 ± 1.0 |
HBsAg (IU/mL) | 1083.8 ± 1090.1 | - | 1142.3 ± 1133.4 | 1231.5± 1446.4 | 1048.2 ± 1017.8 | - | 1108.8 ± 1168.3 |
HBeAg postive (n, %) | 2/25 (8) | - | 2/25 (8) | 2/25 (8) | 2/22 (9) | - | 2/10 (20) |
Variable (%) | 0 Week | 4th Week | 12th Week | 24th Week | 48th Week | P4Wth Week | P12Wth Week |
---|---|---|---|---|---|---|---|
CD3+CD4+ | 10.0 ± 6.3 | 9.4 ± 7.7 | 7.7 ± 4.3 | 7.5 ± 4.8 | 9.5 ± 5.9 | 9.7 ± 3.5 cd | 11.7 ± 6.2 cd |
CD3+CD8+ | 8.1 ± 6.1 | 8.1 ± 5.6 | 5.8 ± 4.3 a | 6.7 ± 5.8 | 9.4 ± 5.8 cd | 9.5 ± 6.1 cd | 10.1 ± 6.7 cd |
CD4+ CD45RO+ | 5.2 ± 6.7 | 4.9 ± 2.9 | 5.0 ± 2.2 | 4.7 ± 2.8 | 4.2 ± 2.5 | 4.8 ± 3.4 | 5.9 ± 5.7 |
CD8+CD45RO+ | 2.2 ± 4.7 | 1.3 ± 1.0 | 1.8 ± 1.8 | 2.0 ± 1.3 b | 2.1 ± 2.8 | 1.4 ± 1.3 | 3.4 ± 4.2 bf |
Variable (%) | 0 Week | 48th Week | P4Wth Week | P12Wth Week |
---|---|---|---|---|
Vitamin D normal group | ||||
CD3+CD4+ | 16.5 ± 0.1 | 10.6 ± 0.4 a | 9.6 ± 1.3 | 11.2 ± 1.5 |
CD3+CD8+ | 10.6 ± 13.6 | 14.3 ± 7.5 | 6.9 ± 0.1 | 16.8 ± 1.3 |
CD4+ CD45RO+ | 12.3 ± 9.8 | 4.9 ± 3.5 | 2.2 ± 0.9 c | 8.4 ± 4.4 |
CD8+CD45RO+ | 10.9 ± 15.3 | 5.9 ± 7.1 | 1.2 ± 0.0 | 6.8 ± 2.9 |
Vitamin D indeficiency group | ||||
CD3+CD4+ | 8.7 ± 5.5 | 11.4 ± 5.8 | 10.6 ± 2.8 | 13.0 ± 6.0 ac |
CD3+CD8+ | 7.0 ± 5.4 | 10.9 ± 6.0 c | 6.9 ± 0.1 ac | 9.9 ± 5.5 c |
CD4+ CD45RO+ | 5.3 ± 7.9 | 4.7 ± 2.1 | 5.6 ± 3.9 | 5.6 ± 5.2 |
CD8+CD45RO+ | 1.6 ± 3.1 | 2.2 ± 2.7 | 1.2 ± 1.1 | 3.4 ± 4.2 |
Vitamin D deficiency group | ||||
CD3+CD4+ | 10.8 ± 7.3 | 6.6 ± 5.4 | 8.4 ± 4.4 d | 9.8 ± 6.8 d |
CD3+CD8+ | 9.2 ± 6.2 | 6.3 ± 4.0 | 8.9 ± 6.2 d | 9.3 ± 8.4 d |
CD4+ CD45RO+ | 3.6 ± 3.2 | 3.4 ± 2.9 | 4.4 ± 2.8 | 5.7 ± 6.9 |
CD8+CD45RO+ | 1.3 ± 0.9 | 1.4 ± 1.1 | 1.7 ± 1.7 | 2.9 ± 4.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, W.-S.; Shen, F.-P.; Shih, C.-J.; Chiou, Y.-L. The 25(OH)Vitamin D Status Affected the Effectiveness of Oligo Fucoidan in Patients with Chronic Hepatitis B Virus Infection with Immune Tolerance Phase. Nutrients 2020, 12, 321. https://doi.org/10.3390/nu12020321
Ko W-S, Shen F-P, Shih C-J, Chiou Y-L. The 25(OH)Vitamin D Status Affected the Effectiveness of Oligo Fucoidan in Patients with Chronic Hepatitis B Virus Infection with Immune Tolerance Phase. Nutrients. 2020; 12(2):321. https://doi.org/10.3390/nu12020321
Chicago/Turabian StyleKo, Wang-Sheng, Fang-Ping Shen, Chia-Ju Shih, and Ya-Ling Chiou. 2020. "The 25(OH)Vitamin D Status Affected the Effectiveness of Oligo Fucoidan in Patients with Chronic Hepatitis B Virus Infection with Immune Tolerance Phase" Nutrients 12, no. 2: 321. https://doi.org/10.3390/nu12020321
APA StyleKo, W.-S., Shen, F.-P., Shih, C.-J., & Chiou, Y.-L. (2020). The 25(OH)Vitamin D Status Affected the Effectiveness of Oligo Fucoidan in Patients with Chronic Hepatitis B Virus Infection with Immune Tolerance Phase. Nutrients, 12(2), 321. https://doi.org/10.3390/nu12020321