Vitamin E Levels in Ethnic Communities in Malaysia and Its Relation to Glucose Tolerance, Insulin Resistance and Advanced Glycation End Products: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Laboratory Measurements of Serum α-Tocopherol Concentration
2.2.1. Extraction of α-Tocopherol from Serum Samples
2.2.2. Measurement of Serum α-Tocopherol Concentration Using High Performance Liquid Chromatography (HPLC)
2.3. Laboratory Measurements of Serum Insulin Resistance, β-Cell Function and RAGE Concentration
2.4. Statistical Analysis
3. Results
3.1. Comparisons of Biomarkers in the Overall Study Population
3.2. Comparisons of Biomarkers in Subgroups
3.2.1. Comparisons of Biomarkers in Malay, Chinese, Indian and OA Subjects in Subgroups of Non-Diabetics, Pre-Diabetic and Diabetics
3.2.2. Comparisons of Biomarkers in Non-Diabetic, Pre-Diabetic and Diabetic Subjects in Subgroups of Malay, Chinese, Indian and OA Ethnicit
3.3. Correlations of Biomarkers to Stages of Development of Diabetes
3.4. Correlation of Corrected Serum α-Tocopherol Concentration with Other Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Aguiree, F.; Brown, A.; Cho, N.H.; Dahlquist, G.; Dodd, S.; Dunning, T.; Hirst, M.; Hwang, C.; Magliano, D.; Patterson, C. IDF Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2013. [Google Scholar]
- Institute for Public Health. National Health and Morbidity Survey 2015 (NHMS 2015). Vol. II: Non-Communicable Diseases, Risk Factors & Other Health Problems; Ministry of Health Malaysia Kuala Lumpur: Kuala Lumpur, Malaysia, 2015. [Google Scholar]
- Institute for Public Health. 2020 National Health and Morbidity Survey (NHMS): Non-Communicable Diseases, Healthcare Demand, and Health Literacy—Key Findings; Ministry of Health Malaysia: Putrajaya, Malaysia, 2019. [Google Scholar]
- Ministry of Health of Singapore. National Health Survey 2010; Ministry of Health of Singapore: Singapore, 2011.
- Iqbal, S.; Ramadas, A.; Quek, K.F.; Ho, L.H.; Wong, Y.O.; Kadir, K.A. Relationship of sociodemographic and lifestyle factors and diet habits with metabolic syndrome (MetS) among three ethnic groups of the Malaysian population. PLoS ONE 2020, 15, e0224054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endicott, K. Malaysia’s Original People: Past, Present and Future of the Orang Asli; NUS Press: Singapore, 2015. [Google Scholar]
- Aghakhanian, F.; Wong, C.; Tan, J.; Yeo, L.; Ramadas, A.; Edo, J.; Hoh, B.; Khalid, B.; Phipps, M. Metabolic syndrome and cardiometabolic risk factors among indigenous Malaysians. Public Health 2018, 176, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Ozougwu, J.; Obimba, K.; Belonwu, C.; Unakalamba, C. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 2013, 4, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Moran, A.; Jacobs, D.R.; Steinberger, J.; Hong, C.-P.; Prineas, R.; Luepker, R.; Sinaiko, A.R. Insulin resistance during puberty: Results from clamp studies in 357 children. Diabetes 1999, 48, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, T.A.; Metzger, B.E.; Freinkel, N.; Bergman, R.N. Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am. J. Obstet. Gynecol. 1990, 162, 1008–1014. [Google Scholar] [CrossRef]
- Polonsky, K.; Given, B.; Van Cauter, E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J. Clin. Investig. 1988, 81, 442–448. [Google Scholar] [CrossRef]
- Ramlo-Halsted, B.A.; Edelman, S.V. The natural history of type 2 diabetes: Practical points to consider in developing prevention and treatment strategies. Clin. Diabetes 2000, 18, 80–84. [Google Scholar]
- Kahn, S.E. The importance of β-cell failure in the development and progression of type 2 diabetes. J. Clin. Endocrinol. Metab. 2001, 86, 4047–4058. [Google Scholar]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840. [Google Scholar] [CrossRef]
- Lee, B.-W.; Chae, H.Y.; Kwon, S.J.; Park, S.Y.; Ihm, J.; Ihm, S.-H. RAGE ligands induce apoptotic cell death of pancreatic β-cells via oxidative stress. Int. J. Mol. Med. 2010, 26, 813–818. [Google Scholar]
- Zhu, Y.; Shu, T.; Lin, Y.; Wang, H.; Yang, J.; Shi, Y.; Han, X. Inhibition of the receptor for advanced glycation endproducts (RAGE) protects pancreatic β-cells. Biochem. Biophys. Res. Commun. 2011, 404, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S.; Radhakrishnan, A.K. Tocotrienol research: Past into present. Nutr. Rev. 2012, 70, 483–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salonen, J.T.; Nyyssonen, K.; Tuomainen, T.-P.; Maenpaa, P.H.; Korpela, H.; Kaplan, G.A.; Lynch, J.; Helmrich, S.P.; Salonen, R. Increased risk of non-insulin dependent diabetes mellitus at low plasma vitamin E concentrations: A four year follow up study in men. BMJ 1995, 311, 1124–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer-Davis, E.J.; Costacou, T.; King, I.; Zaccaro, D.J.; Bell, R.A. Plasma and dietary vitamin E in relation to incidence of type 2 diabetes: The Insulin Resistance and Atherosclerosis Study (IRAS). Diabetes Care 2002, 25, 2172–2177. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lee, H.-J.; Garofalo, F.; Jenkins, D.J.; El-Sohemy, A. Simultaneous measurement of three tocopherols, all-trans-retinol, and eight carotenoids in human plasma by isocratic liquid chromatography. J. Chromatogr. Sci. 2011, 49, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Kang, Z.; Wong, C. Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors. Mol. Nutr. Food Res. 2010, 54, 345–352. [Google Scholar] [CrossRef]
- Stumvoll, M.; Häring, H. The peroxisome proliferator-activated receptor-γ2 Pro12Ala polymorphism. Diabetes 2002, 51, 2341–2347. [Google Scholar] [CrossRef] [Green Version]
- Dean, A.; Sullivan, K.; Soe, M. OpenEpi: Open Source Epidemiologic Statistics for Public Health. Version 3.01. 2014. Available online: https://www.openepi.com/Menu/OE_Menu.htm (accessed on 15 November 2018).
- Australia, D. General practice management of type 2 diabetes. R. Aust. Coll. Gen. Pract. 2014, 2, 10–12. [Google Scholar]
- Colagiuri, S.; Davies, D.; Girgis, S.; Colagiuri, R. National Evidence Based Guideline for Case Detection and Diagnosis of Type 2 Diabetes; Diabetes Australia and the NHMRC: Canberra, Australia, 2009; pp. 3–101. [Google Scholar]
- University of Oxford Diabetes Trials Unit (DTU) and Health Economics Research Centre (HERC), UKPDS Outcomes Model User Manual: Version 2.0. Available online: https://www.dtu.ox.ac.uk/outcomesmodel/OM2Manual.pdf (accessed on 30 September 2019).
- Schmölz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of vitamin E metabolism. World J. Biol. Chem. 2016, 7, 14. [Google Scholar] [CrossRef]
- Jordan, P.; Brubacher, D.; Moser, U.; Stähelin, H.; Gey, K.F. Vitamin E and vitamin A concentrations in plasma adjusted for cholesterol and triglycerides by multiple regression. Clin. Chem. 1995, 41, 924–927. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Group, U.P.D.S. UK Prospective Diabetes Study 16: Overview of 6 years’ therapy of type II diabetes: A progressive disease. Diabetes 1995, 44, 1249–1258. [Google Scholar]
- Bertram, M.Y.; Vos, T. Quantifying the duration of pre-diabetes. Aust. N. Z. J. Public Health 2010, 34, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Xia, L.; Pan, Y.; He, D.; Zhu, H.; Wei, T.; He, Y. Differential role of insulin resistance and β-cell function in the development of prediabetes and diabetes in middle-aged and elderly Chinese population. Diabetol. Metab. Syndr. 2019, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015, 5, 194–222. [Google Scholar] [CrossRef] [Green Version]
- Selvin, E.; Steffes, M.W.; Zhu, H.; Matsushita, K.; Wagenknecht, L.; Pankow, J.; Coresh, J.; Brancati, F.L. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 2010, 362, 800–811. [Google Scholar] [CrossRef]
- Brownlee, M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 1995, 46, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Eleazu, C.O.; Omar, N.; Lim, O.Z.; Yeoh, B.S.; Mohamed, M.; Hazlina, N. Obesity and comorbidity: Could simultaneous targeting of esRAGE and sRAGE be the panacea? Front. Physiol. 2019, 10, 787. [Google Scholar] [CrossRef] [Green Version]
Non-Diabetes (n = 90) | Pre-Diabetes (n = 42) | Diabetes (n = 118) | p Value a | |
---|---|---|---|---|
Serum concentration of α-tocopherol (IQR) (μmol/L) | 33.72 (31.01) | 39.02 (35.84) | 41.30 (36.65) | 0.185 |
Corrected serum concentration of α-tocopherol (IQR) | 0.9989 (0.3586) | 0.7874 (0.2905) | 0.8585 (0.3537) | 0.000002 ** |
HOMA2 IR (IQR) | 0.0112 (0.0148) | 0.0217 (0.0355) | 0.0136 (0.0182) | 0.007 * |
HOMA2%B (IQR) | 4.15 (5.35) | 5.95 (8.28) | 1.90 (3.00) | 0.00000008 ** |
Serum RAGE concentration (IQR) (pg/mL) | 3445.68 (1262.43) | 3502.14 (501.44) | 4397.29 (3891.27) | 0.0003 ** |
Malay | Chinese | Indian | OA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-Diabetes (n = 20) | Pre-Diabetes (n = 13) | Diabetes (n = 45) | p Value | Non-Diabetes (n = 20) | Pre-Diabetes (n = 21) | Diabetes (n = 35) | p Value | Non-Diabetes (n = 17) | Pre-Diabetes | Diabetes (n = 29) | p Value | Non-Diabetes (n = 52) | Pre-Diabetes (n = 11) | Diabetes (n = 5) | p Value | |
Serum α-tocopherol concentration a (IQR) (μmol/L) | 52.45 (38.31) | 41.03 (36.99) | 42.01 (42.55) | 0.602 | 53.79 (45.76) | 50.21 (37.11) | 50.17 (20.40) | 0.772 | 32.80 (20.40) | NA c | 30.64 (29.30) | 0.587 | 25.54 (16.52) | 26.80 (9.26) | 34.05 (17.90) | 0.418 |
Corrected serum α-tocopherol concentration a (IQR) | 0.9698 (0.2129) | 0.6948 (0.1702) | 0.8542 (0.4077) | 0.003 * | 0.9563 (0.2252) | 0.8564 (0.2440) | 0.8596 (0.3601) | 0.058 | 0.9027 (0.4145) | NA c | 0.8496 (0.3837) | 0.140 | 1.0614 (0.4805) | 0.8938 (0.4498) | 0.8911 (0.3764) | 0.052 |
HOMA2 IR a (IQR) | 0.0014 (0.0056) | 0.0068 (0.0181) | 0.0100 (0.0149) | 0.038 * | 0.0174 (0.0230) | 0.0357 (0.0430) | 0.0109 (0.0156) | 0.0004 * | 0.0113 (0.0056) | NA c | 0.0157 (0.0153) | 0.553 | 0.0083 (0.0119) | 0.0111 (-) | 0.0308 (0.0302) | 0.148 |
HOMA2%B a (IQR) | 1.00 (3.10) | 2.30 (2.30) | 1.60 (2.30) | 0.688 | 8.55 (5.70) | 9.40 (7.05) | 2.00 (2.60) | 0.000000002 * | 5.00 (1.50) | NA c | 1.60 (3.33) | 0.008 * | 2.20 (2.90) | 2.10 (-) | 2.20 (3.18) | 0.954 |
Serum RAGE concentration a (IQR) (pg/mL) | 1284.58 (6195.65) | 754.34 (3635.61) | 5579.31 (3414.10) | 0.0003 * | 3454.29 (44.02) | 3469.16 (95.83) | 3473.40 (3858.87) | 0.824 | 3425.69 (853.46) | NA c | 3279.52 (1741.34) | 0.836 | NA b | NA b | NA b | NA |
Non-Diabetes | Pre-Diabetes | Diabetes | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Malay (n = 20) | Chinese (n = 20) | Indian (n = 17) | OA (n = 52) | p Value | Malay (n = 13) | Chinese (n = 21) | Indian | OA (n = 11) | p Value | Malay (n = 45) | Chinese (n = 35) | Indian (n = 29) | OA (n = 5) | p Value | |
Serum α-tocopherol concentration a (IQR) (μmol/L) | 52.45 (38.31) | 53.79 (45.76) | 32.80 (20.40) | 25.54 (16.52) | 0.00003 * | 41.03 (36.99) | 50.21 (37.11) | NA c | 26.80 (9.26) | 0.023 * | 42.01 (42.55) | 50.17 (39.01) | 30.64 (29.30) | 34.05 (17.90) | 0.092 |
Corrected serum α-tocopherol concentration a (IQR) | 0.9698 (0.2129) | 0.9563 (0.2252) | 0.9027 (0.4145) | 0.9281 (0.4805) | 0.416 | 0.6948 (0.1702) | 0.8564 (0.2440) | NA c | 0.8938 (0.4498) | 0.023 * | 0.8542 (0.4077) | 0.8596 (0.3601) | 0.8496 (0.3837) | 0.8911 (0.3764) | 0.767 |
HOMA2 IR a (IQR) | 0.0014 (0.0056) | 0.0174 (0.0233) | 0.0113 (0.0056) | 0.0083 (0.0119) | 0.003 * | 0.0068 (0.0181) | 0.0357 (0.0430) | NA c | 0.0111 (-) | 0.005 * | 0.0100 (0.0149) | 0.0109 (0.0156) | 0.0157 (0.0153) | 0.0308 (0.0302) | 0.141 |
HOMA2%B a (IQR) | 1.00 (3.10) | 8.55 (5.70) | 5.00 (1.50) | 2.20 (2.90) | 0.00006 * | 2.30 (2.30) | 9.40 (7.05) | NA c | 2.10 (-) | 0.0002 * | 1.60 (2.30) | 2.00 (2.60) | 1.60 (3.33) | 2.20 (3.18) | 0.707 |
Serum RAGE concentration a (IQR) (pg/mL) | 1284.58 (6195.65) | 3454.29 (44.02) | 3425.69 (853.46) | NA b | 0.092 | 754.34 (3635.61) | 3469.16 (95.83) | NA c | NA b | 0.301 | 5579.31 (3414.10) | 3473.40 (3858.87) | 3279.52 (1741.34) | NA b | 0.001 * |
Non-DM vs. Pre-DM | Pre-DM vs. DM | Non-DM vs. DM | ||||
---|---|---|---|---|---|---|
N = 106 | n = 46 | n = 46 | n = 109 | n = 106 | n = 109 | |
Crude OR (95% CI) | p Value | Crude OR (95% CI) | p Value | Crude OR (95% CI) | p Value | |
Low corrected serum α-tocopherol concentration b | 4.192 (2.005, 8.765) | 0.0001 ** | 0.688 (0.333, 1.421) | 0.312 | 2.885 (1.654, 5.031) | 0.0002 ** |
High HOMA2 IR b | 2.423 (1.052, 5.582) | 0.038 * | 0.785 (0.358, 1.720) | 0.546 | 1.903 (1.013, 3.573) | 0.045 * |
Low HOMA2%B b | 0.538 (0.219, 1.323) | 0.177 | 5.657 (2.397, 13.349) | 0.000076 ** | 3.046 (1.609, 5.766) | 0.001 ** |
High serum RAGE concentration b | 0.885 (0.372, 2.107) | 0.782 | 3.244 (1.454, 7.236) | 0.004 * | 2.870 (1.498, 5.496) | 0.001 ** |
HOMA2 IR | HOMA2%B | Serum RAGE concentration | |
---|---|---|---|
rs (p Value) | rs (p Value) | rs (p Value) | |
Corrected serum α-tocopherol concentration | −0.029 (0.699) | 0.077 (0.308) | 0.035 (0.633) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chua, G.H.I.; Phang, S.C.W.; Wong, Y.O.; Ho, L.S.; Palanisamy, U.D.; Abdul Kadir, K. Vitamin E Levels in Ethnic Communities in Malaysia and Its Relation to Glucose Tolerance, Insulin Resistance and Advanced Glycation End Products: A Cross-Sectional Study. Nutrients 2020, 12, 3659. https://doi.org/10.3390/nu12123659
Chua GHI, Phang SCW, Wong YO, Ho LS, Palanisamy UD, Abdul Kadir K. Vitamin E Levels in Ethnic Communities in Malaysia and Its Relation to Glucose Tolerance, Insulin Resistance and Advanced Glycation End Products: A Cross-Sectional Study. Nutrients. 2020; 12(12):3659. https://doi.org/10.3390/nu12123659
Chicago/Turabian StyleChua, Geoffrey Hong Iing, Sonia Chew Wen Phang, Yin Onn Wong, Loon Shin Ho, Uma Devi Palanisamy, and Khalid Abdul Kadir. 2020. "Vitamin E Levels in Ethnic Communities in Malaysia and Its Relation to Glucose Tolerance, Insulin Resistance and Advanced Glycation End Products: A Cross-Sectional Study" Nutrients 12, no. 12: 3659. https://doi.org/10.3390/nu12123659
APA StyleChua, G. H. I., Phang, S. C. W., Wong, Y. O., Ho, L. S., Palanisamy, U. D., & Abdul Kadir, K. (2020). Vitamin E Levels in Ethnic Communities in Malaysia and Its Relation to Glucose Tolerance, Insulin Resistance and Advanced Glycation End Products: A Cross-Sectional Study. Nutrients, 12(12), 3659. https://doi.org/10.3390/nu12123659