Plasma Phospholipid n-3/n-6 Polyunsaturated Fatty Acids and Desaturase Activities in Relation to Moderate-to-Vigorous Physical Activity through Pregnancy: A Longitudinal Study within the NICHD Fetal Growth Studies
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Assessment and Quantification of Maternal Physical Activity
2.3. Biospecimen Preparation and Maternal PUFA Assessment
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Maternal PA and Plasma PUFAs at Each Visit
3.3. Cross-Sectional and Prospective Associations of Maternal MVPA with Plasma PUFAs
3.4. Change in Maternal MVPA across Pregnancy in Relation to Plasma PUFAs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Data Sharing
References
- Larque, E.; Gil-Sanchez, A.; Prieto-Sanchez, M.T.; Koletzko, B. Omega 3 fatty acids, gestation and pregnancy outcomes. Br. J. Nutr. 2012, 107 (Suppl. 2), S77–S84. [Google Scholar] [CrossRef] [Green Version]
- Chapkin, R.S.; McMurray, D.N.; Davidson, L.A.; Patil, B.S.; Fan, Y.Y.; Lupton, J.R. Bioactive dietary long-chain fatty acids: Emerging mechanisms of action. Br. J. Nutr. 2008, 100, 1152–1157. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Bell, S.J.; Ausdal, W.V. Omega-3 Fatty Acid supplementation during pregnancy. Rev. Obs. Gynecol. 2008, 1, 162–169. [Google Scholar]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rump, P.; Mensink, R.P.; Kester, A.D.; Hornstra, G. Essential fatty acid composition of plasma phospholipids and birth weight: A study in term neonates. Am. J. Clin. Nutr. 2001, 73, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J. Pediatr. 2003, 143, S1–S8. [Google Scholar] [CrossRef] [Green Version]
- Haggarty, P. Fatty acid supply to the human fetus. Annu. Rev. Nutr. 2010, 30, 237–255. [Google Scholar] [CrossRef]
- Thomas, B.; Ghebremeskel, K.; Lowy, C.; Min, Y.; Crawford, M.A. Plasma AA and DHA levels are not compromised in newly diagnosed gestational diabetic women. Eur. J. Clin. Nutr. 2004, 58, 1492–1497. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Scholl, T.O.; Leskiw, M.; Savaille, J.; Stein, T.P. Differences in maternal circulating fatty acid composition and dietary fat intake in women with gestational diabetes mellitus or mild gestational hyperglycemia. Diabetes Care 2010, 33, 2049–2054. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Li, M.; Rahman, M.L.; Hinkle, S.N.; Wu, J.; Weir, N.L.; Lin, Y.; Yang, H.; Tsai, M.Y.; Ferrara, A.; et al. Plasma phospholipid n-3 and n-6 polyunsaturated fatty acids in relation to cardiometabolic markers and gestational diabetes: A longitudinal study within the prospective NICHD Fetal Growth Studies. PLoS Med. 2019, 16, e1002910. [Google Scholar] [CrossRef]
- Kulkarni, A.V.; Mehendale, S.S.; Yadav, H.R.; Joshi, S.R. Reduced placental docosahexaenoic acid levels associated with increased levels of sFlt-1 in preeclampsia. Prostaglandins Leukot. Essent. Fatty Acids 2011, 84, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Meher, A.; Randhir, K.; Mehendale, S.; Wagh, G.; Joshi, S. Maternal Fatty Acids and Their Association with Birth Outcome: A Prospective Study. PLoS ONE 2016, 11, e0147359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eijsden, M.; Hornstra, G.; van der Wal, M.F.; Vrijkotte, T.G.; Bonsel, G.J. Maternal n-3, n-6, and trans fatty acid profile early in pregnancy and term birth weight: A prospective cohort study. Am. J. Clin. Nutr. 2008, 87, 887–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidakovic, A.J.; Gishti, O.; Voortman, T.; Felix, J.F.; Williams, M.A.; Hofman, A.; Demmelmair, H.; Koletzko, B.; Tiemeier, H.; Jaddoe, V.W.; et al. Maternal plasma PUFA concentrations during pregnancy and childhood adiposity: The Generation R Study. Am. J. Clin. Nutr. 2016, 103, 1017–1025. [Google Scholar] [CrossRef] [Green Version]
- De Vries, P.S.; Gielen, M.; Rizopoulos, D.; Rump, P.; Godschalk, R.; Hornstra, G.; Zeegers, M.P. Association between polyunsaturated fatty acid concentrations in maternal plasma phospholipids during pregnancy and offspring adiposity at age 7: The MEFAB cohort. Prostaglandins Leukot. Essent. Fatty Acids 2014, 91, 81–85. [Google Scholar] [CrossRef]
- Moon, R.J.; Harvey, N.C.; Robinson, S.M.; Ntani, G.; Davies, J.H.; Inskip, H.M.; Godfrey, K.M.; Dennison, E.M.; Calder, P.C.; Cooper, C.; et al. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J. Clin. Endocrinol. Metab. 2013, 98, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Nikkari, T.; Luukkainen, P.; Pietinen, P.; Puska, P. Fatty acid composition of serum lipid fractions in relation to gender and quality of dietary fat. Ann. Med. 1995, 27, 491–498. [Google Scholar] [CrossRef]
- Zock, P.L.; Mensink, R.P.; Harryvan, J.; de Vries, J.H.; Katan, M.B. Fatty acids in serum cholesteryl esters as quantitative biomarkers of dietary intake in humans. Am. J. Epidemiol. 1997, 145, 1114–1122. [Google Scholar] [CrossRef]
- Kunesova, M.; Phinney, S.; Hainer, V.; Tvrzicka, E.; Stich, V.; Parizkova, J.; Zak, A.; Stunkard, A. The responses of serum and adipose Fatty acids to a one-year weight reduction regimen in female obese monozygotic twins. Ann. N. Y. Acad. Sci. 2002, 967, 311–323. [Google Scholar] [CrossRef]
- Pickens, C.A.; Sordillo, L.M.; Comstock, S.S.; Harris, W.S.; Hortos, K.; Kovan, B.; Fenton, J.I. Plasma phospholipids, non-esterified plasma polyunsaturated fatty acids and oxylipids are associated with BMI. Prostaglandins Leukot. Essent. Fatty Acids 2015, 95, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Abdelmagid, S.A.; Clarke, S.E.; Nielsen, D.E.; Badawi, A.; El-Sohemy, A.; Mutch, D.M.; Ma, D.W. Comprehensive profiling of plasma fatty acid concentrations in young healthy Canadian adults. PLoS ONE 2015, 10, e0116195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurter, R.; Peyman, M.A.; Swale, J.; Barnett, C.W. Some immediate and long-term effects of exercise on the plasma-lipids. Lancet 1972, 2, 671–674. [Google Scholar] [CrossRef]
- Van Hall, G. The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation during Moderate-Intensity Exercise. Sports Med. 2015, 45 (Suppl. 1), S23–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, K.M.; Slentz, C.A.; Bateman, L.A.; Thompson, D.; Muehlbauer, M.J.; Bain, J.R.; Stevens, R.D.; Wenner, B.R.; Kraus, V.B.; Newgard, C.B.; et al. Exercise-induced changes in metabolic intermediates, hormones, and inflammatory markers associated with improvements in insulin sensitivity. Diabetes Care 2011, 34, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, S.A.; Baldi, J.C.; Cutfield, W.S.; McCowan, L.; Hofman, P.L. Exercise training in pregnancy reduces offspring size without changes in maternal insulin sensitivity. J. Clin. Endocrinol. Metab. 2010, 95, 2080–2088. [Google Scholar] [CrossRef] [Green Version]
- Grewal, J.; Grantz, K.L.; Zhang, C.; Sciscione, A.; Wing, D.A.; Grobman, W.A.; Newman, R.B.; Wapner, R.; D’Alton, M.E.; Skupski, D.; et al. Cohort Profile. NICHD Fetal Growth Studies-Singletons and Twins. Int. J. Epidemiol. 2017, 47, 25–25l. [Google Scholar] [CrossRef] [Green Version]
- Chasan-Taber, L.; Schmidt Md Fau-Roberts, D.E.; Roberts De Fau-Hosmer, D.; Hosmer DFau-Markenson, G.; Markenson GFau-Freedson, P.S.; Freedson, P.S. Development and validation of a Pregnancy Physical Activity Questionnaire. Med. Sci. Sports Exerc. 2004, 36, 1750–1760. [Google Scholar] [CrossRef]
- Cao, J.; Schwichtenberg, K.A.; Hanson, N.Q.; Tsai, M.Y. Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clin. Chem. 2006, 52, 2265–2272. [Google Scholar] [CrossRef] [Green Version]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelsen, S.O. A psudolikelihood approach to analysis of nested case-control studies. Biometrika 1997, 84, 379–394. [Google Scholar] [CrossRef] [Green Version]
- American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 650: Physical Activity and Exercise during Pregnancy and the Postpartum Period. Obs. Gynecol. 2015, 126, e135–e142. [Google Scholar] [CrossRef] [PubMed]
- Downs, D.S.; LeMasurier, G.C.; DiNallo, J.M. Baby steps: Pedometer-determined and self-reported leisure-time exercise behaviors of pregnant women. J. Phys. Act. Health 2009, 6, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Schiller, K.; Jacobs, S.; Jansen, E.; Weikert, C.; di Giuseppe, R.; Boeing, H.; Schulze, M.B.; Kroger, J. Associated factors of estimated desaturase activity in the EPIC-Potsdam study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 503–510. [Google Scholar] [CrossRef]
- Choque, B.; Catheline, D.; Rioux, V.; Legrand, P. Linoleic acid: Between doubts and certainties. Biochimie 2014, 96, 14–21. [Google Scholar] [CrossRef]
- Spector, A.A. Plasma free fatty acid and lipoproteins as sources of polyunsaturated fatty acid for the brain. J. Mol. Neurosci. 2001, 16, 159–165. [Google Scholar] [CrossRef]
- Shelness, G.S.; Sellers, J.A. Very-low-density lipoprotein assembly and secretion. Curr. Opin. Lipidol. 2001, 12, 151–157. [Google Scholar] [CrossRef]
- Burdge, G.C. Is essential fatty acid interconversion an important source of polyunsaturated fatty acids in humans? Br. J. Nutr. 2018, 121, 1–28. [Google Scholar]
- Murff, H.J.; Edwards, T.L. Endogenous Production of Long-Chain Polyunsaturated Fatty Acids and Metabolic Disease Risk. Curr. Cardiovasc. Risk Rep. 2014, 8, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilton, F.H.; Murphy, R.C.; Wilson, B.A.; Sergeant, S.; Ainsworth, H.; Seeds, M.C.; Mathias, R.A. Diet-gene interactions and PUFA metabolism: A potential contributor to health disparities and human diseases. Nutrients 2014, 6, 1993–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larque, E.; Demmelmair, H.; Gil-Sanchez, A.; Prieto-Sanchez, M.T.; Blanco, J.E.; Pagan, A.; Faber, F.L.; Zamora, S.; Parrilla, J.J.; Koletzko, B. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr. 2011, 94, 1908S–1913S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, K.A.; Vuong, N.H.; Mohammad, S.; Everest, C.; Leung, M.L.; Bhattacharjee, J.; Adamo, K.B. Physical Activity During Pregnancy Is Associated with Increased Placental FATP4 Protein Expression. Reprod. Sci. 2020, 27, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Ruifrok, A.E.; Althuizen, E.; Oostdam, N.; van Mechelen, W.; Mol, B.W.; de Groot, C.J.; van Poppel, M.N. The relationship of objectively measured physical activity and sedentary behaviour with gestational weight gain and birth weight. J. Pregnancy 2014, 2014, 567379. [Google Scholar] [CrossRef]
- Arab, L. Biomarkers of fat and fatty acid intake. J. Nutr. 2003, 133 (Suppl. 3), 925S–932S. [Google Scholar] [CrossRef] [Green Version]
Characteristics | All (N = 321) | High MVPA (N = 150) | Low MVPA (N = 171) | p |
---|---|---|---|---|
Age, years | 28.2 (0.3) | 29.0 (0.5) | 27.4 (0.4) | 0.01 |
Race/ethnicity, N (%) | <0.001 | |||
Non-Hispanic Whites | 75 (31.0) | 52 (46.1) | 23 (17.2) | |
Non-Hispanic Blacks | 45 (23.3) | 13 (15.0) | 32 (30.8) | |
Hispanics | 123 (27.2) | 51 (22.4) | 72 (31.5) | |
Asian/Pacific Islanders | 78 (18.5) | 34 (16.5) | 44 (20.4) | |
Prepregnancy BMI, kg/m2 | 25.7 (0.3) | 25.4 (0.4) | 26.0 (0.4) | 0.32 |
Prepregnancy BMI status, N (%) | 0.28 | |||
Normal (BMI < 25.0, kg/m2) | 156 (51.7) | 78 (52.9) | 78 (50.7) | |
Overweight (BMI: 25.0–29.9 kg/m2) | 99 (33.1) | 44 (33.0) | 55 (33.1) | |
Obese (BMI > 30, kg/m2) | 66 (15.2) | 28 (14.1) | 38 (16.2) | |
Born in the United States, N (%) | 182 (68.5) | 94 (72.9) | 88 (64.6) | <0.001 |
Education, N (%) | <0.001 | |||
High school or less | 148 (45.5) | 56 (39.8) | 92 (50.7) | |
Associates | 50 (14.7) | 21 (10.6) | 29 (18.4) | |
Bachelor’s or higher | 123 (40.0) | 73 (49.6) | 50 (30.9) | |
Insurance, N (%) | <0.001 | |||
Medicaid, other | 108 (35.4) | 37 (24.6) | 71 (45.3) | |
Private or managed care | 211 (64.6) | 112 (75.4) | 99 (54.7) | |
Married/living with a partner, N (%) | 259 (72.9) | 125 (84.1) | 134 (62.7) | <0.001 |
Nulliparous, N (%) | 144 (51.1) | 78 (60.1) | 66 (43.1) | <0.001 |
Smoked 6 months before pregnancy, N (%) | 5 (0.7) | 3 (0.23) | 2 (1.1) | <0.001 |
Consumed alcoholic beverage 3 months before pregnancy, N (%) | 198 (63.7) | 106 (74.3) | 92 (54.2) | <0.001 |
Dietary intakes §, | (N = 191) | (N = 89) | (N = 102) | |
Total energy, kcal/day | 2176 (70.0) | 2197 (90.2) | 2156 (105.6) | 0.77 |
Total carbohydrate, g/day | 296 (10.6) | 303 (14.2) | 290 (15.6) | 0.56 |
Total protein, g/day | 85.6 (3.0) | 87.6 (4.1) | 83.8 (4.3) | 0.52 |
Total fatty acids, g/day | 77.4 (2.8) | 76.4 (3.8) | 78.2 (4.0) | 0.75 |
Saturated fatty acids (SFAs), g/day | 25.4 (1.0) | 24.6 (1.4) | 26.1 (1.5) | 0.47 |
Monounsaturated fatty acids (MUFAs), g/day | 29.5 (1.1) | 29.7 (1.5) | 29.4 (1.6) | 0.89 |
Polyunsaturated fatty acids (PUFAs), g/day | 16.3 (0.5) | 16.0 (0.7) | 16.6 (0.8) | 0.60 |
Total dietary fiber, g/day | 22.3 (0.8) | 23.9 (1.0) | 20.9 (1.3) | 0.07 |
Cholesterol, mg/day | 283 (11.8) | 275 (15.5) | 290 (17.5) | 0.52 |
Alternative Heathy Eating Index (AHEI) score | 44.1 (0.7) | 46.5 (1.0) | 41.9 (0.8) | <0.001 |
Visit 0 § (8–13 Weeks) | Visit 1 (16–22 Weeks) | Visit 2 (24–29 Weeks) | Visit 4 (34–37 Weeks) | |||||
---|---|---|---|---|---|---|---|---|
β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | |
MVPA as continuous variable (hour per week) | ||||||||
Sum of n-3 PUFAs (% of total fatty acids) | 0.004 (0.027) | 0.90 | −0.050 (0.038) | 0.19 | 0.002 (0.038) | 0.96 | −0.002 (0.043) | 0.96 |
18:3n-3 (ALA) | −0.00004 (0.001) | 0.98 | −0.0004 (0.002) | 0.51 | −0.006 (0.003) | 0.03 | 0.0007 (0.003) | 0.81 |
20:5n-3 (EPA) | 0.005 (0.004) | 0.21 | 0.002 (0.003) | 0.41 | 0.002 (0.005) | 0.73 | −0.003 (0.005) | 0.55 |
22:5n-3 (DPA) | 0.001 (0.005) | 0.80 | −0.011 (0.006) | 0.04 | 0.007 (0.006) | 0.21 | 0.012 (0.005) | 0.02 |
22:6n-3 (DHA) | −0.002 (0.025) | 0.93 | −0.042 (0.035) | 0.22 | −0.001 (0.034) | 0.97 | −0.012 (0.039) | 0.76 |
Sum of n-6 PUFAs (% of total fatty acids) | −0.122 (0.058) | 0.03 | 0.009 (0.061) | 0.88 | −0.284 (0.068) | <0.001 * | −0.091 (0.080) | 0.26 |
18:2n-6 (LA) | −0.087 (0.061) | 0.15 | −0.071 (0.074) | 0.34 | −0.287 (0.081) | <0.001 * | −0.177 (0.094) | 0.06 |
18:3n-6 (GLA) | −0.00002 (0.001) | 0.98 | 0.002 (0.001) | 0.04 | 0.001 (0.001) | 0.48 | −0.004 (0.001) | <0.001 * |
20:2n-6 (EDA) | 0.0001 (0.002) | 0.94 | −0.0002 (0.003) | 0.95 | −0.004 (0.002) | 0.13 | −0.001 (0.003) | 0.83 |
20:3n-6 (DGLA) | 0.003 (0.019) | 0.88 | 0.013 (0.021) | 0.53 | −0.033 (0.021) | 0.11 | 0.027 (0.028) | 0.33 |
20:4n-6 (AA) | −0.032 (0.043) | 0.45 | 0.051 (0.054) | 0.35 | 0.024 (0.057) | 0.68 | 0.050 (0.065) | 0.44 |
22:4n-6 (DTA) | −0.005 (0.004) | 0.28 | 0.002 (0.003) | 0.58 | −0.005 (0.006) | 0.41 | 0.001 (0.006) | 0.88 |
22:5n-6 (n6-DPA) | −0.002 (0.005) | 0.75 | 0.012 (0.007) | 0.07 | 0.019 (0.007) | 0.01 | 0.012 (0.010) | 0.22 |
PUFA ratios | ||||||||
GLA/LA (Δ6-desaturase) | 0.00002 (0.00004) | 0.60 | 0.0001 (0.0004) | 0.03 | 0.0001 (0.0005) | 0.11 | −0.0002 (0.00006) | 0.01 |
AA/DGLA (Δ5-desaturase) | −0.009 (0.027) | 0.73 | −0.008 (0.029) | 0.79 | 0.030 (0.028) | 0.29 | −0.025 (0.039) | 0.52 |
MVPA high vs. low (reference group) | ||||||||
Sum of n-3 PUFAs (% of total fatty acids) | −0.28 (0.14) | 0.05 | −0.31 (0.17) | 0.06 | 0.25 (0.18) | 0.18 | −0.09 (0.19) | 0.66 |
18:3n-3 (ALA) | −0.004 (0.01) | 0.64 | 0.01 (0.01) | 0.41 | −0.01 (0.01) | 0.52 | 0.01 (0.01) | 0.31 |
20:5n-3 (EPA) | −0.03 (0.02) | 0.11 | 0.0001 (0.01) | 0.99 | 0.06 (0.02) | 0.02 | 0.02 (0.02) | 0.42 |
22:5n-3 (DPA) | −0.03 (0.02) | 0.26 | −0.06 (0.03) | 0.01 | 0.05 (0.03) | 0.05 | 0.02 (0.02) | 0.35 |
22:6n-3 (DHA) | −0.22 (0.13) | 0.10 | −0.26 (0.15) | 0.10 | 0.15 (0.16) | 0.80 | −0.14 (0.18) | 0.43 |
Sum of n-6 PUFAs (% of total fatty acids) | −0.31 (0.31) | 0.32 | 0.09 (0.27) | 0.73 | −1.37 (0.33) | <0.001 * | −0.46 (0.37) | 0.21 |
18:2n-6 (LA) | −0.24 (0.32) | 0.45 | −0.10 (0.33) | 0.76 | −1.53 (0.39) | <0.001 * | −0.44 (0.43) | 0.31 |
18:3n-6 (GLA) | −0.001 (0.004) | 0.69 | 0.01 (0.004) | 0.06 | 0.01 (0.004) | 0.05 | −0.01 (0.01) | 0.12 |
20:2n-6 (EDA) | −0.001 (0.01) | 0.69 | −0.001 (0.01) | 0.97 | −0.03 (0.01) | 0.02 | −0.01 (0.01) | 0.30 |
20:3n-6 (DGLA) | 0.06 (0.10) | 0.52 | 0.13 (0.09) | 0.16 | −0.13 (0.10) | 0.18 | 0.04 (0.13) | 0.77 |
20:4n-6 (AA) | −0.13 (0.23) | 0.55 | −0.02 (0.24) | 0.95 | 0.23 (0.28) | 0.41 | −0.09 (0.30) | 0.77 |
22:4n-6 (DTA) | −0.04 (0.02) | 0.08 | 0.001 (0.02) | 0.94 | 0.02 (0.03) | 0.60 | 0.01 (0.03) | 0.66 |
22:5n-6 (n6-DPA) | 0.05 (0.03) | 0.05 | 0.07 (0.03) | 0.02 | 0.07 (0.03) | 0.04 | 0.04 (0.04) | 0.42 |
PUFA ratios | ||||||||
GLA/LA (Δ6-desaturase) | −0.00004 (0.0002) | 0.86 | 0.0004 (0.0002) | 0.06 | 0.001 (0.0002) | 0.004 | −0.0003 (0.0003) | 0.32 |
AA/DGLA (Δ5-desaturase) | −0.15 (0.14) | 0.28 | −0.15 (0.13) | 0.24 | 0.21 (0.14) | 0.12 | −0.05 (0.18) | 0.78 |
MVPA Visit 0 (8–13 Weeks) | MVPA Visit 1 (16–22 Weeks) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PUFAs Visit 1 (16–22 Weeks) | PUFAs Visit 2 (24–29 Weeks) | PUFAs Visit 4 (34–37 Weeks) | PUFAs Visit 2 (24–29 Weeks) | PUFAs Visit 4 (34–37 Weeks) | ||||||
β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | |
Sum of n-3 PUFAs | 0.041 (0.031) | 0.18 | 0.066 (0.038) | 0.09 | 0.063 (0.035) | 0.07 | 0.088 (0.053) | 0.09 | 0.079 (0.049) | 0.10 |
18:3n-3 (ALA) | 0.002 (0.002) | 0.32 | −0.003 (0.003) | 0.28 | −0.002 (0.002) | 0.39 | −0.010 (0.004) | 0.01 | −0.003 (0.003) | 0.38 |
20:5n-3 (EPA) | 0.002 (0.002) | 0.44 | −0.001 (0.005) | 0.91 | −0.001 (0.004) | 0.76 | 0.009 (0.007) | 0.21 | 0.012 (0.006) | 0.03 |
22:5n-3 (DPA) | 0.003 (0.005) | 0.45 | 0.007 (0.006) | 0.21 | 0.004 (0.004) | 0.33 | 0.015 (0.008) | 0.06 | 0.010 (0.006) | 0.11 |
22:6n-3 (DHA) | 0.035 (0.028) | 0.22 | 0.063 (0.034) | 0.07 | 0.062 (0.032) | 0.05 | 0.075 (0.047) | 0.11 | 0.060 (0.044) | 0.17 |
Sum of n-6 PUFAs | 0.047 (0.050) | 0.35 | −0.034 (0.070) | 0.62 | −0.180 (0.063) | 0.004 | −0.221 (0.096) | 0.02 | −0.199 (0.090) | 0.03 |
18:2n-6 (LA) | 0.0004 (0.061) | 0.99 | −0.190 (0.084) | 0.02 | −0.348 (0.073) | <0.001 * | −0.419 (0.113) | 0.0002 * | −0.358 (0.103) | 0.001 * |
18:3n-6 (GLA) | −0.00002 (0.001) | 0.98 | 0.002 (0.001) | 0.04 | 0.003 (0.001) | 0.01 | 0.002 (0.001) | 0.23 | 0.0001 (0.001) | 0.93 |
20:2n-6 (EDA) | 0.002 (0.003) | 0.37 | 0.003 (0.002) | 0.28 | 0.0002 (0.002) | 0.92 | -0.005 (0.003) | 0.13 | −0.008 (0.003) | 0.01 |
20:3n-6 (DGLA) | −0.014 (0.017) | 0.42 | 0.028 (0.021) | 0.18 | 0.043 (0.022) | 0.05 | −0.004 (0.029) | 0.90 | −0.00004 (0.031) | 1.00 |
20:4n-6 (AA) | 0.058 (0.044) | 0.19 | 0.120 (0.057) | 0.03 | 0.116 (0.051) | 0.02 | 0.185 (0.079) | 0.02 | 0.147 (0.071) | 0.04 |
22:4n-6 (DTA) | 0.008 (0.003) | 0.004 | −0.003 (0.006) | 0.62 | −0.007 (0.005) | 0.16 | −0.005 (0.008) | 0.51 | −0.003 (0.007) | 0.68 |
22:5n-6 (n6-DPA) | −0.008 (0.005) | 0.14 | 0.005 (0.007) | 0.48 | 0.014 (0.008) | 0.09 | 0.025 (0.010) | 0.01 | 0.023 (0.011) | 0.03 |
PUFA ratios | ||||||||||
GLA/LA (Δ6-desaturase) | −0.000002 (0.00004) | 0.96 | 0.0001 (0.0001) | 0.02 | 0.0002 (0.00005) | <0.001 * | 0.0002 (0.0001) | 0.03 | 0.00009 (0.00007) | 0.19 |
AA/DGLA (Δ5-desaturase) | 0.032 (0.023) | 0.17 | 0.010 (0.028) | 0.71 | −0.036 (0.031) | 0.25 | 0.038 (0.039) | 0.33 | 0.003 (0.044) | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhu, Y.; Fei, Z.; Hinkle, S.N.; Xia, T.; Liu, X.; Rahman, M.L.; Li, M.; Wu, J.; Weir, N.L.; et al. Plasma Phospholipid n-3/n-6 Polyunsaturated Fatty Acids and Desaturase Activities in Relation to Moderate-to-Vigorous Physical Activity through Pregnancy: A Longitudinal Study within the NICHD Fetal Growth Studies. Nutrients 2020, 12, 3544. https://doi.org/10.3390/nu12113544
Chen L, Zhu Y, Fei Z, Hinkle SN, Xia T, Liu X, Rahman ML, Li M, Wu J, Weir NL, et al. Plasma Phospholipid n-3/n-6 Polyunsaturated Fatty Acids and Desaturase Activities in Relation to Moderate-to-Vigorous Physical Activity through Pregnancy: A Longitudinal Study within the NICHD Fetal Growth Studies. Nutrients. 2020; 12(11):3544. https://doi.org/10.3390/nu12113544
Chicago/Turabian StyleChen, Liwei, Yeyi Zhu, Zhe Fei, Stefanie N. Hinkle, Tong Xia, Xinyue Liu, Mohammad L. Rahman, Mengying Li, Jing Wu, Natalie L. Weir, and et al. 2020. "Plasma Phospholipid n-3/n-6 Polyunsaturated Fatty Acids and Desaturase Activities in Relation to Moderate-to-Vigorous Physical Activity through Pregnancy: A Longitudinal Study within the NICHD Fetal Growth Studies" Nutrients 12, no. 11: 3544. https://doi.org/10.3390/nu12113544
APA StyleChen, L., Zhu, Y., Fei, Z., Hinkle, S. N., Xia, T., Liu, X., Rahman, M. L., Li, M., Wu, J., Weir, N. L., Tsai, M. Y., & Zhang, C. (2020). Plasma Phospholipid n-3/n-6 Polyunsaturated Fatty Acids and Desaturase Activities in Relation to Moderate-to-Vigorous Physical Activity through Pregnancy: A Longitudinal Study within the NICHD Fetal Growth Studies. Nutrients, 12(11), 3544. https://doi.org/10.3390/nu12113544