What Dimensions of Risk Perception are Associated with Avoidance of Buying Processed Foods with Warning Labels?
Abstract
:1. Introduction
Theoretical Background and Literature Review
2. Materials and Methods
2.1. Sample and Procedure
2.2. Questionnaire
2.3. Statistical Analysis
3. Results
3.1. Sample Characterization
3.2. Dimension of Risk Perception
3.3. Determinants of the Intention to Avoid Buying Processed Foods with NWL
4. Discussion
4.1. Effect of NWLs on Risk Perception
4.2. Sociodemographic Aspects and their Relationship with NWLs
4.3. NWL as An Attribute of Credibility in Consumers
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. World Health Organisation Global Status Report on Noncommunicable Diseases. 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf?sequence=1 (accessed on 25 October 2019).
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 807–814. [Google Scholar] [CrossRef]
- Monteiro, C.; Cannon, G.; Levy, R.B.; Claro, R.; Moubarac, J.; Martins, P.; Louzada, M.L.; Baraldi, L. The Food System. Processing. The big issue for disease, good health, well-being. World Nutr. 2012, 3, 527–569. [Google Scholar]
- Pan American Health Organization. Ultra-Processed Food and Drink Products in Latin America: Trends, Impact on Obesity, Policy Implications. Available online: https://iris.paho.org/bitstream/handle/10665.2/7699/9789275118641_eng.pdf (accessed on 2 September 2020).
- Cominato, L.; Di Biagio, G.F.; Lellis, D.; Franco, R.R.; Mancini, M.C.; de Melo, M.E. Obesity Prevention: Strategies and Challenges in Latin America. Curr. Obes. Rep. 2018, 7, 97–104. [Google Scholar] [CrossRef]
- Gortmaker, S.L.; Swinburn, B.A.; Levy, D.; Carter, R.; Mabry, P.L.; Finegood, D.T.; Huang, T.; Marsh, T.; Moodie, M.L. Changing the future of obesity: Science, policy, and action. Lancet 2011, 378, 838–847. [Google Scholar] [CrossRef] [Green Version]
- Bialkova, S.; Sasse, L.; Fenko, A. The role of nutrition labels and advertising claims in altering consumers’ evaluation and choice. Appetite 2016, 96, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Boon, H.; Bozinovski, N. A Systematic Narrative Review of the Evidence for Labeling of Natural Health Products and Dietary Supplements. J. Altern. Complement. Med. 2019, 5, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Emrich, T.; Qi, Y.; Cohen, J.; Lou, W.; L’Abbe, M. Front-of-pack symbols are not a reliable indicator of products with healthier nutrient profiles. Appetite 2015, 84, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Roseman, M.G.; Joung, H.W.; Littlejohn, E.I. Attitude and Behavior Factors Associated with Front-of-Package Label Use with Label Users Making Accurate Product Nutrition Assessments. J. Acad. Nutr. Diet. 2018, 118, 904–912. [Google Scholar] [CrossRef] [PubMed]
- van Herpen, E.; van Trijp, H.C.M. Front-of-pack nutrition labels. Their effect on attention and choices when consumers have varying goals and time constraints. Appetite 2011, 57, 148–160. [Google Scholar] [CrossRef]
- Sütterlin, B.; Siegrist, M. Simply adding the word “fruit” makes sugar healthier: The misleading effect of symbolic information on the perceived healthiness of food. Appetite 2015, 95, 252–261. [Google Scholar] [CrossRef]
- Chantal, J.; Hercberg, S. Development of a new front-of-pack nutrition label in France: The five-colour Nutri-Score. Public Health Panor. 2017, 3, 712–725. [Google Scholar]
- Corvalán, C.; Reyes, M.; Garmendia, M.L.; Uauy, R. Structural responses to the obesity and non-communicable diseases epidemic: The Chilean Law of Food Labeling and Advertising. Obes. Rev. 2013, 14, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.; Aschemann-Witzel, J.; Curutchet, M.R.; Antúnez, L.; Machín, L.; Vidal, L.; Giménez, A. Product reformulation in the context of nutritional warning labels: Exploration of consumer preferences towards food concepts in three food categories. Food Res. Int. 2018, 107, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.J.; Roberto, C.A. Health Warning Labels Correct Parents’ Misperceptions About Sugary Drink Options. Am. J. Prev. Med. 2018, 55, e19–e27. [Google Scholar] [CrossRef]
- Schnettler, B.; Ares, G.; Sepúlveda, N.; Bravo, S.; Villalobos, B.; Hueche, C.; Adasme-Berríos, C. How do consumers perceive reformulated foods after the implementation of nutritional warnings? Case study with frankfurters in Chile. Food Qual. Prefer. 2019, 74, 179–188. [Google Scholar] [CrossRef]
- Scapini Sánchez, V.; Vergara Silva, C. El impacto de la nueva ley de etiquetados de alimentos en la venta de productos en Chile. Rev. Perf. Econ. 2017, 3, 7–33. [Google Scholar] [CrossRef]
- Morgan, M.G.; Fischhoff, B.; Bostrom, A.; Atman, C.J. Risk Communication: A Mental Models Approach; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Popova, L.; Nonnemaker, J.; Taylor, N.; Bradfield, B.; Kim, A. Warning labels on sugar-sweetened beverages: An eye tracking approach. Am. J. Health Behav. 2019, 43, 406–419. [Google Scholar] [CrossRef]
- Wilson, R.S.; Zwickle, A.; Walpole, H. Developing a Broadly Applicable Measure of Risk Perception. Risk Anal. 2019, 39, 777–791. [Google Scholar] [CrossRef]
- Taillie, L.S.; Hall, M.G.; Popkin, B.M.; Ng, S.W.; Murukutla, N. Experimental studies of front-of-package nutrient warning labels on sugar-sweetened beverages and ultra-processed foods: A scoping review. Nutrients 2020, 12, 569. [Google Scholar] [CrossRef] [Green Version]
- Machín, L.; Curutchet, M.R.; Giménez, A.; Aschemann-Witzel, J.; Ares, G. Do nutritional warnings do their work? Results from a choice experiment involving snack products. Food Qual. Prefer. 2019, 77, 159–165. [Google Scholar] [CrossRef]
- Nobrega, L.; Ares, G.; Deliza, R. Are nutritional warnings more efficient than claims in shaping consumers’ healthfulness perception? Food Qual. Prefer. 2020, 79, 103749. [Google Scholar] [CrossRef]
- Centurión, M.; Machín, L.; Ares, G. Relative Impact of Nutritional Warnings and Other Label Features on Cereal Bar Healthfulness Evaluations. J. Nutr. Educ. Behav. 2019, 51, 850–856. [Google Scholar] [CrossRef]
- Deliza, R.; de Alcantara, M.; Pereira, R.; Ares, G. How do different warning signs compare with the guideline daily amount and traffic-light system? Food Qual. Prefer. 2020, 80, 103821. [Google Scholar] [CrossRef]
- Jacobs, L.; Worthley, R. A comparative study of risk appraisal: A new look at risk assessment in different countries. Environ. Monit. Assess. 1999, 59, 225–247. [Google Scholar] [CrossRef]
- Jacoby, J.; Kaplan, L.B. The Components of Perceived Risk. In Proceedings of the Third Annual Conference, Association for Consumer Research; Venkatasen, M., Ed.; Association for Consumer Research: Chicago, IL, USA, 1972; pp. 382–393. [Google Scholar]
- Kaplan, L.B.; Szybillo, G.J.; Jacoby, J. Components of perceived risk in product purchase: A cross-validation. J. Appl. Psychol. 1974, 59, 287–291. [Google Scholar] [CrossRef]
- Casidy, R.; Wymer, W. A risk worth taking: Perceived risk as moderator of satisfaction, loyalty, and willingness-to-pay premium price. J. Retail. Consum. Serv. 2016, 32, 189–197. [Google Scholar] [CrossRef]
- Featherman, M.S.; Pavlou, P.A. Predicting e-services adoption: A perceived risk facets perspective. Int. J. Hum. Comput. Stud. 2003, 59, 451–474. [Google Scholar] [CrossRef] [Green Version]
- Tonkin, E.; Coveney, J.; Meyer, S.B.; Wilson, A.M.; Webb, T. Managing uncertainty about food risks—Consumer use of food labelling. Appetite 2016, 107, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Deck, C.; Jahedi, S. The effect of cognitive load on economic decision making: A survey and new experiments. Eur. Econ. Rev. 2015, 78, 97–119. [Google Scholar] [CrossRef] [Green Version]
- Mahon, D.; Cowan, C. Irish consumers’ perception of food safety risk in minced beef. Br. Food J. 2004, 110, 1034–1046. [Google Scholar] [CrossRef]
- Jahn, G.; Schramm, M.; Spiller, A. The reliability of certification: Quality labels as a consumer policy tool. J. Consum. Policy 2005, 28, 53–73. [Google Scholar] [CrossRef]
- Lee, M.C. Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electron. Commer. Res. Appl. 2009, 8, 130–141. [Google Scholar] [CrossRef]
- Mitchell, V.W. A role for consumer risk perceptions in grocery retailing. Br. Food J. 1998, 100, 171–183. [Google Scholar] [CrossRef]
- González Hernando, S.; González Mieres, C.; Díaz Martín, A.M. Intención de Compra de Medicamentos Genéricos por Parte de los Usuarios de Asturias. Rev. Esp. Salud Publica 2003, 77, 691–699. [Google Scholar]
- Chen, M.F. Modeling an extended theory of planned behavior model to predict intention to take precautions to avoid consuming food with additives. Food Qual. Prefer. 2017, 58, 24–33. [Google Scholar] [CrossRef]
- McCarthy, M.; Henson, S. Perceived risk and risk reduction strategies in the choice of beef by Irish consumers. Food Qual. Prefer. 2005, 16, 435–445. [Google Scholar] [CrossRef]
- Weitzel, D.; Ernst, C.P.H. The role of sensory attribute categories in online fresh food purchase behavior. In Proceedings of the 25th Americas Conference on Information Systems, AMCIS 2019, Cancún, Mexico, 15–17 August 2019. [Google Scholar]
- Rojas-Rivas, E.; Antúnez, L.; Cuffia, F.; Otterbring, T.; Aschemann-Witzel, J.; Giménez, A.; Ares, G. Time orientation and risk perception moderate the influence of sodium warnings on food choice: Implications for the design of communication campaigns. Appetite 2020, 147, 104562. [Google Scholar] [CrossRef]
- Izydorczyk, B.; Sitnik-Warchulska, K.; Lizińczyk, S.; Lipiarz, A. Psychological predictors of unhealthy eating attitudes in young adults. Front. Psychol. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Adasme-Berríos, C.; Sánchez, M.; Mora, M.; Díaz, J.; Schnettler, B.; Lobos, G. The gender role on moderator effect of food safety label between perceived quality and risk on fresh vegetables. Rev. Fac. Cienc. Agrar. 2019, 51, 93–109. [Google Scholar]
- de Morais Sato, P.; Mais, L.A.; Khandpur, N.; Ulian, M.D.; Bortoletto Martins, A.P.; Garcia, M.T.; Spinillo, C.G.; Urquizar Rojas, C.F.; Jaime, P.C.; Scagliusi, F.B. Consumers’ opinions on warning labels on food packages: A qualitative study in Brazil. PLoS ONE 2019, 14, e0218813. [Google Scholar] [CrossRef] [Green Version]
- Almeida, L.B.; Scagliusi, F.B.; Duran, A.C.; Jaime, P.C. Barriers to and facilitators of ultra-processed food consumption: Perceptions of Brazilian adults. Public Health Nutr. 2018, 21, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ares, G.; Machín, L.; Girona, A.; Curutchet, M.R.; Giménez, A. Comparison of motives underlying food choice and barriers to healthy eating among low medium income consumers in Uruguay. Cad. Saude Publica 2017, 33, e00213315. [Google Scholar] [CrossRef]
- de Mestral, C.; Stringhini, S.; Marques-Vidal, P. Barriers to healthy eating in Switzerland: A nationwide study. Clin. Nutr. 2016, 35, 1490–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, F.J.L.; Agrawal, S.; Finkelstein, E.A. Pilot randomized controlled trial testing the influence of front-of-pack sugar warning labels on food demand. BMC Public Health 2019, 19, 164. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.; Aschemann-Witzel, J.; Curutchet, M.R.; Antúnez, L.; Moratorio, X.; Bove, I. A citizen perspective on nutritional warnings as front-of-pack labels: Insights for the design of accompanying policy measures. Public Health Nutr. 2018, 21, 3450–3461. [Google Scholar] [CrossRef] [Green Version]
- David, I.A.; Krutman, L.; Fernández-Santaella, M.C.; Andrade, J.R.; Andrade, E.B.; Oliveira, L.; Pereira, M.G.; Gomes, F.S.; Gleiser, S.; Oliveira, J.M.; et al. Appetitive drives for ultra-processed food products and the ability of text warnings to counteract consumption predispositions. Public Health Nutr. 2018, 21, 543–557. [Google Scholar] [CrossRef]
- Vidal, G.; Machín, L.; Aschemann-Witzel, J.; Ares, G. Does message framing matter for promoting the use of nutritional warnings in decision making? Public Health Nutr. 2019, 22, 3025–3034. [Google Scholar] [CrossRef]
Categorical Variables | Frequency | Percentage | |
---|---|---|---|
Gender | Male | 292 | 36.18 |
Female | 515 | 63.82 | |
Socioeconomic status | Low (SEG1) | 421 | 52.17 |
Middle (SEG2) | 342 | 42.38 | |
High (SEG3) | 44 | 5.45 | |
Family group size | 1–2 members | 165 | 20.50 |
3–4 members | 445 | 55.10 | |
5 or more | 197 | 24.40 | |
Shop place | Supermarket | 720 | 89.22 |
Neighborhood stores | 71 | 8.80 | |
Casinos/Cafeteria | 10 | 1.24 | |
Kiosks | 3 | 0.37 | |
Street trade | 3 | 0.37 | |
Other Variables | Mean. | Sd. | |
Age | 37.31 | 13.95 | |
Height (m) | 1.64 | 0.08 | |
Weight (Kg) | 71.04 | 14.19 | |
BMI | 26.04 | 4.35 | |
Daily Consumption Frequency of Processed Foods (CFPF) | 2.67 | 1.28 |
Items | Factor Loadings | |||||
---|---|---|---|---|---|---|
Means | Std. D. | Physical Risk (PhysR) | Performance Risk (PR) | Financial Risk (FR) | Psychological Risk (PsyR) | |
PhysR3. You are concerned about the physical damage associated with its consumption | 5.48 | 1.91 | 0.878 | 0.160 | 0.142 | 0.170 |
PhysR2. You consider that its consumption can be harmful to your health | 5.52 | 1.89 | 0.875 | 0.134 | 0.149 | 0.158 |
PhysR1. You are concerned about the side effects it may cause you or a family member | 5.33 | 2.02 | 0.857 | 0.213 | 0.111 | 0.157 |
PR3. You fear that the product will not meet your needs | 4.31 | 2.33 | 0.119 | 0.870 | 0.229 | 0.186 |
PR2. You fear that it may not provide you benefits | 4.16 | 2.32 | 0.196 | 0.847 | 0.253 | 0.223 |
PR1. You are concerned that it is not a safe and reliable food | 4.52 | 2.33 | 0.273 | 0.813 | 0.247 | 0.192 |
FR3. You are concerned that the purchase of this food is not worth the money spent | 3.94 | 2.32 | 0.110 | 0.237 | 0.864 | 0.220 |
FR2. You are concerned that it is not a good acquisition because it is more expensive than other available brands | 3.75 | 2.28 | 0.133 | 0.252 | 0.850 | 0.218 |
FR1. You think it is not a good way to spend your money. | 3.97 | 2.34 | 0.215 | 0.234 | 0.775 | 0.280 |
PsyR2. You are worried because of doubts about whether you have been right with your decision | 3.54 | 2.23 | 0.122 | 0.229 | 0.233 | 0.858 |
PsyR1. You are worried when buying these products | 3.47 | 2.27 | 0.156 | 0.171 | 0.235 | 0.846 |
PsyR3. You consider that you have not been careful when buying processed foods with NWLs | 4.10 | 2.31 | 0.254 | 0.176 | 0.213 | 0.778 |
Cronbach α | 0.89 | 0.91 | 0.89 | 0.88 | ||
KMO | 0.879 | |||||
Bartlett Test | 0.000 | |||||
Factor Loadings | ||||||
Items | Means | Std. D. | Intention to Avoid Buying Processed Foods with NWL (IAB) | |||
IAB4. You will avoid buying food with NWLs | 5.06 | 2.03 | 0.881 | |||
IAB3. You will seek information to avoid buying food with NWLs | 4.73 | 2.14 | 0.847 | |||
IAB2. You will suggest to my family members not to consume food with NWLs | 5.14 | 2.08 | 0.830 | |||
IAB1. You try to avoid consuming food with NWLs | 4.76 | 2.19 | 0.802 | |||
Cronbach α | 0.86 | |||||
KMO | 0.813 | |||||
Bartlett Test | 0.000 |
IAB | PR | FR | PhysR | PsyR | |||||
---|---|---|---|---|---|---|---|---|---|
PR | 0.387 | ** | 1 | ||||||
FR | 0.292 | ** | 0.576 | ** | 1 | ||||
PhysR | 0.350 | ** | 0.450 | ** | 0.390 | ** | 1 | ||
PsyR | 0.347 | ** | 0.505 | ** | 0.563 | ** | 0.429 | ** | 1 |
Predictor | Coef. | Std. Err. | t | R2 | Adj. R2 | F |
---|---|---|---|---|---|---|
Step 1: | ||||||
Intercept | 2.622 | 0.187 | 14.044 *** | |||
PR | 0.186 | 0.034 | 5.461 *** | |||
FR | 0.005 | 0.005 | 0.130 | |||
PhysR | 0.181 | 0.037 | 4. 923 *** | |||
PsyR | 0.133 | 0.035 | 3.779 *** | 0.205 | 0.201 | 51.650 *** |
Step 2: | ||||||
Intercept | 2.878 | 0.239 | 12.046 *** | |||
PR | 0.194 | 0.034 | 5.746 *** | |||
FR | 0.003 | 0.035 | 0.085 | |||
PhysR | 0.156 | 0.037 | 4.237 *** | |||
PsyR | 0.135 | 0.035 | 3.836 *** | |||
Gen (Women) | 0.389 | 0.116 | 3.363 *** | |||
CFPF | −0.073 | 0.043 | −1.673 ** | |||
SEG1 | −0.372 | 0.115 | −3.226 *** | |||
SEG2 | Omitted | |||||
SEG3 | −0.200 | 0.252 | −0.803 | 0.230 | 0.222 | 29.826 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adasme-Berríos, C.; Aliaga-Ortega, L.; Schnettler, B.; Sánchez, M.; Pinochet, C.; Lobos, G. What Dimensions of Risk Perception are Associated with Avoidance of Buying Processed Foods with Warning Labels? Nutrients 2020, 12, 2987. https://doi.org/10.3390/nu12102987
Adasme-Berríos C, Aliaga-Ortega L, Schnettler B, Sánchez M, Pinochet C, Lobos G. What Dimensions of Risk Perception are Associated with Avoidance of Buying Processed Foods with Warning Labels? Nutrients. 2020; 12(10):2987. https://doi.org/10.3390/nu12102987
Chicago/Turabian StyleAdasme-Berríos, Cristian, Luis Aliaga-Ortega, Berta Schnettler, Mercedes Sánchez, Consuelo Pinochet, and Germán Lobos. 2020. "What Dimensions of Risk Perception are Associated with Avoidance of Buying Processed Foods with Warning Labels?" Nutrients 12, no. 10: 2987. https://doi.org/10.3390/nu12102987
APA StyleAdasme-Berríos, C., Aliaga-Ortega, L., Schnettler, B., Sánchez, M., Pinochet, C., & Lobos, G. (2020). What Dimensions of Risk Perception are Associated with Avoidance of Buying Processed Foods with Warning Labels? Nutrients, 12(10), 2987. https://doi.org/10.3390/nu12102987