Added Sugar Intake is Associated with Blood Pressure in Older Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Blood Pressure and Anthropometric Measurements
2.3. Blood Pressure Classifications
2.4. Diet, Physical Activity, and Demographic Questionnaires
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics, Anthropometrics Measurements, and Demographics
3.2. Blood Pressure, Physical Activity, and Dietary Characteristics
3.3. Association Between Dietary Factors and Blood Pressure
3.4. Participant in Blood Pressure Category
3.5. Predicted Changes in Percentage of Population with High Blood Pressure
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Go, A.S.; Bauman, M.A.; Coleman King, S.M.; Fonarow, G.C.; Lawrence, W.; Williams, K.A.; Sanchez, E. An effective approach to high blood pressure control: A science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention. J. Am. Coll. Cardiol. 2014, 63, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- High Blood Pressure. Available online: https://www.cdc.gov/bloodpressure/index.htm (accessed on 2 July 2019).
- Hypertension Prevalence and Control Among Adults: United States, 2015–2016. Available online: https://www.cdc.gov/nchs/products/databriefs/db289.htm (accessed on 2 July 2019).
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Ritchey, M.; Tsipas, S.; Loustalot, F.; Wozniak, G. Use of Pharmacy Sales Data to Assess Changes in Prescription- and Payment-Related Factors that Promote Adherence to Medications Commonly Used to Treat Hypertension, 2009 and 2014. PLoS ONE 2016, 11, e0159366. [Google Scholar] [CrossRef] [PubMed]
- Khavjou, O.; Phelps, D.; Leib, A. Projections of Cardiovascular Disease Prevalence and Costs: 2015–2035. 2016. Available online: https://healthmetrics.heart.org/wp-content/uploads/2017/10/Projections-of-Cardiovascular-Disease.pdf 365 (accessed on 2 July 2019).
- Collier, S.R.; Landram, M.J. Treatment of prehypertension: Lifestyle and/or medication. Vasc. Health Risk Manag. 2012, 8, 613–619. [Google Scholar] [CrossRef]
- Qato, D.M.; Alexander, G.C.; Conti, R.M.; Johnson, M.; Schumm, P.; Lindau, S.T. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA 2008, 300, 2867–2878. [Google Scholar] [CrossRef] [PubMed]
- Conlin, P.R. The dietary approaches to stop hypertension (DASH) clinical trial: Implications for lifestyle modifications in the treatment of hypertensive patients. Cardiol. Rev. 1999, 7, 284–288. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R., 3rd; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef]
- Washburn, R.A.; McAuley, E.; Katula, J.; Mihalko, S.L.; Boileau, R.A. The physical activity scale for the elderly (PASE): Evidence for validity. J. Clin. Epidemiol. 1999, 52, 643–651. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Dorans, K.S.; Mills, K.T.; Liu, Y.; He, J. Trends in Prevalence and Control of Hypertension According to the 2017 American College of Cardiology/American Heart Association (ACC/AHA) Guideline. J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- About One-Third of Delaware Adults Report Having Hypertension in 2017. Available online: https://www.dhss.delaware.gov/dhss/dph/dpc/hypertensionupdate.html (accessed on 2 July 2019).
- Malik, A.H.; Akram, Y.; Shetty, S.; Malik, S.S.; Yanchou Njike, V. Impact of sugar-sweetened beverages on blood pressure. Am. J. Cardiol. 2014, 113, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 2014, 100, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Raben, A.; Vasilaras, T.H.; Moller, A.C.; Astrup, A. Sucrose compared with artificial sweeteners: Different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am. J. Clin. Nutr. 2002, 76, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Added Sugars Intake of Americans: What We Eat in America, NHANES 2013–2014. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/DBrief/18_Added_Sugars_Intake_of_Americans_2396 013-2014.pdf (accessed on 2 July 2019).
- Added Sugars. Available online: https://www.heart.org/en/healthy-living/healthy-eating/eat-398 smart/sugar/added-sugars (accessed on 2 July 2019).
- Drewnowski, A.; Rehm, C.D. Consumption of added sugars among US children and adults by food purchase location and food source. Am. J. Clin. Nutr. 2014, 100, 901–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunag, R.D.; Tomita, T.; Sasaki, S. Chronic sucrose ingestion induces mild hypertension and tachycardia in rats. Hypertension 1983, 5, 218–225. [Google Scholar] [CrossRef]
- Barbagallo, M.; Shan, J.; Pang, P.K.; Resnick, L.M. Glucose-induced alterations of cytosolic free calcium in cultured rat tail artery vascular smooth muscle cells. J. Clin. Investig. 1995, 95, 763–767. [Google Scholar] [CrossRef]
- Ottolini, M.; Hong, K.; Sonkusare, S.K. Calcium signals that determine vascular resistance. Wiley Interdiscip. Rev. Syst. Biol. Med. 2019, 11, e1448. [Google Scholar] [CrossRef]
- Bray, G.A.; Nielsen, S.J.; Popkin, B.M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 2004, 79, 537–543. [Google Scholar] [CrossRef]
- Hussain, M.; Awan, F.R. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin. Exp. Hypertens. 2018, 40, 344–352. [Google Scholar] [CrossRef]
- Farah, V.; Elased, K.M.; Chen, Y.; Key, M.P.; Cunha, T.S.; Irigoyen, M.C.; Morris, M. Nocturnal hypertension in mice consuming a high fructose diet. Auton. Neurosci. 2006, 130, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M. Dietary fructose, salt absorption and hypertension in metabolic syndrome: Towards a new paradigm. Acta Physiol. 2011, 201, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Basciano, H.; Federico, L.; Adeli, K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab. 2005, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Hu, H.; Zharikov, S.; Tuttle, K.R.; Short, R.A.; Glushakova, O.; Ouyang, X.; Feig, D.I.; Block, E.R.; Herrera-Acosta, J.; et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am. J. Physiol. Renal. Physiol. 2006, 290, F625–F631. [Google Scholar] [CrossRef] [Green Version]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2012, 346, e7492. [Google Scholar] [CrossRef] [PubMed]
- Hulman, S.; Falkner, B. The effect of excess dietary sucrose on growth, blood pressure, and metabolism in developing Sprague-Dawley rats. Pediatr. Res. 1994, 36, 95–101. [Google Scholar] [CrossRef]
- Galipeau, D.; Verma, S.; McNeill, J.H. Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H2478–H2484. [Google Scholar] [CrossRef] [Green Version]
- John, J.H.; Ziebland, S.; Yudkin, P.; Roe, L.S.; Neil, H.A. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: A randomised controlled trial. Lancet 2002, 359, 1969–1974. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Association between Fruit and Vegetable Consumption and Risk of Hypertension in Middle-Aged and Older Korean Adults. J. Acad. Nutr. Diet. 2018, 118, 1438–1449. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.C.; Davis, K.; Wright, R.S.; Kuczmarski, M.F.; Zhang, Z. Impact of tart cherry juice on systolic blood pressure and low-density lipoprotein cholesterol in older adults: A randomized controlled trial. Food Funct. 2018, 9, 3185–3194. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef]
- Barona, J.; Aristizabal, J.C.; Blesso, C.N.; Volek, J.S.; Fernandez, M.L. Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. J. Nutr. 2012, 142, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Brands, M.W.; Daniels, S.R.; Karanja, N.; Elmer, P.J.; Sacks, F.M. Dietary approaches to prevent and treat hypertension: A scientific statement from the American Heart Association. Hypertension 2006, 47, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; He, J.; Cutler, J.A.; Brancati, F.L.; Appel, L.J.; Follmann, D.; Klag, M.J. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 1997, 277, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Lana, A.; Banegas, J.R.; Guallar-Castillon, P.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Association of Dairy Consumption and 24-Hour Blood Pressure in Older Adults with Hypertension. Am. J. Med. 2018, 131, 1238–1249. [Google Scholar] [CrossRef]
- Wang, L.; Gaziano, J.M.; Liu, S.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Whole- and refined-grain intakes and the risk of hypertension in women. Am. J. Clin. Nutr. 2007, 86, 472–479. [Google Scholar] [CrossRef]
- Ampatzoglou, A.; Atwal, K.K.; Maidens, C.M.; Williams, C.L.; Ross, A.B.; Thielecke, F.; Jonnalagadda, S.S.; Kennedy, O.B.; Yaqoob, P. Increased whole grain consumption does not affect blood biochemistry, body composition, or gut microbiology in healthy, low-habitual whole grain consumers. J. Nutr. 2015, 145, 215–221. [Google Scholar] [CrossRef]
Variable | Total (n = 128) | Males (n = 57) | Females (n = 71) | p-value |
---|---|---|---|---|
Mean ± SD | ||||
Age (years) | 70.7 ± 4.0 | 70.8 ± 4.1 | 70.6 ± 4.0 | 0.751 |
BMI (kg/m2) | 29.1 ± 5.1 | 29.2 ± 4.3 | 29.0 ± 5.7 | 0.848 |
Height (cm) | 167.0 ± 8.9 | 173.8 ± 7.6 | 161.5 ± 5.4 | 0.000 * |
Weight (kg) | 81.2 ± 16.4 | 88.2 ± 14.7 | 75.7 ± 15.7 | 0.000 * |
n (%) | ||||
Education level | 0.587 | |||
High school/some college | 41 (32) | 21 (36.8) | 20 (28.2) | |
2-year degree | 11 (8.6) | 5 (8.8) | 6 (8.5) | |
4-year degree | 34 (26.6) | 12 (21.1) | 22 (31.0) | |
Graduate/professional degree | 42 (32.8) | 19 (33.3) | 23 (32.4) | |
Income | 0.025 * | |||
Under $25,000 | 11 (8.6) | 1 (1.8) | 10 (14.1) | |
$25,000–$49,999 | 20 (15.6) | 8 (14.0) | 12 (16.9) | |
$50,000–$74,999 | 36 (28.1) | 15 (26.3) | 21 (29.6) | |
$75,000–$99,999 | 9 (7.0) | 4 (7.0) | 5 (7.0) | |
$100,000+ | 33 (25.8) | 22 (38.6) | 11 (15.5) | |
Prefers not to say | 19 (14.8) | 7 (12.3) | 12 (16.9) | |
Race/Ethnicity | 0.761 | |||
White | 111 (86.7) | 49 (86.0) | 62 (87.3) | |
Black or African American | 7 (5.5) | 3 (5.3) | 4 (5.6) | |
Asian | 5 (3.9) | 2 (3.5) | 3 (4.2) | |
Other | 3 (2.3) | 2 (3.5) | 1 (1.4) | |
Prefers not to say | 2 (1.6) | 1 (1.8) | 1 (1.4) | |
Marital status | 0.000 * | |||
Single/never married | 6 (4.7) | 0 (0) | 6 (8.5) | |
Separated/divorced | 25 (19.5) | 3 (5.3) | 22 (31.0) | |
Married | 89 (69.5) | 52 (91.2) | 37 (52.1) | |
Widowed | 7 (5.5) | 1 (1.8) | 6 (8.5) | |
Living with someone | 1 (0.8) | 1 (1.8) | 0 (0) | |
Employment status | 0.955 | |||
Retired | 94 (73.4) | 42 (73.7) | 52 (73.2) | |
Working | 34 (26.6) | 15 (26.3) | 19 (26.8) | |
Smoking Status | 0.382 | |||
Current smoker | 2 (1.6) | 2 (3.5) | 0 (0) | |
Does not smoke | 126 (98.4) | 55 (96.5) | 71 (100) | |
Anti-hypertensive medication use | 0.112 | |||
No medication | 56 (44.1) | 20 (35.1) | 36 (51.4) | |
1–3 medications | 71 (55.9) | 37 (64.9) | 34 (48.6) |
Variable | Total (n = 127) | Males (n = 57) | Females (n = 70) | p-value |
---|---|---|---|---|
Systolic BP (mmHg) | 136.3 ± 21.6 | 143.3 ± 17.1 | 130.6 ± 23.2 | 0.001 * |
Diastolic BP (mmHg) | 77.6 ± 13.4 | 78.9 ± 12.6 | 76.6 ± 14.1 | 0.341 |
MAP (mmHg) | 97.2 ± 14.9 | 100.3 ± 12.4 | 94.6 ± 16.2 | 0.029 * |
Physical activity (PASE score) | 136.1 ± 60.1 | 157.5 ± 69.0 | 118.9 ± 45.4 | 0.000 * |
Diet | ||||
Total energy (kcal) | 1589.5 ± 618.8 | 1687.7 ± 707.5 | 1510.6 ± 529.3 | 0.120 |
Protein (g) | 64.1 ± 27.0 | 67.5 ± 32.0 | 61.4 ± 22.0 | 0.228 |
Carbohydrates (g) | 181.4 ± 75.1 | 193.8 ± 87.8 | 171.5 ± 62.0 | 0.109 |
Fat (g) | 66.9 ± 29.6 | 68.8 ± 31.4 | 65.4 ± 28.2 | 0.519 |
Saturated fat (g) | 20.4 ± 10.0 | 21.2 ± 10.5 | 19.7 ± 9.7 | 0.422 |
Monounsaturated fat (g) | 26.3 ± 11.4 | 26.7 ± 11.8 | 26.0 ± 11.1 | 0.741 |
Polyunsaturated fat (g) | 15.1 ± 7.1 | 15.4 ± 7.7 | 15.0 ± 6.6 | 0.754 |
Trans fat (g) | 1.7 ± 1.0 | 1.9 ± 1.1 | 1.6 ± 0.9 | 0.117 |
Dietary cholesterol (mg) | 226.4 ± 126.8 | 248.1 ± 145.1 | 208.9 ± 107.9 | 0.093 |
Fiber (g) | 17.9 ± 7.6 | 17.6 ± 8.6 | 18.1 ± 6.6 | 0.760 |
Sodium (mg) | 2667.8 ± 1061.5 | 2747.1 ± 1176.5 | 2604.2 ± 963.2 | 0.461 |
Potassium (mg) | 2691.4 ± 988.1 | 2702.9 ± 1119.9 | 2682.2 ± 876.2 | 0.910 |
Alcoholic intake, drink equivalents | 0.9 ± 1.6 | 1.3 ± 2.1 | 0.5 ± 1.1 | 0.009 * |
Vegetables, serving | 3.9 ± 2.1 | 3.2 ± 1.9 | 4.4 ± 2.2 | 0.001 * |
Total fruit (cup) | 1.4 ± 0.8 | 1.4 ± 0.9 | 1.3 ± 0.7 | 0.416 |
Whole fruit (cup) | 1.0 ± 0.7 | 1.0 ± 0.8 | 1.1 ± 0.7 | 0.788 |
Juices (cup) | 0.3 ± 0.4 | 0.4 ± 0.5 | 0.2 ± 0.3 | 0.041 * |
Dairy (serving) | 1.1 ± 0.8 | 1.2 ± 0.8 | 1.0 ± 0.9 | 0.428 |
Grains (serving) | 3.5 ± 1.9 | 3.8 ± 1.9 | 3.2 ± 1.9 | 0.109 |
Fats (serving) | 2.8 ± 1.5 | 2.7 ± 1.5 | 2.8 ± 1.5 | 0.722 |
Meat (serving) | 2.0 ± 1.0 | 2.2 ± 1.2 | 1.9 ± 0.9 | 0.096 |
Added sugar (tsp) | 9.1 ± 6.1 | 10.2 ± 7.5 | 8.3 ± 4.6 | 0.096 |
Fructose (g) | 20.2 ± 11.1 | 21.7 ± 13.0 | 19.0 ± 9.2 | 0.200 |
Lactose (g) | 9.2 ± 8.9 | 10.3 ± 9.0 | 8.3 ± 8.8 | 0.209 |
Maltose (g) | 2.0 ± 1.0 | 2.0 ± 1.1 | 2.0 ± 0.9 | 0.976 |
Galactose (g) | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.522 |
Sucrose (g) | 26.6 ± 20.3 | 29.4 ± 25.8 | 24.3 ± 14.3 | 0.190 |
Glucose (g) | 17.7 ± 9.5 | 19.0 ± 11.5 | 16.7 ± 7.4 | 0.192 |
Sweets and desserts (% daily kcals) | 10.7 ± 8.3 | 11.6 ± 9.8 | 10.0 ± 6.8 | 0.290 |
Food Group | Total (n = 127) a | Males (n = 57) b | Females (n = 70) b | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | p-value | 95% CI | Effect Size | B | p-value | 95% CI | Effect Size | B | p-value | 95% CI | Effect Size | |
Vegetables (serving) | ||||||||||||
Systolic | −0.084 | 0.477 | −3.196, 1.502 | 0.005 | −0.183 | 0.368 | −5.442, 2.056 | 0.019 | −0.006 | 0.967 | −3.360, 3.225 | 0.000 |
Diastolic | −0.031 | 0.792 | −1.683, 1.287 | 0.001 | −0.140 | 0.435 | −3.369, 1.476 | 0.015 | −0.113 | 0.486 | −2.783, 1.341 | 0.009 |
Grain (serving) | ||||||||||||
Systolic | –0.074 | 0.595 | –3.889, 2.241 | 0.003 | –0.259 | 0.262 | –6.470, 1.806 | 0.030 | –0.097 | 0.647 | –6.252, 3.917 | 0.004 |
Diastolic | –0.048 | 0.732 | –2.273, 1.601 | 0.001 | 0.055 | 0.787 | –2.313, 3.034 | 0.002 | –0.204 | 0.352 | –4.677, 1.692 | 0.016 |
Meat (serving) | ||||||||||||
Systolic | 0.045 | 0.779 | −5.698, 7.589 | 0.001 | 0.154 | 0.597 | −6.337, 10.892 | 0.007 | −0.066 | 0.750 | −12.559, 9.103 | 0.002 |
Diastolic | −0.073 | 0.651 | −5.160, 3.238 | 0.002 | −0.227 | 0.376 | −8.032, 3.099 | 0.019 | −0.133 | 0.533 | −8.908, 4.659 | 0.007 |
Dairy (serving) | ||||||||||||
Systolic | 0.076 | 0.488 | −3.578, 7.448 | 0.004 | 0.100 | 0.586 | −5.519, 9.639 | 0.007 | −0.172 | 0.343 | −14.358, 5.077 | 0.016 |
Diastolic | 0.026 | 0.817 | −3.076, 3.893 | 0.000 | 0.257 | 0.118 | −1.027, 8.766 | 0.060 | −0.295 | 0.116 | −10.938, 1.235 | 0.045 |
Fat (serving) | ||||||||||||
Systolic | 0.134 | 0.293 | −1.688, 5.552 | 0.010 | 0.067 | 0.754 | −4.189, 5.742 | 0.002 | −0.033 | 0.865 | −6.428, 5.415 | 0.001 |
Diastolic | 0.126 | 0.331 | −1.160, 3.416 | 0.008 | −0.098 | 0.602 | −4.043, 2.373 | 0.006 | 0.000 | 0.998 | −3.712, 3.705 | 0.000 |
Added sugar (tsp) | ||||||||||||
Systolic | 0.183 | 0.175 | −0.292, 1.580 | 0.017 | −0.035 | 0.883 | −1.175, 1.014 | 0.000 | 0.721 | 0.000* | 1.729, 5.562 | 0.259 |
Diastolic | 0.201 | 0.143 | −0.151, 1.031 | 0.020 | 0.267 | 0.210 | −0.261, 1.153 | 0.038 | 0.514 | 0.011* | 0.379, 2.780 | 0.124 |
Whole fruit (cup) | ||||||||||||
Systolic | −0.113 | 0.262 | −9.394, 2.581 | 0.011 | −0.219 | 0.199 | −12.241, 2.620 | 0.040 | −0.087 | 0.509 | −12.352, 6.199 | 0.008 |
Diastolic | −0.210 | 0.040* | −7.747, −0.178 | 0.039 | −0.268 | 0.076 | −9.125, 0.477 | 0.078 | −0.194 | 0.157 | −9.973, 1.645 | 0.037 |
BP Category | |||
---|---|---|---|
2017 AHA/ACC | Total (n = 127) | Males (n = 57) | Females (n = 70) |
Normal | 19 (15) | 4 (7) | 15 (21.4) |
Elevated | 9 (7) | 4 (7) | 5 (7.1) |
High | 99 (78) | 49 (86) | 50 (71.4) |
Hypertension control among treated individuals a | Total (n = 71) | Males (n = 37) | Females (n = 34) |
Normal | 7 (9.9) | 1 (2.7) | 6 (17.6) |
Elevated | 13 (18.3) | 2 (5.4) | 11 (32.4) |
High | 51 (71.8) | 34 (91.9) | 17 (50) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansoori, S.; Kushner, N.; Suminski, R.R.; Farquhar, W.B.; Chai, S.C. Added Sugar Intake is Associated with Blood Pressure in Older Females. Nutrients 2019, 11, 2060. https://doi.org/10.3390/nu11092060
Mansoori S, Kushner N, Suminski RR, Farquhar WB, Chai SC. Added Sugar Intake is Associated with Blood Pressure in Older Females. Nutrients. 2019; 11(9):2060. https://doi.org/10.3390/nu11092060
Chicago/Turabian StyleMansoori, Safiyah, Nicole Kushner, Richard R. Suminski, William B. Farquhar, and Sheau C. Chai. 2019. "Added Sugar Intake is Associated with Blood Pressure in Older Females" Nutrients 11, no. 9: 2060. https://doi.org/10.3390/nu11092060
APA StyleMansoori, S., Kushner, N., Suminski, R. R., Farquhar, W. B., & Chai, S. C. (2019). Added Sugar Intake is Associated with Blood Pressure in Older Females. Nutrients, 11(9), 2060. https://doi.org/10.3390/nu11092060