Protective Effects of Dietary MUFAs Mediating Metabolites against Hypertension Risk in the Korean Genome and Epidemiology Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population and Database
2.2. MUFAs Intake Measurements
2.3. Definition of Hypertension
2.4. Metabolite Quantification
2.5. Blood Parameters and Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
aa | diacyl |
ae | acyl-alkyl |
BMI | body mass index |
CI | 95% confidence interval |
FDR | false discovery rate |
HDL | high-density lipoprotein |
KoGES | Korean Genome and Epidemiology Study |
LDL | low-density lipoprotein |
MUFAs | monounsaturated fatty acids |
OR | odds ratio |
PC aa | phosphatidylcholine diacyl |
PC ae | phosphatidylcholine acyl-alkyl |
SM OH | hydroxysphingomyelin |
References
- Ministry of Health and Welfare; Korea Center for Disease Control and Prevention; Korea Health Statistics. Korea National Health and Nutrition Examination Survey (KNHANES VI-1); Ministry of Health and Welfare: Sejong, Korea, 2017.
- Stamler, R. Implications of the INTERSALT study. Hypertension 1991, 17, I16–I20. [Google Scholar] [CrossRef]
- Suliburska, J.; Skrypnik, K.; Szulińska, M.; Kupsz, J.; Markuszewski, L.; Bogdański, P. Diuretics, Ca-Antagonists, and Angiotensin-Converting Enzyme Inhibitors Affect Zinc Status in Hypertensive Patients on Monotherapy: A Randomized Trial. Nutrients 2018, 10, 1284. [Google Scholar] [CrossRef] [PubMed]
- Suliburska, J.; Skrypnik, K.; Szulińska, M.; Kupsz, J.; Bogdański, P. Effect of hypotensive therapy combined with modified diet or zinc supplementation on biochemical parameters and mineral status in hypertensive patients. J. Trace Elem. Med. Biol. 2018, 47, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Stepien, M.; Kujawska-Luczak, M.; Szulinska, M.; Kregielska-Narozna, M.; Skrypnik, D.; Suliburska, J.; Skrypnik, K.; Regula, J.; Bogdanski, P. Beneficial dose-independent influence of Camellia sinensis supplementation on lipid profile, glycemia, and insulin resistance in an NaCl-induced hypertensive rat model. J. Physiol. Pharmacol. 2018, 69. [Google Scholar] [CrossRef]
- Dietrich, S.; Floegel, A.; Weikert, C.; Prehn, C.; Adamski, J.; Pischon, T.; Boeing, H.; Drogan, D. Identification of Serum Metabolites Associated with Incident Hypertension in the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. Hypertension 2016, 68, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, B.; Alexander, D.; Mosley, T.H.; Heiss, G.; Nettleton, J.A.; Boerwinkle, E. Metabolomics and incident hypertension among blacks: The atherosclerosis risk in communities study. Hypertension 2013, 62, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; Graham, D.; Kastenmüller, G.; Alharbi, N.H.; Alsanosi, S.M.; McBride, M.; Mangino, M.; Titcombe, P.; Shin, S.Y.; Psatha, M.; et al. Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. Hypertension 2015, 66, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Wittenbecher, C.; Mühlenbruch, K.; Kröger, J.; Jacobs, S.; Kuxhaus, O.; Floegel, A.; Fritsche, A.; Pischon, T.; Prehn, C.; Adamski, J.; et al. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am. J. Clin. Nutr. 2015, 101, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Rebholz, C.M.; Zheng, Z.; Grams, M.E.; Appel, L.J.; Sarnak, M.J.; Inker, L.A.; Levey, A.S.; Coresh, J. Serum metabolites associated with dietary protein intake: Results from the Modification of Diet in Renal Disease (MDRD) randomized clinical trial. Am. J. Clin. Nutr. 2019, 109, 517–525. [Google Scholar] [CrossRef]
- Akbaraly, T.; Würtz, P.; Singh-Manoux, A.; Shipley, M.J.; Haapakoski, R.; Lehto, M.; Desrumaux, C.; Kähönen, M.; Lehtimäki, T.; Mikkilä, V.; et al. Association of circulating metabolites with healthy diet and risk of cardiovascular disease: Analysis of two cohort studies. Sci. Rep. 2018, 8, 8620. [Google Scholar] [CrossRef]
- Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Hruby, A.; Liang, L.; Salas-Salvadó, J.; Razquin, C.; Corella, D.; Estruch, R.; Ros, E.; et al. Plasma Branched-Chain Amino Acids and Incident Cardiovascular Disease in the PREDIMED Trial. Clin. Chem. 2016, 62, 582–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch-Ferré, M.; Zheng, Y.; Ruiz-Canela, M.; Hruby, A.; Martínez-González, M.A.; Clish, C.B.; Corella, D.; Estruch, R.; Ros, E.; Fitó, M.; et al. Plasma acylcarnitines and risk of cardiovascular disease: Effect of Mediterranean diet intervention. Am. J. Clin. Nutr. 2016, 103, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Hu, F.B.; Ruiz-Canela, M.; Clish, C.B.; Dennis, C.; Salas-Salvado, J.; Hruby, A.; Liang, L.; Toledo, E.; Corella, D.; et al. Metabolites of glutamate metabolism are associated with incident cardiovascular events in the PREDIMED PREvencion con DIeta MEDiterranea (PREDIMED) Trial. J. Am. Heart Assoc. 2016, 5, e003755. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Toledo, E.; Hruby, A.; Rosner, B.A.; Willett, W.C.; Sun, Q.; Razquin, C.; Zheng, Y.; Ruiz-Canela, M.; Guasch-Ferré, M.; et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the REDIMED Trial (Prevencion con Dieta Mediterranea). Circulation 2017, 135, 2028–2040. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.; Loo, R.L.; Stamler, J.; Bictash, M.; Yap, I.K.; Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I.J.; Veselkov, K.A.; et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 2008, 453, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Loo, R.L.; Zou, X.; Appel, L.J.; Nicholson, J.K.; Holmes, E. Characterization of metabolic responses to healthy diets and association with blood pressure: Application to the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart), a randomized controlled study. Am. J. Clin. Nutr. 2018, 107, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Derkach, A.; Sampson, J.; Joseph, J.; Playdon, M.C.; Stolzenberg-Solomon, R.Z. Effects of dietary sodium on metabolites: The Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study. Am. J. Clin. Nutr. 2017, 106, 1131–1141. [Google Scholar] [CrossRef]
- Muzio, F.; Mondazzi, L.; Harris, W.S.; Sommariva, D.; Branchi, A. Effects of moderate variations in the macronutrient content of the diet on cardiovascular disease risk factors in obese patients with the metabolic syndrome. Am. J. Clin. Nutr. 2007, 86, 946–951. [Google Scholar] [CrossRef] [Green Version]
- Appel, L.J.; Sacks, F.M.; Carey, V.J.; Obarzanek, E.; Swain, J.F.; Miller, E.R., 3rd.; Conlin, P.R.; Erlinger, T.P.; Rosner, B.A.; Laranjo, N.M.; et al. OmniHeart Collaborative Research Group. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: Results of the OmniHeart randomized trial. JAMA 2005, 4, 2455–2464. [Google Scholar] [CrossRef]
- Shah, M.; Adams-Huet, B.; Bantle, J.P.; Henry, R.R.; Griver, K.A.; Raatz, S.K.; Brinkley, L.J.; Reaven, G.M.; Garg, A. Effect of a high-carbohydrate versus a high cis- monounsaturated fat diet on blood pressure in patients with type 2 diabetes. Diabetes Care 2005, 28, 2607–2612. [Google Scholar] [CrossRef]
- Piers, L.S.; Walker, K.Z.; Stoney, R.M.; Soares, M.J.; O’Dea, K. Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br. J. Nutr. 2003, 90, 717–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uusitupa, M.I.; Sarkkinenl, E.S.; Torpström, J.; Pietinen, P.; Aro, A. Long-term effects of four fat-modified diets on blood pressure. J. Hum. Hypertens. 1994, 8, 209–218. [Google Scholar] [PubMed]
- Walker, K.Z.; O’Dea, K.; Nicholson, G.C.; Muir, J.G. Dietary composition, body weight, and NIDDM. Comparison of high-fiber, high-carbohydrate, and modified-fat diets. Diabetes Care 1995, 18, 401–403. [Google Scholar] [CrossRef]
- Lahoz, C.; Alonso, R.; Ordovás, J.M.; López-Farré, A.; de Oya, M.; Mata, P. Effects of dietary fat saturation on eicosanoid production, platelet aggregation and blood pressure. Eur. J. Clin. Investig. 1997, 27, 780–787. [Google Scholar] [CrossRef]
- Terés, S.; Barceló-Coblijn, G.; Benet, M.; Alvarez, R.; Bressani, R.; Halver, J.E.; Escribá, P.V. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. USA 2008, 105, 13811–13816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Lee, H.S.; Kim, Y.K.; Park, S.; Kim, J.M.; Yun, J.H.; Yu, H.Y.; Kim, B.J. Association of Metabolites with Obesity and Type 2 Diabetes Based on FTO Genotype. PLoS ONE 2016, 11, e0156612. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Kwak, S.Y.; Jo, G.; Song, T.J.; Shin, M.J. Serum metabolite profile associated with incident type 2 diabetes in Koreans: Findings from the Korean Genome and Epidemiology Study. Sci. Rep. 2018, 8, 8207. [Google Scholar] [CrossRef]
- Jang, H.B.; Hwang, J.Y.; Park, J.E.; Oh, J.H.; Ahn, Y.; Kang, J.H.; Park, K.H.; Han, B.G.; Kim, B.J.; Park, S.I.; et al. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in PCSK5 and HDL cholesterol. J. Med. Genet. 2014, 51, 782–788. [Google Scholar] [CrossRef]
- National Rural Living Science Institute. Food Composition Table, 7th ed.; Rural Development Administration of Korea: Suwon, Korea, 2006.
- Alonso, A.; Martínez-González, M.A. Olive oil consumption and reduced incidence of hypertension: The SUN study. Lipids 2004, 39, 1233–1238. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Naska, A.; Orfanos, P.; Trichopoulos, D.; Mountokalakis, T.; Trichopoulou, A. Olive oil, the Mediterranean diet, and arterial blood pressure: The Greek European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr. 2004, 80, 1012–1018. [Google Scholar] [CrossRef]
- Williams, P.T.; Fortmann, S.P.; Terry, R.B.; Garay, S.C.; Vranizan, K.M.; Ellsworth, N.; Wood, P.D. Associations of dietary fat, regional adiposity, and blood pressure in men. JAMA 1987, 257, 3251–3256. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Adams-Huet, B.; Garg, A. Effect of high-carbohydrate or high-cis-monounsaturated fat diets on blood pressure: A meta-analysis of intervention trials. Am. J. Clin. Nutr. 2007, 85, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Strasser, B.; Hoffmann, G. Effects of monounsaturated fatty acids on cardiovascular risk factors: A systematic review and meta-analysis. Ann. Nutr. Metab. 2011, 59, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Ngueta, G. Caffeine and caffeine metabolites in relation to hypertension in U.S. adults. Eur. J. Nutr. 2019, 24. [Google Scholar] [CrossRef] [PubMed]
- Pluznick, J.L.; Protzko, R.J.; Gevorgyan, H.; Peterlin, Z.; Sipos, A.; Han, J.; Brunet, I.; Wan, L.X.; Rey, F.; Wang, T.; et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl. Acad. Sci. USA 2013, 110, 4410–4415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, B.M.; Vessby, B.; Uusitupa, M.; Berglund, L.; Pedersen, E.; Riccardi, G.; Rivellese, A.A.; Tapsell, L.; Hermansen, K.; KANWU Study Group. Effects of dietary saturated, monounsaturated, and n−3 fatty acids on blood pressure in healthy subjects. Am. J. Clin. Nutr. 2006, 83, 221–226. [Google Scholar] [PubMed]
- Das, U.N. Essential fatty acids and their metabolites in the context of hypertension. Hypertens. Res. 2010, 33, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Pagnan, A.; Corrocher, R.; Ambrosio, G.B.; Ferrari, S.; Guarini, P.; Piccolo, D.; Opportuno, A.; Bassi, A.; Olivieri, O.; Baggio, G. Effects of an olive-oil-rich diet on erythrocyte membrane lipid composition and cation transport systems. Clin. Sci. 1989, 76, 87–93. [Google Scholar] [CrossRef] [PubMed]
- West, S.G.; Hecker, K.D.; Mustad, V.A.; Nicholson, S.; Schoemer, S.L.; Wagner, P.; Hinderliter, A.L.; Ulbrecht, J.; Ruey, P.; Kris-Etherton, P.M. Acute effects of monounsaturated fatty acids with and without omega-3 fatty acids on vascular reactivity in individuals with type 2 diabetes. Diabetologia 2005, 48, 113–122. [Google Scholar] [CrossRef]
- Treede, I.; Braun, A.; Jeliaskova, P.; Giese, T.; Füllekrug, J.; Griffiths, G.; Stremmel, W.; Ehehalt, R. TNF-alpha-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol. 2009, 9, 53. [Google Scholar] [CrossRef]
- Ganna, A.; Salihovic, S.; Sundström, J.; Broeckling, C.D.; Hedman, A.K.; Magnusson, P.K.; Pedersen, N.L.; Larsson, A.; Siegbahn, A.; Zilmer, M.; et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet. 2014, 10, e1004801. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kühn, T.; Sookthai, D.; Johnson, T.; Prehn, C.; Rolle-Kampczyk, U.; Otto, W.; Weikert, C.; Illig, T.; von Bergen, M.; et al. Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts. Eur. J. Epidemiol. 2018, 33, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, H.; Meikle, P.J.; Mamtani, M.; Weir, J.M.; Barlow, C.K.; Jowett, J.B.; Bellis, C.; Dyer, T.D.; Johnson, M.P.; Rainwater, D.L.; et al. Plasma lipidomic profile signature of hypertension in Mexican American families: Specific role of diacylglycerols. Hypertension 2013, 62, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B.; et al. Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation 2006, 114, 82–96. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association; Bantle, J.P.; Wylie-Rosett, J.; Albright, A.L.; Apovian, C.M.; Clark, N.G.; Franz, M.J.; Hoogwerf, B.J.; Lichtenstein, A.H.; Mayer-Davis, E.; et al. Nutrition recommendations and interventions for diabetes: A position statement of the American Diabetes Association. Diabetes Care 2008, 31, S61–S78. [Google Scholar]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef]
Tertiles of Energy-Adjusted MUFAs Intake | p† | |||
---|---|---|---|---|
T1 (7.9 g/day) | T2 (12.2 g/day) | T3 (18.5 g/day) | ||
Age (years) | 55.3 ± 9.1 a | 50.4 ± 8.1 b | 48.4 ± 7.4 c | <0.0001 |
Sex | <0.0001 | |||
Male | 173 (11.3) | 264 (17.3) | 302 (19.8) | |
Female | 336 (22.0) | 246 (16.1) | 208 (13.6) | |
Body mass index (kg/m2) | 24.1 ± 3.4 | 24.2 ± 3.1 | 24.2 ± 3.0 | 0.839 |
Body fat (%) | 27.6 ± 7.2 a | 25.7 ± 6.9 b | 25.0 ± 6.5 b | <0.0001 |
Waist (cm) | 81.8 ± 9.1 | 80.9 ± 8.2 | 80.9 ± 8.4 | 0.1617 |
Waist to hip ratio | 0.90 ± 0.1 a | 0.89 ± 0.0 b | 0.89 ± 0.0 b | <0.0001 |
Systolic blood pressure (mmHg) | 115.1 ± 11.9 a | 112.1 ± 11.6 b | 111.8 ± 11.8 b | <0.0001 |
Diastolic blood pressure (mmHg) | 76.2 ± 7.8 | 75.0 ± 8.2 | 75.3 ± 8.7 | 0.075 |
Fasting glucose (mg/dL) | 85.1 ± 16.2 b | 85.8 ± 15.5 b | 88.2 ± 17.1 a | 0.006 |
Triglycerides (mg/dL) | 155.1 ± 95.7 | 151.5 ± 98.6 | 152.3 ± 101.1 | 0.831 |
Total cholesterol (mg/dL) | 188.5 ± 36.1 b | 193.4 ± 35.6 ab | 194.1 ± 33.1 a | 0.022 |
HDL cholesterol (mg/dL) | 44.3 ± 9.6 b | 45.7 ± 10.2 ab | 46.1 ± 10.8 a | 0.017 |
LDL cholesterol (mg/dL) | 117.5 ± 34.5 | 121.4 ± 33.0 | 121.2 ± 32.7 | 0.111 |
Renin (ng/mL/h) | 2.89 ± 3.1 | 2.94 ± 2.8 | 2.80 ± 2.3 | 0.7166 |
Metabolic equivalent (MET/month) | 11618.1 ± 6770.2 a | 9931.0 ± 5889.2 b | 9284.5 ± 5821.9 b | <0.0001 |
Tertiles of Energy-Adjusted MUFAs Intake | |||
---|---|---|---|
T1 | T2 | T3 | |
Model 1 | Ref | 0.96 (0.67–1.37) | 0.52 (0.35–0.79) |
Model 2 | Ref | 0.98 (0.65–1.49) | 0.49 (0.29–0.82) |
Tertiles of Energy-Adjusted MUFAs Intake | p† | |||
---|---|---|---|---|
T1 (7.9 g/day) | T2 (12.2 g/day) | T3 (18.5 g/day) | ||
Systolic blood pressure (mmHg) | 114.0 ± 15.5 a | 112.1 ± 13.5 b | 110.8 ± 13.1 b | 0.0015 |
Diastolic blood pressure (mmHg) | 75.9 ± 9.4 a | 76.3 ± 9.8 ab | 74.7 ± 8.9 b | 0.0198 |
Metabolites | Beta * | SE | p-Value | ‡q-Value |
---|---|---|---|---|
PC aa C 38:0 | 0.0063 | 0.0018 | 0.0003 | 0.017 |
PC aa C 38:1 | 0.0075 | 0.0024 | 0.0020 | 0.041 |
PC ae C 36:0 | 0.0065 | 0.0021 | 0.0017 | 0.041 |
PC ae C 38:5 | 0.0053 | 0.0015 | 0.0005 | 0.017 |
PC ae C 40:4 | 0.0050 | 0.0015 | 0.0005 | 0.017 |
PC ae C 40:6 | 0.0051 | 0.0017 | 0.0021 | 0.041 |
PC ae C 42:5 | 0.0040 | 0.0013 | 0.0026 | 0.044 |
SM OH C 16:1 | 0.0055 | 0.0015 | 0.0003 | 0.017 |
Metabolites | OR † (95% CI) | p-Value |
---|---|---|
PC aa C 38:0 | 0.97 (0.51–1.83) | 0.914 |
PC aa C 38:1 | 0.60 (0.37–0.96) | 0.032 |
PC ae C 36:0 | 0.97 (0.56–1.68) | 0.921 |
PC ae C 38:5 | 1.24 (0.59–2.60) | 0.570 |
PC ae C 40:4 | 0.68 (0.31–1.48) | 0.327 |
PC ae C 40:6 | 0.77 (0.38–1.53) | 0.452 |
PC ae C 42:5 | 0.70 (0.30–1.66) | 0.417 |
SM OH C 16:1 | 0.42 (0.20–0.90) | 0.026 |
PC aa C 38:1 | ||
Low | High | |
Tertiles of energy-adjusted MUFAs intake | ||
TI | 244/54 Ref | 181/29 0.731 (0.407–1.314) † |
T2 | 207/44 1.087 (0.644–1.836) | 232/27 0.616 (0.333–1.139) |
T3 | 191/17 0.446 (0.228–0.951) | 276/22 0.392 (0.198–0.776) |
SM OH C 16:1 | ||
Low | High | |
Tertiles of energy-adjusted MUFAs intake | ||
TI | 235/58 Ref | 191/25 0.669 (0.392–1.249) |
T2 | 208/41 0.928 (0.541–1.593) | 232/30 0.773 (0.434–1.380) |
T3 | 203/19 0.402 (0.195–0.830) | 267/20 0.443 (0.228–0.863) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Jang, H.B.; Yoo, M.-G.; Chung, K.-S.; Lee, H.-J. Protective Effects of Dietary MUFAs Mediating Metabolites against Hypertension Risk in the Korean Genome and Epidemiology Study. Nutrients 2019, 11, 1928. https://doi.org/10.3390/nu11081928
Lee H, Jang HB, Yoo M-G, Chung K-S, Lee H-J. Protective Effects of Dietary MUFAs Mediating Metabolites against Hypertension Risk in the Korean Genome and Epidemiology Study. Nutrients. 2019; 11(8):1928. https://doi.org/10.3390/nu11081928
Chicago/Turabian StyleLee, Hansongyi, Han Byul Jang, Min-Gyu Yoo, Kyung-Sook Chung, and Hye-Ja Lee. 2019. "Protective Effects of Dietary MUFAs Mediating Metabolites against Hypertension Risk in the Korean Genome and Epidemiology Study" Nutrients 11, no. 8: 1928. https://doi.org/10.3390/nu11081928
APA StyleLee, H., Jang, H. B., Yoo, M.-G., Chung, K.-S., & Lee, H.-J. (2019). Protective Effects of Dietary MUFAs Mediating Metabolites against Hypertension Risk in the Korean Genome and Epidemiology Study. Nutrients, 11(8), 1928. https://doi.org/10.3390/nu11081928