Deuterium-Depleted Water Influence on the Isotope 2H/1H Regulation in Body and Individual Adaptation
Abstract
:1. Introduction
2. Biological Effects of Deuterium-Depleted Water (DDW)
2.1. Activating Influence of DDW at Molecular and Organoid Levels
2.2. Activating Influence of DDW at the Cell and Tissue Levels
2.3. Activating Influence of DDW for Organs and Organismic Level
2.4. Inhibitory Influence of DDW on Molecular and Organoid Level
2.5. The Inhibitory Influence of DDW at the Cellular and Tissue Levels
2.6. Inhibitory Influence of DDW for Organs and Organism Level
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schmidt, H.L.; Robins, R.J.; Werner, R.A. Multi-factorial in vivo stable isotope fractionation: Causes, correlations, consequences and applications. Isot. Environ. Health Stud. 2015, 51, 155–199. [Google Scholar] [CrossRef] [PubMed]
- Shchepinov, M.S. Reactive Oxygen Species, Isotope Effect, Essential Nutrients, and Enhanced Longevity. Rejuvenation Res. 2007, 10, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Snyder, M.P. Yeast longevity promoted by reversing aging-associated decline in heavy isotope content. Npj Aging Mech. Dis. 2016, 2, 16004. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zubarev, R.A. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements. Sci. Rep. 2015, 5, 9215. [Google Scholar] [CrossRef] [PubMed]
- Syroeshkin, A.; Antipova, N.; Zlatska, A.; Zlatskiy, I.; Skylska, M.; Grebennikova, T.; Goncharuk, V. The effect of the deuterium depleted water on the biological activity of the eukaryotic cells. J. Trace Elements Med. Biol. 2018, 50, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Abilev, S.K.; Smirnova, S.V.; Igonina, E.V.; Parmon, V.N.; Yankovsky, N.K. Deuterium Oxide Enhances Escherichia coli SOS Response Induced by Genotoxicants. Dokl. Biol. Sci. 2018, 480, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Krumbiegel, P. Large deuterium isotope effects and their use: A historical review. Isot. Environ. Health Stud. 2011, 47, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lobyshev, V.I. Biphasic response of biological objects on variation of low deuterium concentration in water. Int. J. High Dilution Res. 2018, 17, 12–13. [Google Scholar]
- O’Brien, D.M. Stable Isotope Ratios as Biomarkers of Diet for Health Research. Annu. Rev. Nutr. 2015, 35, 565–594. [Google Scholar] [CrossRef] [Green Version]
- Wit, J.; Straaten, C.; Mook, W. Determination of the Absolute Hydrogen Isotopic Ratio of V-SMOW and SLAP. Geostand. Geoanalytical Res. 1980, 4, 33–36. [Google Scholar] [CrossRef]
- Hidenori, G. Origin of Earth’s oceans: An assessment of the total amount, history and supply of water. Geochem. J. 2016, 50, 27–42. [Google Scholar] [CrossRef]
- Hut, G. Consultants’ Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigations; IAEA: Vienna, Austria, 1985. [Google Scholar]
- Hagemann, R.; Nief, G.; Roth, E. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 1970, 22, 712–715. [Google Scholar] [CrossRef]
- Risi, C.; Bony, S.; Vimeux, F.; Frankenberg, C.; Noone, D.; Worden, J. Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation. J. Geophys. Res. Space Phys. 2010, 115, 24110. [Google Scholar] [CrossRef]
- Abderamane, H.; Ketchemen-Tandia, B.; Nlend, B.Y.; Arrakhais, A.B. Hydrogeochemical and isotopic characterization of the groundwater in the Dababa area (Chad). Afr. J. Environ. Sci. Technol. 2016, 10, 451–466. [Google Scholar] [CrossRef]
- Gat, J.R.; Gonfiantini, R. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle; International Atomic Energy Agency: Vienna, Austria, 1981; p. 339. [Google Scholar]
- Delalande, M.; Bergonzini, L.; Massault, M. Mbaka lakes isotopic (18O and2H) and water balances: Discussion on the used atmospheric moisture compositions. Isot. Environ. Health Stud. 2008, 44, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Ekaykin, A.A.; Lipenkov, V.Y.; Kozachek, A.V.; Vladimirova, D.O. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: Implications for understanding the lake’s hydrology. Isot. Environ. Health Stud. 2016, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Seal, R.R.; Shanks, W.C. Oxygen and hydrogen isotope systematics of Lake Baikal, Siberia: Implications for paleoclimate studies. Limnol. Oceanogr. 1998, 43, 1251–1261. [Google Scholar] [CrossRef]
- Good, S.P.; Noone, D.; Kurita, N.; Benetti, M.; Bowen, G.J. D/H isotope ratios in the global hydrologic cycle. Geophys. Res. Lett. 2015, 42, 5042–5050. [Google Scholar] [CrossRef]
- Bowen, G.J. A Faster Water Cycle. Science 2011, 332, 430–431. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- White, J.W.C. Stable Hydrogen Isotope Ratios in Plants: A Review of Current Theory and Some Potential Applications; Springer Science and Business Media LLC: Berlin, Germany, 1989; Volume 68, pp. 142–162. [Google Scholar]
- Barbour, M.M. Stable oxygen isotope composition of plant tissue: A review. Funct. Plant Biol. 2007, 34, 83–94. [Google Scholar] [CrossRef]
- Magdas, D.A.; Feher, I.; Dehelean, A.; Cristea, G.; Magdas, T.M.; Puscas, R.; Marincaş, O. Isotopic and elemental markers for geographical origin and organically grown carrots discrimination. Food Chem. 2018, 267, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Bykov, I.M.; Dzhimak, S.S.; Basov, A.A.; Arcybasheva, O.M.; Shashkov, D.; Baryshev, M.G. [Comparative characteristics of the isotopic D/H composition and antioxidant activity of freshly squeezed juices from fruits and vegetables grown in different geographical regions]. Vopr. Pitan. 2015, 84, 89–96. [Google Scholar] [PubMed]
- Magdas, D.A.; Puscas, R. Stable isotopes determination in some Romanian fruit juices. Isot. Environ. Health Stud. 2011, 47, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Kohn, M.J. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 1996, 60, 4811–4829. [Google Scholar] [CrossRef]
- Podlesak, D.W.; Bowen, G.J.; O’Grady, S.; Cerling, T.E.; Ehleringer, J.R. δ2H and δ18O of human body water: A GIS model to distinguish residents from non-residents in the contiguous USA. Isot. Environ. Health Stud. 2012, 48, 259–279. [Google Scholar] [CrossRef]
- Podlesak, D.W.; Torregrossa, A.M.; Ehleringer, J.R.; Dearing, M.D.; Passey, B.H.; Cerling, T.E. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal. Geochim. Cosmochim. Acta 2008, 72, 19–35. [Google Scholar] [CrossRef]
- Li, H.; Yu, C.; Wang, F.; Chang, S.J.; Yao, J.; Blake, R.E. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4. Proc. Natl. Acad. Sci. USA 2016, 113, 5862–5867. [Google Scholar] [CrossRef]
- Kreuzer-Martin, H.W.; Ehleringer, J.R.; Hegg, E.L. Oxygen isotopes indicate most intracellular water in log-phase Escherichia coli is derived from metabolism. Proc. Natl. Acad. Sci. USA 2005, 102, 17337–17341. [Google Scholar] [CrossRef]
- Kreuzer-Martin, H.W.; Lott, M.J.; Ehleringer, J.R.; Hegg, E.L. Metabolic Processes Account for the Majority of the Intracellular Water in Log-Phase Escherichia coli Cells As Revealed by Hydrogen Isotopes. Biochemistry 2006, 45, 13622–13630. [Google Scholar] [CrossRef]
- Wanders, R.J.A.; Waterham, H.R.; Ferdinandusse, S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front. Cell Dev. Biol. 2015, 3, 83. [Google Scholar] [CrossRef] [PubMed]
- Schrader, M.; Fahimi, H.D. Peroxisomes and oxidative stress. Biochim. Biophys. Acta 2006, 1763, 1755–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanz, N.K.; Rossmann, A.; Schmidt, H.-L. Potentials and caveats with oxygen and sulfur stable isotope analyses in authenticity and origin checks of food and food commodities. Food Control 2015, 48, 143–150. [Google Scholar]
- Yoshida, N.; Mizutani, Y. Preparation of carbon dioxide for oxygen-18 determination of water by use of a plastic syringe. Anal. Chem. 1986, 58, 1273–1275. [Google Scholar] [CrossRef]
- Horita, J.; Ueda, A.; Mizukami, K.; Takatori, I. Automatic δD and δ18O analyses of multi-water samples using H2- and CO2-water equilibration methods with a common equilibration set-up. Int. J. Radiat. Appl. Instrum. Part A. Appl. Radiat. Isot. 1989, 40, 801–805. [Google Scholar] [CrossRef]
- Schmidt, H.L.; Werner, R.A.; Roßmann, A. 18O Pattern and biosynthesis of natural plant products. Phytochemistry 2001, 58, 9–32. [Google Scholar] [CrossRef]
- Estep, M.L.F.; Hoering, T.C. The Stability of Organically Bonded Hydrogen Atoms in Microalgae Toward Isotopic Exchange with Water; Carnegie Institution of Washington Year Book: Washington, DC, USA, 1979; pp. 652–655. [Google Scholar]
- Kuribayashi, T.; Sugawara, M.; Sato, K.; Nabekura, Y.; Aoki, T.; Kano, N.; Joh, T.; Kaneoke, M. Stable Isotope Analysis of Hydrogen and Oxygen in a Traditional Japanese Alcoholic Beverage, Sake, from Niigata Prefecture in Japan and Other Countries. Anal. Sci. 2017, 33, 979–982. [Google Scholar] [CrossRef] [Green Version]
- Mant, M.; Nagel, A.; Prowse, T. Investigating Residential History Using Stable Hydrogen and Oxygen Isotopes of Human Hair and Drinking Water. J. Forensic Sci. 2016, 61, 884–891. [Google Scholar] [CrossRef]
- O’Grady, S.P.; Wende, A.R.; Remien, C.H.; Valenzuela, L.O.; Enright, L.E.; Chesson, L.A.; Abel, E.D.; Cerling, T.E.; Ehleringer, J.R. Aberrant Water Homeostasis Detected by Stable Isotope Analysis. PLoS ONE 2010, 5, e11699. [Google Scholar] [CrossRef]
- Bowen, G.J.; Winter, D.A.; Spero, H.J.; Zierenberg, R.A.; Reeder, M.D.; Cerling, T.E.; Ehleringer, J.R. Stable hydrogen and oxygen isotope ratios of bottled waters of the world. Rapid Commun. Mass Spectrom. 2005, 19, 3442–3450. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Basov, A.A.; Kopytov, G.F.; Kashaev, D.V.; Sokolov, M.E.; Artsybasheva, O.M.; Sharapov, K.S.; Baryshev, M.G. Application of NMR Spectroscopy to the Determination of Low Concentrations of Nonradioactive Isotopes in Liquid Media. Russ. Phys. J. 2015, 58, 923–929. [Google Scholar] [CrossRef]
- Al-Basheer, W.; Al-Jalal, A.A.; Gasmi, K. Isotopic composition of bottled water in Saudi Arabia. Isot. Environ. Health Stud. 2017, 54, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, R.A.; Laguntsov, N.I.; Kurchatov, I.M.; Sarychev, G.A.; Nechaev, I.A. Water Supply System with Light-Water Production Based on a Nuclear Desalination Complex. At. Energy 2018, 124, 398–402. [Google Scholar] [CrossRef]
- Smirnov, A.Y.; Sulaberidze, A.G. Production of Water with Reduced Content of Deuterium for Water Supply System with Desalination Installation. J. Physics: Conf. Ser. 2018, 1099, 012035. [Google Scholar] [CrossRef]
- Belkin, D.Y.; Selivanenko, I.L.; Rastunova, I.L.; Magomedbekov, E.P. Characteristics of the mass transfer of structured rolled ribbon-screw packings in isotope exchange columns during vacuum water distillation. Theor. Found. Chem. Eng. 2016, 50, 398–403. [Google Scholar]
- Petriev, I.S.; Frolov, V.Y.; Bolotin, S.N.; Baryshev, M.G.; Kopytov, G.F. Kinetic Characteristics of Hydrogen Transfer Through Palladium-Modified Membrane. Russ. Phys. J. 2018, 60, 1611–1617. [Google Scholar] [CrossRef]
- Yeh, H.M. Recovery of deuterium from water-isotopes in thermal diffusion columns connected in series. Prog. Nucl. Energy 2010, 52, 516–522. [Google Scholar] [CrossRef]
- Gyöngyi, Z.; Budán, F.; Szabó, I.; Ember, I.; Kiss, I.; Krempels, K.; Somlyai, I.; Somlyai, G. Deuterium Depleted Water Effects on Survival of Lung Cancer Patients and Expression of Kras, Bcl2, and Myc Genes in Mouse Lung. Nutr. Cancer 2013, 65, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Avila, D.S.; Somlyai, G.; Somlyai, I.; Aschner, M. Anti-aging effects of deuterium depletion on Mn-induced toxicity in a C. elegans model. Toxicol. Lett. 2012, 211, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Olariu, L.; Petcu, M.; Tulcan, C.; Chis-Buiga, I.; Pup, M.; Florin, M.; Brudiu, I. Deuterium Depleted Water–Antioxidant or Prooxidant; Lucrari Stiintifice Medicina Veterinara: Timisoara, Romania, 2007. [Google Scholar]
- Rehakova, R.; Klimentova, J.; Cebova, M.; Barta, A.; Matuskova, Z.; Labas, P.; Pechanova, O. Effect of deuterium-depleted water on selected cardiometabolic parameters in fructose-treated rats. Physiol. Res. 2016, 65, S401–S407. [Google Scholar]
- Boros, L.G.; D’Agostino, D.P.; Katz, H.E.; Roth, J.P.; Meuillet, E.J.; Somlyai, G. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle. Med. Hypotheses 2016, 87, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Fisher-Wellman, K.H.; Lin, C.-T.; Ryan, T.E.; Reese, L.R.; Gilliam, L.A.A.; Cathey, B.L.; Lark, D.S.; Smith, C.D.; Muoio, D.M.; Neufer, P.D. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit. Biochem. J. 2015, 467, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Boros, L.; Lee, P.; Brandes, J.; Cascante, M.; Muscarella, P.; Schirmer, W.; Melvin, W.; Ellison, E. Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: Is cancer a disease of cellular glucose metabolism? Med. Hypotheses 1998, 50, 55–59. [Google Scholar] [CrossRef]
- Billault, I.; Guiet, S.; Mabon, F.; Robins, R. Natural Deuterium Distribution in Long-Chain Fatty Acids Is Nonstatistical: A Site-Specific Study by Quantitative 2H NMR Spectroscopy. Chem. Bio. Chem. 2001, 2, 425–431. [Google Scholar] [CrossRef]
- Boros, L.G.; Lee, W.N.P.; Cascante, M. Imatinib and Chronic-Phase Leukemias. N. Engl. J. Med. 2002, 347, 67–68. [Google Scholar] [CrossRef] [PubMed]
- Somlyai, G.; Jancsó, G.; Jákli, G.; Vass, K.; Barna, B.; Lakics, V.; Gaál, T. Naturally occurring deuterium is essential for the normal growth rate of cells. FEBS Lett. 1993, 317, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Luo, A.L.; Zheng, Y.L.; Cong, F.S. Research progress of biological effects of deuterium-depleted water. J. Shanghai Jiaotong Univ. (Med. Sci.) 2018, 38, 467–471. [Google Scholar]
- Syroeshkin, A.; Pleteneva, T.; Uspenskaya, E.; Zlatskiy, I.; Antipova, N.; Grebennikova, T.; Levitskaya, O. D/H control of chemical kinetics in water solutions under low deuterium concentrations. Chem. Eng. J. 2018. [Google Scholar] [CrossRef]
- Pedersen, L.G.; Bartolotti, L.; Li, L. Deuterium and its role in the machinery of evolution. J. Theor. Biol. 2006, 238, 914–918. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Svidlov, A.A.; Basov, A.A.; Baryshev, M.G.; Drobotenko, M.I. The Effect of Single Deuterium Substitutions for Protium in a DNA Molecule on the Occurrence of Open States. Biophysics 2018, 63, 497–500. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Drobotenko, M.I.; Basov, A.A.; Svidlov, A.A.; Fedulova, L.V.; Lyasota, O.M.; Baryshev, M.G. Mathematical Modeling of Open States in DNA Molecule Depending on the Deuterium Concentration in the Surrounding Liquid Media at Different Values of Hydrogen Bond Disruption Energy. Dokl. Biochem. Biophys. 2018, 483, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Fedulova, L.V.; Vasilevskaya, Е.R.; Kotenkova, Е.А.; Elkina, A.A.; Baryshev, M.G.; Lisitsyn, A.B. Influence of Different Polypeptides Fractions Derived from Sus Scrofa Immune Organs on the Rats Immunological Reactivity. J. Pharm. Nutr. Sci. 2017, 7, 35–40. [Google Scholar] [Green Version]
- Vasilevskaya, E.R.; Akhremko, A.G. Proteomic study of pig’s spleen. Potravin. Slovak J. Food Sci. 2019, 13, 314–317. [Google Scholar] [CrossRef]
- Fedulova, L.; Elkina, А.; Vasilevskaya, E.; Barysheva, E. Identification of tissue-specific proteins of immunocompetent organs of Sus scrofa isolated in deuterium depleted medium. Med. Sci. 2018, 22, 509–513. [Google Scholar]
- Sternberg, L.S.L.O. Oxygen stable isotope ratios of tree-ring cellulose: The next phase of understanding. New Phytol. 2009, 181, 553–562. [Google Scholar] [CrossRef]
- Sternberg, L.S.L.; Vendramini Ellsworth, P.F. Divergent biochemical fractionation, not convergent temperature, explains cellulose oxygen isotope enrichment across latitudes. PLoS ONE 2011, 6, e28040. [Google Scholar] [CrossRef]
- Waterhouse, J.S.; Cheng, S.; Juchelka, D.; Loader, N.J.; McCarroll, D.; Switsur, V.R.; Gautam, L. Position-specific measure-ment of oxygen isotope ratios in cellulose: Isotopic exchange during heterotrophic cellulose synthesis. Geochim. Cosmochim. Acta 2013, 112, 178–191. [Google Scholar] [CrossRef]
- Zlatska, O.V.; Zubov, D.O.; Vasyliev, R.G.; Syroeshkin, A.V.; Zlatskiy, I.A.; Regeneration, M.C.I.B.L.I. Deuterium Effect on Proliferation and Clonogenic Potential of Human Dermal Fibroblasts In Vitro. Probl. Cryobiol. Cryomedicine 2018, 28, 049–053. [Google Scholar] [CrossRef] [Green Version]
- Zlatska, A.; Gordiienko, I.; Vasyliev, R.; Zubov, D.; Gubar, O.; Rodnichenko, A.; Syroeshkin, A.; Zlatskiy, I. In Vitro Study of Deuterium Effect on Biological Properties of Human Cultured Adipose-Derived Stem Cells. Sci. World J. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zlatskiy, I.A.; Zlatska, A.V.; Antipova, N.V.; Syroeshkin, A.V. Effect of deuterium on the morpho-functional characteristics of normal and cancer cells in vitro. Trace Elem. Electrolytes 2018, 35, 211–214. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Basov, A.A.; Fedulova, L.V.; Didikin, A.S.; Bikov, I.M.; Arcybasheva, O.M.; Naumov, G.N.; Baryshev, M.G.; Fedulova, L. Correction of metabolic processes in rats during chronic endotoxicosis using isotope (D/H) exchange reactions. Biol. Bull. 2015, 42, 440–448. [Google Scholar] [CrossRef]
- Chira, S.; Raduly, L.; Braicu, C.; Jurj, A.; Cojocneanu‑Petric, R.; Pop, L.; Pileczki, V.; Ionescu, C.; Berindan‑Neagoe, I. Premature senescence activation in DLD-1 colorectal cancer cells through adjuvant therapy to induce a miRNA profile modulating cellular death. Exp. Ther. Med. 2018, 16, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Basov, A.A.; Elkina, A.A.; Samkov, A.A.; Volchenko, N.N.; Moiseev, A.V.; Fedulova, L.V.; Baryshev, M.G.; Dzhimak, S.S. Influence of deuterium depleted water on the isotope D/H composition of liver tissue and morphological development of rats at different periods of ontogenesis. Iran. Biomed. J. 2019, 23, 129–141. [Google Scholar] [CrossRef]
- Pomytkin, I.A.; Kolesova, O.E. Relationship between natural concentration of heavy water isotopologs and rate of H2O2 generation by mitochondria. Bull. Exp. Biol. Med. 2006, 142, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, B.; He, Z.; Fu, H.; Dai, Z.; Huang, G.; Li, B.; Qin, D.; Zhang, X.; Tian, L.; et al. Deuterium-depleted water (DDW) inhibits the proliferation and migration of nasopharyngeal carcinoma cells in vitro. Biomed. Pharmacother. 2013, 67, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Tănase, C.; Boz, I.; Popa, V.I. Histo-anatomical aspects in maize (Zea mays l.) seedlings developing under influence of deuterium depleted water. Analele Ştiinţifice ale Universităţii „Al. I. Cuza” Iaşi, s. II a. Biol. Veg. 2014, 60, 5–10. [Google Scholar]
- Petruş-Vancea, A. Cell ultrastructure and chlorophyll pigments in hyperhydric and non-hyperhydric Beta vulgaris var. Conditiva plantlets, treated with deuterium depleted water. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 135, 13–21. [Google Scholar] [CrossRef]
- Strekalova, T.; Evans, M.; Chernopiatko, A.; Couch, Y.; Costa-Nunes, J.P.; Cespuglio, R.; Chesson, L.; Vignisse, J.; Steinbusch, H.W.; Anthony, D.C.; et al. Deuterium content of water increases depression susceptibility: The potential role of a serotonin-related mechanism. Behav. Brain Res. 2015, 277, 237–244. [Google Scholar] [CrossRef]
- Mladin, C.; Ciobica, A.; Lefter, R.; Popescu, A.; Bild, W. Deuterium depletion induces anxiolytic-like effects in rats. Arch. Biol. Sci. 2014, 66, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Mladin, C.; Ciobica, A.; Lefter, R.; Popescu, A.; Bild, W. Deuterium-depleted water has stimulating effects on long-term memory in rats. Neurosci. Lett. 2014, 583, 154–158. [Google Scholar] [CrossRef]
- Kravtsov, A.A.; Kozin, S.V.; Vasilevskaya, E.R.; Elkina, A.A.; Fedulova, L.V.; Popov, K.A.; Malyshko, V.V.; Moiseev, A.V.; Shashkov, D.I.; Baryshev, M.G.; et al. Effect of Drinking Ration with Reduced Deuterium Content on Brain Tissue Prooxidant-Antioxidant Balance in Rats with Acute Hypoxia Model. J. Pharm. Nutr. Sci. 2018, 8, 42–51. [Google Scholar] [CrossRef]
- Kozin, S.V.; Kravtsov, A.A.; Elkina, A.A.; Zlishcheva, E.I.; Barysheva, E.V.; Shurygina, L.V.; Moiseev, A.V.; Baryshev, M.G. Isotope Exchange of Deuterium for Protium in Rat Brain Tissues Changes Brain Tolerance to Hypoxia. Biophysics 2019, 64, 272–278. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Fedulova, L.V.; Moiseev, A.V.; Basov, А.А. Change of 2H/1H ratio and adaptive potential in living systems under formation of isotope gradient. J. Pharm. Nutr. Sci. 2019, 9, 8–13. [Google Scholar]
- Dzhimak, S.S.; Shikhliarova, A.I.; Zhukova, G.V.; Basov, A.A.; Kit, O.I.; Fedulova, L.V.; Kurkina, T.A.; Shirnina, E.A.; Protasova, T.P.; Baryshev, M.G.; et al. Some Systemic Effects of Deuterium Depleted Water on Presenile Female Rats. Jundishapur J. Nat. Pharm. Prod. 2018, 13, 83494. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Basov, A.A.; Baryshev, M.G.; Dzhimak, S. Content of deuterium in biological fluids and organs: Influence of deuterium depleted water on D/H gradient and the process of adaptation. Dokl. Biochem. Biophys. 2015, 465, 370–373. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Basov, А.А.; Fedulova, L.V.; Bykov, I.M.; Ivlev, V.A.; Melkonyan, K.I.; Timakov, А.А. Determination of deuterium concentration in biological liquids with the use of NMR-spectroscopy. Aviakosmicheskaya Ekol. Meditsina (Russia) 2016, 50, 42–47. [Google Scholar]
- Sinyak, Y.E.; Grigoriev, A.I.; Skuratov, V.M.; Ivanova, S.M.; Pokrovsky, B.G. Fractionation of hydrogen stable isotopes in the human body. Aviakosmicheskaya Ekol. Meditsina 2006, 40, 38–41. [Google Scholar]
- Dzhimak, S.S.; Basov, А.А.; Elkina, А.А.; Fedulova, L.V.; Kotenkova, Е.А.; Vasilevskaya, Е.R.; Lyasota, О.М.; Baryshev, M.G. Influence of deuterium-depleted water on hepatorenal toxicity. Jundishapur J. Nat. Pharm. Prod. 2018, 13, e69557. [Google Scholar] [CrossRef]
- Abrosimova, A.N.; Rakov, D.V.; Siniak, E.I. [The “light” water effect on lenticular opacity development in mice after repeated low dose gamma-irradiation]. Aerosp. Environ. Med. 2009, 43, 29–32. [Google Scholar]
- Rakov, D.V. [Alleviation of gamma-radiation damage by water with reduced deuterium and 18O content]. Aerosp. Environ. Med. 2007, 41, 36–39. [Google Scholar]
- Editoiu, C.; Popescu, C.; Ispas, G.; Corneanu, G.C.; Zagnat, M.; Stefanescu, I. The effect of biologically active substances of Aralia Mandshurica and deuterium depleted water on the structure of spleen in Mus Muscullus. Ann. RSCB 2010, 15, 2012–2016. [Google Scholar]
- Kulikova, E.I.; Kryuchkova, D.M.; Severyukhin, Y.S.; Gaevsky, V.N.; Ivanov, A.A. Radiomodifying properties of deuterium-depleted water with poor content of heavier isotopes of oxygen. Aviakosmicheskaya Ekol. Meditsina 2012, 46, 45–50. [Google Scholar]
- Sinyak, Y.; Grigoriev, A.; Gaydadimov, V.; Gurieva, T.; Levinskih, M.; Pokrovskii, B. Deuterium-free water (1H2O) in complex life-support systems of long-term space missions. Acta Astronaut. 2003, 52, 575–580. [Google Scholar] [CrossRef]
- Sinyak, Y.E.; Skuratov, V.M.; Gaidadymov, V.B.; Pokrovsky, B.G.; Grigoriev, A.I. Investigation into fractionating of hydrogen and oxygen stable isotopes aboard the international space station. Aviakosmicheskaya Ekol. Meditsina 2005, 39, 43–47. [Google Scholar]
- Kotyk, A.; Dvořáková, M.; Koryta, J. Deuterons cannot replace protons in active transport processes in yeast. FEBS Lett. 1990, 264, 203–205. [Google Scholar] [CrossRef] [Green Version]
- Hagag, N.; Lacal, J.C.; Graber, M.; Aaronson, S.; Viola, M.V. Microinjection of ras p21 induces a rapid rise in intracellular pH. Mol. Cell. Biol. 1987, 7, 1984–1988. [Google Scholar] [CrossRef] [PubMed]
- Doppler, W.; Jaggi, R.; Groner, B. Induction of v-mos and activated Ha-ras oncogene expression in quiescent NIH 3T3 cells causes intracellular alkalinisation and cell-cycle progression. Gene 1987, 54, 147–153. [Google Scholar] [CrossRef]
- Mooienaar, W.H. Ingezonden. Annu. Rev. Physiol. 1986, 48, 363–376. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, B.; Liu, C.; Fang, W.; Yang, H. [Deuterium-depleted water selectively inhibits nasopharyngeal carcinoma cell proliferation in vitro]. Nan fang yi ke da xue xue bao = J. South. Med. Univ. 2012, 32, 1394–1399. [Google Scholar]
- Yavari, K.; Kooshesh, L. Deuterium Depleted Water Inhibits the Proliferation of Human MCF7 Breast Cancer Cell Lines by Inducing Cell Cycle Arrest. Nutr. Cancer 2019, 71, 1019–1029. [Google Scholar] [CrossRef]
- Pop, A.; Balint, E.; Manolescu, N.; Stefanescu, I.; Militaru, M. The effect of deuterium depleted water administration on serum glycoproteins of cytostatics treated rats. Roum. Biotechnol. Lett. 2008, 13, 74–77. [Google Scholar]
- Gyöngyi, Z.; Somlyai, G. Deuterium depletion can decrease the expression of C-myc Ha-ras and p53 gene in carcinogen-treated mice. Vivo 2000, 14, 437–439. [Google Scholar]
- Soleyman-Jahi, S.; Zendehdel, K.; Akbarzadeh, K.; Haddadi, M.; Amanpour, S.; Muhammadnejad, S. In vitro assessment of antineoplastic effects of deuterium depleted water. Asian Pac. J. Cancer Prev. 2014, 15, 2179–2183. [Google Scholar] [CrossRef] [PubMed]
- Perona, R.; Serrano, R. Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature 1988, 334, 438–440. [Google Scholar] [CrossRef] [PubMed]
- Cong, F.S.; Zhang, Y.R.; Sheng, H.C.; Ao, Z.H.; Zhang, S.Y.; Wang, J.Y. Deuterium-depleted water inhibits human lung carcinoma cell growth by apoptosis. Exp. Ther. Med. 2010, 1, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krempels, K.; Somlyai, I.; Somlyai, G.; Somlyai, I.; Somlyai, G. A Retrospective Evaluation of the Effects of Deuterium Depleted Water Consumption on 4 Patients with Brain Metastases from Lung Cancer. Integr. Cancer Ther. 2008, 7, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.; Guller, I.; Krempels, K.; Somlyai, I.; Jánosi, I.; Gyöngyi, Z.; Szabó, I.; Ember, I.; Somlyai, G. Deuterium Depletion May Delay the Progression of Prostate Cancer. J. Cancer Ther. 2011, 2, 548–556. [Google Scholar] [CrossRef]
- Boros, L.G.; Collins, T.Q.; Somlyai, G. What to eat or what not to eat—that is still the question. Neuro Oncol. 2017, 19, 595–596. [Google Scholar] [CrossRef] [PubMed]
- Rieger, J.; Steinbach, J.P. To diet or not to diet—That is still the question. Neuro Oncol. 2016, 18, 1035–1036. [Google Scholar] [CrossRef]
- De Feyter, H.M.; Behar, K.L.; Rao, J.U.; Madden-Hennessey, K.; Ip, K.L.; Hyder, F.; Drewes, L.R.; Geschwind, J.F.; De Graaf, R.A.; Rothman, D.L. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth. Neuro Oncol. 2016, 18, 1079–1087. [Google Scholar] [CrossRef]
- Fransen, M.; Lismont, C.; Walton, P. The Peroxisome-Mitochondria Connection: How and Why? Int. J. Mol. Sci. 2017, 18, 1126. [Google Scholar] [CrossRef] [PubMed]
- Kotkina, I.T.; Titov, V.N.; Parkhimovich, R.M. The different notions about beta-oxidation of fatty acids in peroxisomes, peroxisomes and ketonic bodies. The diabetic, acidotic coma as an acute deficiency of acetyl-CoA and ATP. Klin. Lab. Diagn. 2014, 3, 14–23. [Google Scholar]
- Zubarev, R.A. Role of Stable Isotopes in Life—Testing Isotopic Resonance Hypothesis. Genom. Proteom. Bioinform. 2011, 9, 15–20. [Google Scholar] [CrossRef]
- Benton, C.R.; Holloway, G.P.; Campbell, S.E.; Yoshida, Y.; Tandon, N.N.; Glatz, J.F.; Luiken, J.J.; Spriet, L.L.; Bonen, A. Rosiglitazone increases fatty acid oxidation and fatty acid translocase (FAT/CD36) but not carnitine palmitoyltransferase I in rat muscle mitochondria. J. Physiol. 2008, 586, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Rasooli, A.; Fatemi, F.; Hajihosseini, R.; Vaziri, A.; Akbarzadeh, K.; Malayeri, M.R.M.; Dini, S.; Foroutanrad, M. Synergistic effects of deuterium depleted water and Mentha longifolia L. essential oils on sepsis-induced liver injuries through regulation of cyclooxygenase-2. Pharm. Biol. 2019, 57, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lajos, R.; Braicu, C.; Jurj, A.; Chira, S.; Cojocneanu-Petric, R.; Pileczki, V.; Berindan-Neagoe, I. A miRNAs profile evolution of triple negative breast cancer cells in the presence of a possible adjuvant therapy and senescence inducer. J. BUON. 2018, 23, 692–705. [Google Scholar]
- Villanueva, G.L.; Mumma, M.; Novak, R.E.; Käufl, H.U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M.D. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs. Science 2015, 348, 218–221. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basov, A.; Fedulova, L.; Baryshev, M.; Dzhimak, S. Deuterium-Depleted Water Influence on the Isotope 2H/1H Regulation in Body and Individual Adaptation. Nutrients 2019, 11, 1903. https://doi.org/10.3390/nu11081903
Basov A, Fedulova L, Baryshev M, Dzhimak S. Deuterium-Depleted Water Influence on the Isotope 2H/1H Regulation in Body and Individual Adaptation. Nutrients. 2019; 11(8):1903. https://doi.org/10.3390/nu11081903
Chicago/Turabian StyleBasov, Alexander, Liliia Fedulova, Mikhail Baryshev, and Stepan Dzhimak. 2019. "Deuterium-Depleted Water Influence on the Isotope 2H/1H Regulation in Body and Individual Adaptation" Nutrients 11, no. 8: 1903. https://doi.org/10.3390/nu11081903