Hormones in Breast Milk and Effect on Infants’ Growth: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kramer, M.S.; Guo, T.; Platt, R.W.; Shapiro, S.; Collet, J.P.; Chalmers, B.; Hodnett, E.; Sevkovskaya, Z.; Dzikovich, I.; Vanilovich, I. PROBIT Study Group. Breastfeeding and infant growth: Biology or bias? Pediatrics 2002, 110, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Mosca, F.; Giannì, M.L. Human milk: Composition and health benefits. Pediatr. Med. Chir. 2017. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.A.; Modepalli, V.; Enjapoori, A.K.; Bisana, S.; Abud, H.E.; Lefevre, C.; Nicholas, K.R. Bioactive Functions of Milk Proteins: A Comparative Genomics Approach. J. Mammary Gland Biol. Neoplasia 2014, 19, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Verduci, E.; Banderali, G.; Barberi, S.; Radaelli, G.; Lops, A.; Betti, F.; Riva, E.; Giovannini, M. Epigenetic effects of human breast milk. Nutrients 2014, 6, 1711–1724. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, S.; Symons, L.; Vanautgaerden, E.L.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.S.; Koppen, G.; et al. The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome. Nutrients 2019, 11, 1408. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Schneider, C.R.; Pavela, G. A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity 2016, 24, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victora, C.G.; Bahl, R.; Barros, A.J.; França, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef]
- Lind, M.V.; Larnkjær, A.; Mølgaard, C.; Michaelsen, K.F. Breastfeeding, Breast Milk Composition, and Growth Outcomes. In Recent Research in Nutrition and Growth; Karger Publishers: Basel, Switzerland, 2018; Volume 89, pp. 63–77. [Google Scholar]
- Kugananthan, S.; Gridneva, Z.; Lai, C.T.; Hepworth, A.R.; Mark, P.J.; Kakulas, F.; Geddes, D.T. Associations between Maternal Body Composition and Appetite Hormones and Macronutrients in Human Milk. Nutrients 2017, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Rito, A.I.; Buoncristiano, M.; Spinelli, A.; Salanave, B.; Kunešová, M.; Hejgaard, T.; Solano, M.G.; Fijałkowska, A.; Sturua, L.; Hyska, J.; et al. Association between Characteristics at Birth, Breastfeeding and Obesity in 22 Countries: The WHO European Childhood Obesity Surveillance Initiative—COSI 2015/2017. Obes. Facts 2019, 12, 226–243. [Google Scholar] [CrossRef]
- Yu, X.; Rong, S.S.; Sun, X.; Ding, G.; Wan, W.; Zou, L.; Wu, S.; Li, M.; Wang, D. Associations of breast milk adiponectin, leptin, insulin and ghrelin with maternal characteristics and early infant growth: A longitudinal study. Br. J. Nutr. 2018, 120, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Neville, M.C.; Anderson, S.M.; McManaman, J.L.; Badger, T.M.; Bunik, M.; Contractor, N.; Crume, T.; Dabelea, D.; Donovan, S.M.; Forman, N.; et al. Lactation and neonatal nutrition: Defining and refining the critical questions. J. Mammary Gland Biol. Neoplasia 2012, 17, 167–188. [Google Scholar] [CrossRef] [PubMed]
- Badillo-Suárez, P.A.; Rodríguez-Cruz, M.; Nieves-Morales, X. Impact of Metabolic Hormones Secreted in Human Breast Milk on Nutritional Programming in Childhood Obesity. J. Mammary Gland Biol. Neoplasia 2017, 22, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Young, B.E.; Levek, C.; Reynolds, R.M.; Rudolph, M.C.; MacLean, P.; Hernandez, T.L.; Friedman, J.E.; Krebs, N.F. Bioactive components in human milk are differentially associated with rates of lean and fat mass deposition in infants of mothers with normal vs. elevated BMI. Pediatric Obes. 2018, 13, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Kon, I.Y.; Shilina, N.M.; Gmoshinskaya, M.V.; Ivanushkina, T.A. The study of breast milk IGF-1, leptin, ghrelin and adiponectin levels as possible reasons of high weight gain in breast-fed infants. Ann. Nutr. Metab. 2014, 65, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Yiş, U.; Oztürk, Y.; Sişman, A.R.; Uysal, S.; Soylu, O.B.; Büyükgebiz, B. The relation of serum ghrelin, leptin and insulin levels to the growth patterns and feeding characteristics in breast-fed versus formula-fed infants. Turk. J. Pediatrics 2010, 52, 35–41. [Google Scholar]
- Gridneva, Z.; Kugananthan, S.; Rea, A.; Lai, C.T.; Ward, L.C.; Murray, K.; Hartmann, P.E.; Geddes, D.T. Human Milk Adiponectin and Leptin and Infant Body Composition over the First 12 Months of Lactation. Nutrients 2018, 10, 1125. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; George, B.; Williams, M.; Whitaker, K.; Allison, D.B.; Teague, A.; Demerath, E.W. Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatric Obes. 2017, 12, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Demerath, E.W. Relationship of insulin, glucose, leptin, IL-6 and TNF-α in human breast milk with infant growth and body composition. Pediatric Obes. 2012, 7, 304–312. [Google Scholar] [CrossRef]
- Chan, D.; Goruk, S.; Becker, A.B.; Subbarao, P.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.; Sears, M.R.; Field, C.J.; Azad, M.B. Adiponectin, leptin and insulin in breast milk: Associations with maternal characteristics and infant body composition in the first year of life. Int. J. Obes. 2018, 42, 36–43. [Google Scholar] [CrossRef]
- Meyer, D.M.; Brei, C.; Stecher, L.; Much, D.; Brunner, S.; Hauner, H. The relationship between breast milk leptin and adiponectin with child body composition from 3 to 5 years: A follow-up study. Pediatric Obes. 2017, 12, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Schmid, D.; Zang, K.; Much, D.; Knoeferl, B.; Kratzsch, J.; Amann-Gassner, U.; Bader, B.L.; Hauner, H. Breast milk leptin and adiponectin in relation to infant body composition up to 2 years. Pediatric Obes. 2015, 10, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, M.; Lim, P.; Wang, Y.; Soo, K.; Mohamed, H. Maternal Serum and Breast Milk Adiponectin: The Association with Infant Adiposity Development. Int. J. Environ. Res. Public Health 2018, 15, 1250. [Google Scholar] [CrossRef] [PubMed]
- Cesur, G.; Ozguner, F.; Yilmaz, N.; Dundar, B. The relationship between ghrelin and adiponectin levels in breast milk and infant serum and growth of infants during early postnatal life. J. Physiol. Sci. 2012, 62, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.; Lind, M.; Larnkjær, A.; Due, A.; Blom, I.; Wells, J.; Michaelsen, K. Excessive weight gain followed by catch-down in exclusively breastfed infants: An exploratory study. Nutrients 2018, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Ucar, B.; Kırel, B.; Bör, Ö.; Κılıç, F.S.; Doğruel, Ν.; Aydoğdu, S.D.; Tekin, N. Breast milk leptin concentrations in initial and terminal milk samples: Relationships to maternal and infant plasma leptin concentrations, adiposity, serum glucose, insulin, lipid and lipoprotein levels. J. Pediatric Endocrinol. Metab. 2000, 13, 149–156. [Google Scholar] [CrossRef]
- Woo, J.G.; Guerrero, M.L.; Altaye, M.; Ruiz-Palacios, G.M.; Martin, L.J.; Dubert-Ferrandon, A.; Newburg, D.S.; Morrow, A.L. Human milk adiponectin is associated with infant growth in two independent cohorts. Breastfeed. Med. 2009, 4, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Flier, J.S.; Maratos-Flier, E. Leptin’s Physiologic Role: Does the Emperor of Energy Balance Have No Clothes? Cell Metab. 2017, 26, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Brennan, A.M.; Mantzoros, C.S. Drug Insight: The role of leptin in human physiology and pathophysiology—Emerging clinical applications. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2, 318–327. [Google Scholar] [CrossRef]
- Chaoimh, C.N.; Murray, D.M.; Kenny, L.C.; Irvine, A.D.; Hourihane, J.O.; Kiely, M. Cord blood leptin and gains in body weight and fat mass during infancy. Eur. J. Endocrinol. 2016, 175, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Savino, F.; Sardo, A.; Rossi, L.; Benetti, S.; Savino, A.; Silvestro, L. Mother and Infant Body Mass Index, Breast Milk Leptin and Their Serum Leptin Values. Nutrients 2016, 8, 383. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.W.; Woods, S.C.; Porte, D., Jr.; Seeley, R.J.; Baskin, D.G. Central nervous system control of food intake. Nature 2000, 404, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Garibay, E.M.; Larrosa-Haro, A.; Guzmán-Mercado, E.; Muñoz-Esparza, N.; García-Arellano, S.; Muñoz-Valle, F.; Romero-Velarde, E. Serum concentration of appetite-regulating hormones of mother-infant dyad according to the type of feeding. Food Sci. Nutr. 2019, 7, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Ukkola, O.; Santaniemi, M. Adiponectin: A link between excess adiposity and associated comorbidities? J. Mol. Med. 2002, 80, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Nemet, D.; Cooper, D.M. Exercise, diet, and chilhood obesity: The GH-IGF-I connection. J. Pediatric Endocrinol. Metab. 2002, 15, 751–757. [Google Scholar] [CrossRef]
- De Jong, M.; Cranendonk, A.; Twisk, J.W.; van Weissenbruch, M.M. IGF-I and relation to growth in infancy and early childhood in very-low-birth-weight infants and term born infants. PLoS ONE 2017, 12, e0171650. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, G.; Mitrou, P.; Lambadiari, V.; Maratou, E.; Raptis, S.A. Insulin effects in muscle and adipose tissue. Diabetes Res. Clin. Pract. 2011, 93, S52–S59. [Google Scholar] [CrossRef]
Study | Sample Size | Growth and Anthropometric Outcomes | Hormones in Breast Milk | Major Findings |
---|---|---|---|---|
[12] | 96 BF infants | Infant body weight (kg), length (cm), WLZ, head circumference (cm). | Adiponectin, leptin, insulin and ghrelin | Adiponectin inversely associated with WLZ and head circumference (p ≤ 0.003). Association between adiponectin and insulin and head circumference (p ≤ 0.007 and p ≤ 0.049, respectively). |
[15] | 41 BF infants | WLZ, % body fat from skinfolds from 0 to 4 mo. | Leptin, adiponectin, ghrelin, insulin | Negative association between HM insulin and WLZ trajectory in infants of normal weight mothers (p = 0.028) |
[16] | 103 BF infants | Weight gain (g/mo). | Leptin, adiponectin, ghrelin, IGF-1 | Correlation between breast milk IGF-1 and infant weight gain (r = 0.294, p = 0.043). Higher ghrelin levels at 1 and 2 mo and higher leptin levels at 2 and 3 mo of lactation (p < 0.05) in infants with high weight gain (>1000 g/mo). |
[17] | 24 BF infants | Infant’s body weight (g), length (cm), triceps skinfold thickness (mm), postnatal weight gain (g) at 3 and 6 mo of age. | Ghrelin, leptin | No correlation between breast-milk ghrelin or breast-milk leptin with anthropometric data. |
[18] | 20 BF infants | Infant’s body weight (g), length (cm), BMI (kg/m2), ultrasound skinfolds, bioimpedance spectroscopy and FMI (FM (kg)/length (m)2), FFMI (FFM (kg)/length (m)2). | Adiponectin, leptin | Higher intake of adiponectin associated with lower infant FFM (p = 0.005) and FFM index (p = 0.009) and higher FM (p < 0.001), FM index (FMI; p < 0.001), and %FM (p < 0.001). Higher intake of leptin associated with larger increases in infant adiposity (2–12 month): FM, p = 0.0006; %FM, p = 0.0004. |
[19] | 37 BF infants | Infant’s body weight (g), length (cm), FM (g and %), FFM (g), trunk fat mass (g). | Insulin, leptin | Inverse association between leptin levels at 1 mo and infant length (p = 0.0257), FM % (p = 0.0223), FM (g) (p = 0.0226), and trunk fat mass (p = 0.0111) at 6 mo. |
[20] | 19 BF infants | Infant’s body weight (g), length (cm), WLZ, BMIZ, FM (g and %), FFM (g), trunk fat mass (g) at 1 mo of age | Leptin, insulin | Leptin associated with lower BMIZ (r = −0.54, p = 0.03). Higher concentrations of insulin associated with lower infant weight, relative weight, and FFM (r = −0.49–0.58, p < 0.06). |
[21] | 430 BF infants | Infant’s body weight (g), length (cm), WFL, BMIZ at 4 mo and 1 yrs of age. | Adiponectin, leptin, insulin | Higher leptin associated with lower infant WLZ at 4 mo (β − 0.67, 95% confidence interval (CI): −1.17, −0.17 for highest vs lowest quintile) and 1 yrs (β − 0.58, 95% CI: −1.02, −0.14). Insulin showed a U-shaped association, with intermediate concentrations predicting the lowest infant WLZ at 4 mo (β − 0.51, 95% CI: −0.87, −0.15 for third vs lowest quintile) and 1 yrs (β − 0.35, 95% CI: −0.66, −0.04). Adiponectin not associated with infant body composition. |
[22] | 147 BF infants | Infant’s body weight (kg), BMI percentiles, sum of four skinfolds (mm), FM (kg and %), FFM (kg) at 3, 4, and 5 yrs of age. | Adiponectin, leptin | No association between leptin or total adiponectin levels assessed at 6 weeks post-delivery with children’s body weight, BMI percentiles, sum of four skinfolds, measurements, FM (kg and %), or FFM (kg). |
[23] | 188 BF infants | The relationship of BM leptin and adiponectin with infant weight gain and body composition up to the age of 2 yrs. | Adiponectin, leptin | Milk leptin at 4 mo negatively associated with infant weight ([95%CI]: −604.96 g [−1166.19; −43.72], p = 0.037) and FFM (−400.95 g [−777.64; −24.25], p = 0.039) at the age of 4 mo. Adiponectin tended to be negatively associated with infant FFM (p = 0.015) and weight (p = 0.054) in the first 4 mo, but afterwards was positively related to weight gain (p = 0.027) and the sum of skinfolds (p = 0.047) up to 2 years. |
[24] | 155 BF infants | Infant’s body weight (kg) and BMIZ, abdominal circumference (cm). | Leptin, adiponectin | The higher level of adiponectin at 2 mo postpartum associated with reduced infant body weight (β = −0.54 p = 0.003), BMIZ (β = −0.79, p = 0.008) and abdominal circumference at 2 mo of age (β = −2.34, p = 0.003). No association between adiponectin at birth and 2 mo with infant adiposity at 6 and 12 mo of age. An increased maternal ALR was related to reduced infant BMIZ at birth. |
[25] | 25 BF infants | Infant’s body weight (g), length (cm), BMI (kg/m2). | Ghrelin, adiponectin | Positive correlation between the level of the 4th mo ghrelin level and infants’ weight gain (r = 0.51, p = 0.025). |
[26] | 30 BF infants | Infant’s body weight (g), length (cm), WAZ, LAZ, BAZ, TSFZ, SSFZ. | Leptin, adiponectin | A 40% reduction of median leptin content at 5 mo in the high weight gain group (p = 0.045). At 5 mo, no significant associations between milk concentrations of hormones and infants’ WAZ, BAZ or LAZ, or energy and hormones and infant’s anthropometry (WAZ, BAZ, or LAZ) or change in these z-scores from birth to the 5 mo visit (all p > 0.11). |
[27] | 18 BF infants | Infant’s body weight (kg), BMI (kg/m2), triceps skinfold thickness (mm), left upper arm circumference (mm). | Leptin | No correlation between Log leptin concentrations and infants’ body weight, BMI, triceps skinfold thickness, and left upper arm circumference measurements (p > 0.05). |
[22] | 322 BF infants | Infant’s body weight (kg), length (cm), WAZ, BMI (kg/m2), LAZ, WLZ. | Adiponectin | During the first 6 months, higher adiponectin associated with lower infant WAZ (β = 0.20 ± standard error (SE) 0.04, p = 0.0001) and WLZ (β = 0.29 ± 0.08, p = 0.0002) Adiponectin not associated with infant length. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzocchi, A.; Giannì, M.L.; Morniroli, D.; Leone, L.; Roggero, P.; Agostoni, C.; De Cosmi, V.; Mosca, F. Hormones in Breast Milk and Effect on Infants’ Growth: A Systematic Review. Nutrients 2019, 11, 1845. https://doi.org/10.3390/nu11081845
Mazzocchi A, Giannì ML, Morniroli D, Leone L, Roggero P, Agostoni C, De Cosmi V, Mosca F. Hormones in Breast Milk and Effect on Infants’ Growth: A Systematic Review. Nutrients. 2019; 11(8):1845. https://doi.org/10.3390/nu11081845
Chicago/Turabian StyleMazzocchi, Alessandra, Maria Lorella Giannì, Daniela Morniroli, Ludovica Leone, Paola Roggero, Carlo Agostoni, Valentina De Cosmi, and Fabio Mosca. 2019. "Hormones in Breast Milk and Effect on Infants’ Growth: A Systematic Review" Nutrients 11, no. 8: 1845. https://doi.org/10.3390/nu11081845