Gender Differences in Phytoestrogens and the Relationship with Speed of Processing in Older Adults: A Cross-Sectional Analysis of NHANES, 1999–2002
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | body mass index |
CDC | lefts for Disease Control and Prevention; |
DSST | Digit Symbol Substitution Test |
E2 | plasma estradiol |
ERβ | estrogen receptor beta |
GED | General Educational Development |
GLM | general linear model |
NHANES | National Health and Nutrition Examination Survey |
SOP | speed of processing |
PIR | poverty–income ratio |
T | testosterone |
References
- Ruiz-Larrea, M.B.; Mohan, A.R.; Paganga, G.; Miller, N.J.; Bolwell, G.P.; Rice-Evans, C.A. Antioxidant activity of phytoestrogenic isoflavones. Free Radic. Res. 1997, 26, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Salzman, A.L.; Preiser, J.C.; Setchell, K.D.; Szabo, C. Isoflavone-mediated inhibition of tyrosine kinase: A novel antiinflammatory approach. J. Med. Food 1999, 2, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Belcher, S.M.; Zsarnovszky, A. Estrogenic Actions in the Brain: Estrogen, Phytoestrogens, and Rapid Intracellular Signaling Mechanisms. J. Pharmacol. Exp. Ther. 2001, 299, 408–414. [Google Scholar] [PubMed]
- Lin, T.; Liu, G.A.; Perez, E.; Rainer, R.D.; Febo, M.; Cruz-Almeida, Y.; Ebner, N.C. Systemic Inflammation Mediates Age-Related Cognitive Deficits. Front. Aging Neurosci. 2018, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Warren, K.N.; Beason-Held, L.L.; Carlson, O.; Egan, J.M.; An, Y.; Doshi, J.; Davatzikos, C.; Ferrucci, L.; Resnick, S.M. Elevated Markers of Inflammation Are Associated with Longitudinal Changes in Brain Function in Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Jantaratnotai, N.; Utaisincharoen, P.; Sanvarinda, P.; Thampithak, A.; Sanvarinda, Y. Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. Int. Immunopharmacol. 2013, 17, 483–488. [Google Scholar] [CrossRef]
- Subedi, L.; Ji, E.; Shin, D.; Jin, J.; Yeo, J.H.; Kim, S.Y. Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro. Nutrients 2017, 9, 207. [Google Scholar] [CrossRef]
- Ganai, A.A.; Husain, M. Genistein Alleviates Neuroinflammation and Restores Cognitive Function in Rat Model of Hepatic Encephalopathy: Underlying Mechanisms. Mol. Neurobiol. 2018, 55, 1762–1772. [Google Scholar] [CrossRef]
- McEwen, B.S.; Alves, S.E. Estrogen Actions in the Central Nervous System. Endocr. Rev. 1999, 20, 279–307. [Google Scholar] [CrossRef]
- Halbreich, U.; Kahn, L.S. Selective oestrogen receptor modulators—Current and future brain and behaviour applications. Expert Opin. Pharmacother. 2000, 1, 1385–1398. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Invited Review: Estrogens effects on the brain: Multiple sites and molecular mechanisms. J. Appl. Physiol. 2001, 91, 2785–2801. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.W.; Hoskin, E.; Yudkovitz, J.; Pear, L.; Wilkinson, H.A.; Hayashi, S.; Pfaff, D.W.; Ogawa, S.; Rohrer, S.P.; Schaeffer, J.M.; et al. Immunolocalization of Estrogen Receptor β in the Mouse Brain: Comparison with Estrogen Receptor α. Endocrinology 2003, 144, 2055–2067. [Google Scholar] [CrossRef]
- Agradi, E.; Vegeto, E.; Sozzi, A.; Fico, G.; Regondi, S.; Tomè, F. Traditional healthy Mediterranean diet: Estrogenic activity of plants used as food and flavoring agents. Phytother. Res. 2006, 20, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, A.; Fondell, E.; Ascherio, A.; Yuan, C.; Grodstein, F.; Willett, W. Adherence to Mediterranean diet and subjective cognitive function in men. Eur. J. Epidemiol. 2017, 33, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.A.; Metcalf, J.S. Traditional Food Items in Ogimi, Okinawa: L-Serine Content and the Potential for Neuroprotection. Curr. Nutr. Rep. 2017, 6, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Loughrey, D.G.; Lavecchia, S.; Brennan, S.; Lawlor, B.A.; Kelly, M.E. The Impact of the Mediterranean Diet on the Cognitive Functioning of Healthy Older Adults: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 571–586. [Google Scholar]
- Lampe, J.W.; Gustafson, D.R.; Hutchins, A.M.; Martini, M.C.; Li, S.; Wähälä, K.; Grandits, G.A.; Potter, J.D.; Slavin, J.L. Urinary Isoflavonoid and Lignan Excretion on a Western Diet: Relation to Soy, Vegetable, and Fruit Intake. Cancer Epidemiol. Biomark. Prev. 1999, 8, 699–707. [Google Scholar]
- Sales and Trends Soyfoods Association Health Benefits of Making Soy the Preferred Plant Based Protein. Available online: http://www.soyfoods.org/soy-products/sales-and-trends (accessed on 26 June 2019).
- Xu, X.; Harris, K.S.; Wang, H.J.; Murphy, P.A.; Hendrich, S. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 1995, 125, 2307–2315. [Google Scholar] [CrossRef]
- Yuan, J.P.; Wang, J.H.; Liu, X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora—Implications for health. Mol. Nutr. Food Res. 2007, 51, 765–781. [Google Scholar] [CrossRef]
- Song, Y.; You, N.C.Y.; Song, Y.; Kang, M.K.; Hou, L.; Wallace, R.; Eaton, C.B.; Tinker, L.F.; Liu, S. Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women. J. Nutr. 2013, 143, 907–914. [Google Scholar] [CrossRef]
- Guadamuro, L.; Delgado, S.; Redruello, B.; Flórez, A.B.; Suárez, A.; Martínez-Camblor, P.; Mayo, B. Equol status and changes in fecal microbiota in menopausal women receiving long-term treatment for menopause symptoms with a soy-isoflavone concentrate. Front. Microbiol. 2015, 6, 777. [Google Scholar] [CrossRef]
- Zoetendal, E.G.; Akkermans, A.D.L.; De Vos, W.M. Temperature Gradient Gel Electrophoresis Analysis of 16S rRNA from Human Fecal Samples Reveals Stable and Host-Specific Communities of Active Bacteria. Appl. Environ. Microbiol. 1998, 64, 3854–3859. [Google Scholar] [Green Version]
- Kaliannan, K.; Robertson, R.C.; Murphy, K.; Stanton, C.; Kang, C.; Wang, B.; Hao, L.; Bhan, A.K.; Kang, J.X. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 2018, 6, 205. [Google Scholar] [CrossRef]
- Horstman, A.M.; Dillon, E.L.; Urban, R.J.; Sheffield-Moore, M. The Role of Androgens and Estrogens on Healthy Aging and Longevity. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 67, 1140–1152. [Google Scholar] [CrossRef] [Green Version]
- Leifke, E.; Gorenoi, V.; Wichers, C.; Von Zur Mühlen, A.; Von Büren, E.; Brabant, G. Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: Cross-sectional data from a healthy male cohort. Clin. Endocrinol. 2000, 53, 689–695. [Google Scholar] [CrossRef]
- Roivainen, E. Gender differences in processing speed: A review of recent research. Learn. Individ. Differ. 2011, 21, 145–149. [Google Scholar] [CrossRef]
- Ronquillo, J.G.; Baer, M.R.; Lester, W.T. Sex-specific patterns and differences in dementia and Alzheimer’s disease using informatics approaches. J. Women Aging 2016, 28, 403–411. [Google Scholar] [CrossRef]
- Rosario, E.R.; Chang, L.; Head, E.H.; Stanczyk, F.Z.; Pike, C.J. Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol. Aging 2011, 32, 604–613. [Google Scholar] [CrossRef]
- Small, B.J.; Dixon, R.A.; McArdle, J.J. Tracking cognition-health changes from 55 to 95 years of age. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2011, 66 (Suppl. 1), i153–i161. [Google Scholar] [CrossRef]
- Ostatníková, D.; Celec, P.; Hodosy, J.; Hampl, R.; Putz, Z.; Kúdela, M. Short-term soybean intake and its effect on steroid sex hormones and cognitive abilities. Fertil. Steril. 2007, 88, 1632–1636. [Google Scholar] [CrossRef]
- Gleason, C.E.; Carlsson, C.M.; Barnet, J.H.; Meade, S.A.; Setchell, K.D.R.; Atwood, C.S.; Johnson, S.C.; Ries, M.L.; Asthana, S. A preliminary study of the safety, feasibility and cognitive efficacy of soy isoflavone supplements in older men and women. Age Ageing 2009, 38, 86–93. [Google Scholar] [CrossRef]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National health and nutrition examination survey: Analytic guidelines, 1999–2010. Vital. Health Stat. 2013, 2, 1–24. [Google Scholar]
- Favé, G.; Beckmann, M.; Lloyd, A.J.; Zhou, S.; Harold, G.; Lin, W.; Tailliart, K.; Xie, L.; Draper, J.; Mathers, J.C. Development and validation of a standardized protocol to monitor human dietary exposure by metabolite fingerprinting of urine samples. Metabolomics 2011, 7, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Blair, R.M.; Appt, S.E.; Franke, A.A.; Clarkson, T.B. Treatment with antibiotics reduces plasma equol concentration in cynomolgus monkeys (Macaca fascicularis). J. Nutr. 2003, 133, 2262–2267. [Google Scholar] [CrossRef]
- Kilkkinen, A.; Stumpf, K.; Pietinen, P.; Valsta, L.M.; Tapanainen, H.; Adlercreutz, H. Determinants of serum enterolactone concentration. Am. J. Clin. Nutr. 2001, 73, 1094–1100. [Google Scholar] [CrossRef] [Green Version]
- Valentín-Blasini, L.; Sadowski, M.A.; Walden, D.; Caltabiano, L.; Needham, L.L.; Barr, D.B. Urinary phytoestrogen concentrations in the U.S. population (1999–2000). J. Expo. Sci. Environ. Epidemiol. 2005, 15, 509–523. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Pub. Co.: Reading, MA, USA, 1977. [Google Scholar]
- McGill, R.; Tukey, J.W.; Larsen, W.A. Variations of Box Plots. Am. Stat. 1978, 32, 12–16. [Google Scholar]
- Wechsler, D. WAIS-R, Wechsler Adult Intelligence Scale-Revised, Manual; Psychological Corporation: New York, NY, USA, 1981. [Google Scholar]
- Hoyer, W.J.; Stawski, R.S.; Wasylyshyn, C.; Verhaeghen, P. Adult age and digit symbol substitution performance: A meta-analysis. Psychol. Aging 2004, 19, 211–214. [Google Scholar] [CrossRef]
- Matarazzo, J.D.; Herman, D.O. Base rate data for the WAIS-R: Test-retest stability and VIQ-PIQ differences. J. Clin. Neuropsychol. 1984, 6, 351–366. [Google Scholar] [CrossRef]
- Ryan, J.J.; Schnakenberg-Ott, S.D. Scoring reliability on the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III). Assessment 2003, 10, 151–159. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC) National Center for Health Statistics (NCHS). Laboratory Procedure Manual. In Phytoestrogens: Genistein, Daidzein, Equol, Enterodiol, Enterolactone, O-Desmethylangolensin; Centers for Disease Control and Prevention (CDC) National Center for Health Statistics (NCHS): Hyattsville, MD, USA, 2004. [Google Scholar]
- Valentín-Blasini, L.; Blount, B.C.; Rogers, H.; Needham, L.L. HPLC-MS/MS method for the measurement of seven phytoestrogens in human serum and urine. J. Expo. Sci. Environ. Epidemiol. 2000, 10, 799. [Google Scholar] [CrossRef]
- Valentín-Blasini, L.; Blount, B.C.; Caudill, S.P.; Needham, L.L. Urinary and serum concentrations of seven phytoestrogens in a human reference population subset. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 276. [Google Scholar] [CrossRef]
- Grace, P.B.; Taylor, J.I.; Low, Y.L.; Luben, R.N.; Mulligan, A.A.; Botting, N.P.; Dowsett, M.; Welch, A.A.; Khaw, K.T.; Wareham, N.J.; et al. Phytoestrogen Concentrations in Serum and Spot Urine as Biomarkers for Dietary Phytoestrogen Intake and Their Relation to Breast Cancer Risk in European Prospective Investigation of Cancer and Nutrition-Norfolk. Cancer Epidemiol. Biomark. Prev. 2004, 13, 698–708. [Google Scholar]
- Seow, A.; Shi, C.Y.; Franke, A.A.; Hankin, J.H.; Lee, H.P.; Yu, M.C. Isoflavonoid levels in spot urine are associated with frequency of dietary soy intake in a population-based sample of middle-aged and older Chinese in Singapore. Cancer Epidemiol. Biomark. Prev. 1998, 7, 135–140. [Google Scholar]
- Chávez-Suárez, K.M.; Ortega-Vélez, M.I.; Valenzuela-Quintanar, A.I.; Galván-Portillo, M.; López-Carrillo, L.; Esparza-Romero, J.; Saucedo-Tamayo, M.S.; Robles-Burgueño, M.R.; Palma-Durán, S.A.; Gutiérrez-Coronado, M.L.; et al. Phytoestrogen Concentrations in Human Urine as Biomarkers for Dietary Phytoestrogen Intake in Mexican Women. Nutrients 2017, 9, 1078. [Google Scholar] [CrossRef]
- Arai, Y.; Uehara, M.; Sato, Y.; Kimira, M.; Eboshida, A.; Adlercreutz, H.; Watanabe, S. Comparison of Isoflavones among Dietary Intake, Plasma Concentration and Urinary Excretion for Accurate Estimation of Phytoestrogen Intake. J. Epidemiol. 2000, 10, 127–135. [Google Scholar] [CrossRef]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary Creatinine Concentrations in the U.S. Population: Implications for Urinary Biologic Monitoring Measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Orth, S.R. Smoking and the Kidney. JASN 2002, 13, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, K.M.; Upson, K.; Buckley, J.P. Lipid and Creatinine Adjustment to Evaluate Health Effects of Environmental Exposures. Curr. Environ. Health Rep. 2017, 4, 44–50. [Google Scholar] [CrossRef]
- O’Brien, K.M.; Upson, K.; Cook, N.R.; Weinberg, C.R. Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment. Environ. Health Perspect. 2016, 124, 220–227. [Google Scholar] [CrossRef]
- Poverty Guidelines. Available online: https://aspe.hhs.gov/poverty-guidelines (accessed on 25 April 2017).
- SAS Institute. SAS 9.4 Macro Language: Reference, 5th ed.; SAS Institute: Cary, NC, USA, 2013. [Google Scholar]
- SAS Institute. SAS 9.4 Software; SAS Institute: Cary, NC, USA.
- Long, J.A. Interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions. Available online: https://cran.r-project.org/web/packages/interactions/index.html (accessed on 12 July 2019).
- Team, R.C. The R Project for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Casini, M.L.; Marelli, G.; Papaleo, E.; Ferrari, A.; D’Ambrosio, F.; Unfer, V. Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: A randomized, double-blind, crossover, placebo-controlled study. Fertil. Steril. 2006, 85, 972–978. [Google Scholar] [CrossRef]
- Celec, P.; Ostatníková, D.; Cagánová, M.; Zuchová, S.; Hodosy, J.; Putz, Z.; Bernadic, M.; Kúdela, M. Endocrine and cognitive effects of short-time soybean consumption in women. Gynecol. Obstet. Investig. 2005, 59, 62–66. [Google Scholar] [CrossRef]
- Duffy, R.; Wiseman, H.; File, S.E. Improved cognitive function in postmenopausal women after 12 weeks of consumption of a soya extract containing isoflavones. Pharmacol. Biochem. Behav. 2003, 75, 721–729. [Google Scholar] [CrossRef]
- Kritz-Silverstein, D.; Von Mühlen, D.; Barrett-Connor, E.; Bressel, M.A.B. Isoflavones and cognitive function in older women: The SOy and Postmenopausal Health in Aging (SOPHIA) Study. Menopause 2003, 10, 196–202. [Google Scholar] [CrossRef]
- Nakamoto, M.; Otsuka, R.; Nishita, Y.; Tange, C.; Tomida, M.; Kato, Y.; Imai, T.; Sakai, T.; Ando, F.; Shimokata, H. Soy food and isoflavone intake reduces the risk of cognitive impairment in elderly Japanese women. Eur. J. Clin. Nutr. 2018, 72, 1458–1462. [Google Scholar] [CrossRef]
- Ho, S.C.; Chan, A.S.Y.; Ho, Y.P.; So, E.K.F.; Sham, A.; Zee, B.; Woo, J.L.F. Effects of soy isoflavone supplementation on cognitive function in Chinese postmenopausal women: A double-blind, randomized, controlled trial. Menopause 2007, 14, 489–499. [Google Scholar] [CrossRef]
- Kreijkamp-Kaspers, S.; Kok, L.; Grobbee, D.E.; de Haan, E.H.F.; Aleman, A.; Lampe, J.W.; van der Schouw, Y.T. Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: A randomized controlled trial. JAMA 2004, 292, 65–74. [Google Scholar] [CrossRef]
- White, L.R.; Petrovitch, H.; Ross, G.W.; Masaki, K.; Hardman, J.; Nelson, J.; Davis, D.; Markesbery, W. Brain aging and midlife tofu consumption. J. Am. Coll. Nutr. 2000, 19, 242–255. [Google Scholar] [CrossRef]
- Lephart, E.D.; West, T.W.; Weber, K.S.; Rhees, R.W.; Setchell, K.D.R.; Adlercreutz, H.; Lund, T.D. Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol. Teratol. 2002, 24, 5–16. [Google Scholar] [CrossRef]
- Lund, T.D.; West, T.W.; Tian, L.Y.; Bu, L.H.; Simmons, D.L.; Setchell, K.D.; Adlercreutz, H.; Lephart, E.D. Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens. BMC Neurosci. 2001, 2, 20. [Google Scholar]
- Lin, H.C.; Peng, C.H.; Huang, C.N.; Chiou, J.Y. Soy-Based Foods Are Negatively Associated with Cognitive Decline in Taiwan’s Elderly. J. Nutr. Sci. Vitaminol. 2018, 64, 335–339. [Google Scholar] [CrossRef]
- Thorp, A.A.; Sinn, N.; Buckley, J.D.; Coates, A.M.; Howe, P.R.C. Soya is oflavone supplementation enhances spatial working memory in men. Br. J. Nutr. 2009, 102, 1348–1354. [Google Scholar] [CrossRef]
- Celec, P.; Ostatníková, D.; Hodosy, J.; Putz, Z.; Kúdela, M. Increased one week soybean consumption affects spatial abilities but not sex hormone status in men. Int. J. Food Sci. Nutr. 2007, 58, 424–428. [Google Scholar] [CrossRef]
- File, S.E.; Jarrett, N.; Fluck, E.; Duffy, R.; Casey, K.; Wiseman, H. Eating soya improves human memory. Psychopharmacology 2001, 157, 430–436. [Google Scholar] [CrossRef]
- Kruijver, F.P.M.; Balesar, R.; Espila, A.M.; Unmehopa, U.A.; Swaab, D.F. Estrogen-receptor-beta distribution in the human hypothalamus: Similarities and differences with ER alpha distribution. J. Comp. Neurol. 2003, 466, 251–277. [Google Scholar] [CrossRef]
- Morito, K.; Hirose, T.; Kinjo, J.; Hirakawa, T.; Okawa, M.; Nohara, T.; Ogawa, S.; Inoue, S.; Muramatsu, M.; Masamune, Y. Interaction of Phytoestrogens with Estrogen Receptors α and β. Biol. Pharm. Bull. 2001, 24, 351–356. [Google Scholar] [CrossRef]
- Atkinson, C.; Skor, H.E.; Fitzgibbons, E.D.; Scholes, D.; Chen, C.; Wähälä, K.; Schwartz, S.M.; Lampe, J.W. Overnight urinary isoflavone excretion in a population of women living in the United States, and its relationship to isoflavone intake. Cancer Epidemiol. Biomark. Prev. 2002, 11, 253–260. [Google Scholar]
- Degen, G.H.; Blaszkewicz, M.; Shi, L.; Buyken, A.E.; Remer, T. Urinary isoflavone phytoestrogens in German children and adolescents—A longitudinal examination in the Donald cohort. Mol. Nutr. Food Res. 2011, 55, 359–367. [Google Scholar] [CrossRef]
- Teitelbaum, S.L.; Britton, J.A.; Calafat, A.M.; Ye, X.; Silva, M.J.; Reidy, J.A.; Galvez, M.P.; Brenner, B.L.; Wolff, M.S. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ. Res. 2008, 106, 257–269. [Google Scholar] [CrossRef]
- Maskarinec, G.; Singh, S.; Meng, L.; Franke, A.A. Dietary soy intake and urinary isoflavone excretion among women from a multiethnic population. Cancer Epidemiol. Biomark. Prev. 1998, 7, 613–619. [Google Scholar]
- French, M.R.; Thompson, L.U.; Hawker, G.A. Validation of a Phytoestrogen Food Frequency Questionnaire with Urinary Concentrations of Isoflavones and Lignan Metabolites in Premenopausal Women. J. Am. Coll. Nutr. 2007, 26, 76–82. [Google Scholar] [CrossRef]
- Darby, D.; Walsh, K.W.; Walsh, K.W. Walsh’s Neuropsychology: A Clinical Approach; Elsevier Churchill Livingstone: Edinburgh/London, UK, 2005. [Google Scholar]
- Lezak, M.D. Neuropsychological Assessment, 3rd ed.; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Piccinin, A.M.; Rabbitt, P.M.A. Contribution of cognitive abilities to performance and improvement on a substitution coding task. Psychol. Aging 1999, 14, 539–551. [Google Scholar] [CrossRef]
- Landete, J.M.; Arqués, J.; Medina, M.; Gaya, P.; de Las Rivas, B.; Muñoz, R. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health. Crit. Rev. Food Sci. Nutr. 2016, 56, 1826–1843. [Google Scholar] [CrossRef]
- López, P.; Sánchez, M.; Perez-Cruz, C.; Velázquez-Villegas, L.A.; Syeda, T.; Aguilar-López, M.; Rocha-Viggiano, A.K.; Del Carmen Silva-Lucero, M.; Torre-Villalvazo, I.; Noriega, L.G.; et al. Long-Term Genistein Consumption Modifies Gut Microbiota, Improving Glucose Metabolism, Metabolic Endotoxaemia and Cognitive Function in Mice Fed a High-Fat Diet. Mol. Nutr. Food Res. 2018, 62, 1800313. [Google Scholar] [CrossRef]
All | Men | Women | ||||
---|---|---|---|---|---|---|
N = 354 | N = 181 | N = 173 | ||||
Characteristic | M (%) | SD | M (%) | SD | M (%) | SD |
Age (years) | 74.10 | 6.26 | 73.5 | 6.03 | 74.74 | 5.46 |
Non-Hispanic White | (71.19) | (70.88) | (71.51) | |||
Education | (40.06) | (39.56) | (40.12) | |||
Body Mass Index (BMI) | 27.41 | 4.57 | 27.39 | 4.13 | 27.43 | 5.01 |
Above Poverty Line (PIR) | (84.46) | (84.62) | (84.30) | |||
Creatinine (mg/dL) * | 104.38 | 62.34 | 121.40 | 62.02 | 86.33 | 57.56 |
Smoke * | (39.27) | (46.15) | (31.98) | |||
Fasted | (63.28) | (66.48) | (59.88) | |||
Speed of Processing * | 41.25 | 17.60 | 39.11 | 16.49 | 43.51 | 18.48 |
Raw Scores (ng/mL) | ||||||
O-DMA | 17.85 | 67.67 | 18.54 | 43.78 | 17.13 | 86.16 |
Daidzein | 115.09 | 249.41 | 145.10 | 312.20 | 83.37 | 152.60 |
Equol | 10.14 | 11.68 | 10.68 | 11.56 | 9.57 | 11.81 |
Genistein | 64.89 | 130.26 | 70.22 | 141.00 | 59.25 | 117.90 |
Enterolactone | 646.24 | 854.33 | 713.50 | 993.60 | 575.10 | 672.20 |
Enterodiol | 58.15 | 71.90 | 59.60 | 72.54 | 56.61 | 71.40 |
Adjusted | ||||||
O-DMA | 0.68 | 2.65 | 0.75 | 2.80 | 0.62 | 2.49 |
Daidzein | 3.83 | 2.83 | 4.10 | 2.90 | 3.54 | 2.73 |
Equol | 2.02 | 1.43 | 2.06 | 1.43 | 1.98 | 1.43 |
Genistein | 3.34 | 2.34 | 3.47 | 2.13 | 3.20 | 2.54 |
Enterolactone | 6.84 | 4.61 | 6.97 | 6.25 | 6.72 | 6.07 |
Enterodiol | 3.93 | 2.50 | 3.99 | 3.62 | 3.87 | 3.49 |
Predictor | Estimate | Std. Error |
Constant | 29.01 *** | 2.84 |
Age | −5.19 *** | 0.82 |
BMI | 1.25 | 0.84 |
Ethnicity | −9.49 *** | 1.99 |
Education | 9.61 *** | 1.64 |
Smoking | −2.52 | 1.61 |
Poverty–Income Ratio | 11.10 *** | 2.23 |
Creatinine | −3.01 | 2.15 |
Fasting status | 2.17 | 1.61 |
Women | 2.96 | 2.13 |
O-Desmethylangolensin | 0.84 | 1.24 |
Daidzein | −0.26 | 2.04 |
Equol | −0.22 | 1.52 |
Genistein | −4.02 * | 2.00 |
Enterolactone | 2.28 | 2.25 |
Enterodiol | −1.03 | 1.82 |
Predictor (Interactions) | ||
O-Desmethylangolensin × Women | −0.58 | 1.82 |
Daidzein × Women | −0.79 | 2.63 |
Equol × Women | −0.42 | 2.02 |
Genistein × Women | 5.04 * | 2.51 |
Enterolactone × Women | −0.04 | 2.88 |
Enterodiol × Women | −3.06 | 2.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alwerdt, J.; Patterson, A.D.; Sliwinski, M.J. Gender Differences in Phytoestrogens and the Relationship with Speed of Processing in Older Adults: A Cross-Sectional Analysis of NHANES, 1999–2002. Nutrients 2019, 11, 1780. https://doi.org/10.3390/nu11081780
Alwerdt J, Patterson AD, Sliwinski MJ. Gender Differences in Phytoestrogens and the Relationship with Speed of Processing in Older Adults: A Cross-Sectional Analysis of NHANES, 1999–2002. Nutrients. 2019; 11(8):1780. https://doi.org/10.3390/nu11081780
Chicago/Turabian StyleAlwerdt, Jessie, Andrew D. Patterson, and Martin J. Sliwinski. 2019. "Gender Differences in Phytoestrogens and the Relationship with Speed of Processing in Older Adults: A Cross-Sectional Analysis of NHANES, 1999–2002" Nutrients 11, no. 8: 1780. https://doi.org/10.3390/nu11081780
APA StyleAlwerdt, J., Patterson, A. D., & Sliwinski, M. J. (2019). Gender Differences in Phytoestrogens and the Relationship with Speed of Processing in Older Adults: A Cross-Sectional Analysis of NHANES, 1999–2002. Nutrients, 11(8), 1780. https://doi.org/10.3390/nu11081780