Hydration, Arginine Vasopressin, and Glucoregulatory Health in Humans: A Critical Perspective
Abstract
:1. Introduction
2. History
3. Current Research
4. Current and Critical Perspectives and Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Perrier, E.T. Shifting Focus: From Hydration for Performance to Hydration for Health. Ann. Nutr. Metab. 2017, 70 (Suppl. 1), 4–12. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Robertson, G.L. Abnormalities of thirst regulation. Kidney Int. 1984, 25, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, S.N. Thirst and hydration: Physiology and consequences of dysfunction. Physiol. Behav. 2010, 100, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.K. The sensory psychobiology of thirst and salt appetite. Med. Sci. Sports Exerc. 2007, 39, 1388–1400. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. AVP: Arginine Vasopressin [Homo Sapiens (Human)]; National Center for Biotechnology Information: Bethesda, MD, USA, 2019.
- Segar, W.E.; Moore, W.W. The regulation of antidiuretic hormone release in man: I. Effects of change in position and ambient temperature on blood ADH levels. J. Clin. Investig. 1968, 47, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- George, C.P.; Messerli, F.H.; Genest, J.; Nowaczynski, W.; Boucher, R.; Kuchel Orofo-Oftega, M. Diurnal variation of plasma vasopressin in man. J. Clin. Endocrinol. Metab. 1975, 41, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Vuong, C.; Van Uum, S.H.; O’Dell, L.E.; Lutfy, K.; Friedman, T.C. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr. Rev. 2010, 31, 98–132. [Google Scholar] [CrossRef]
- Enhorning, S.; Tasevska, I.; Roussel, R.; Bouby, N.; Persson, M.; Burri, P.; Bankir, L.; Melander, O. Effects of hydration on plasma copeptin, glycemia and gluco-regulatory hormones: A water intervention in humans. Eur. J. Nutr. 2019, 58, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Carroll, H.A.; Templeman, I.; Chen, Y.C.; Edinburgh, R.M.; Burch, E.K.; Jewitt, J.T.; Povey, G.; Robinson, T.D.; Dooley, W.L.; Jones, R.; et al. Effect of acute hypohydration on glycemic regulation in healthy adults: A randomized crossover trial. J. Appl. Physiol. (1985) 2019, 126, 422–430. [Google Scholar] [CrossRef]
- Enhorning, S.; Wang, T.J.; Nilsson, P.M.; Almgren, P.; Hedblad, B.; Berglund, G.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Lindholm, E.; et al. Plasma copeptin and the risk of diabetes mellitus. Circulation 2010, 121, 2102–2108. [Google Scholar] [CrossRef]
- Enhorning, S.; Struck, J.; Wirfalt, E.; Hedblad, B.; Morgenthaler, N.G.; Melander, O. Plasma copeptin, a unifying factor behind the metabolic syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E1065–E1072. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G.; Struck, J.; Jochberger, S.; Dunser, M.W. Copeptin: Clinical use of a new biomarker. Trends Endocrinol. Metab. TEM 2008, 19, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.L.; Athar, S. The intraction of blood osmolality and blood volume in regulating plasma vasopressin in man. J. Clin. Endocrinol. Metab. 1976, 42, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.L. The Regulation of Vasopressin Function in Health and Disease. In Proceedings of the 1976 Laurentian Hormone Conference; Academic Press: Cambridge, MA, USA, 1977; pp. 333–385. [Google Scholar] [CrossRef]
- Zerbe, R.L.; Vinicor, F.; Robertson, G.L. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes 1979, 28, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Roussel, R.; Fezeu, L.; Bouby, N.; Balkau, B.; Lantieri, O.; Alhenc-Gelas, F.; Marre, M.; Bankir, L.; D.E.S.I.R. Study Group. Low water intake and risk for new-onset hyperglycemia. Diabetes Care 2011, 34, 2551–2554. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Malik, V.S.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Plain-water intake and risk of type 2 diabetes in young and middle-aged women. Am. J. Clin. Nutr. 2012, 95, 1454–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, H.A.; Davis, M.G.; Papadaki, A. Higher plain water intake is associated with lower type 2 diabetes risk: A cross-sectional study in humans. Nutr. Res. 2015, 35, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Carroll, H.A.; Betts, J.A.; Johnson, L. An investigation into the relationship between plain water intake and glycated Hb (HbA1c): A sex-stratified, cross-sectional analysis of the UK National Diet and Nutrition Survey (2008–2012). Br. J. Nutr. 2016, 116, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Spruce, B.A.; McCulloch, A.J.; Burd, J.; Orskov, H.; Heaton, A.; Baylis, P.H.; Alberti, K.G. The effect of vasopressin infusion on glucose metabolism in man. Clin. Endocrinol. 1985, 22, 463–468. [Google Scholar] [CrossRef]
- Keller, U.; Szinnai, G.; Bilz, S.; Berneis, K. Effects of changes in hydration on protein, glucose and lipid metabolism in man: Impact on health. Eur. J. Clin. Nutr. 2003, 57 (Suppl. 2), S69–S74. [Google Scholar] [CrossRef]
- Jansen, L.T.; Suh, H.G.; Sprong, C.; Adams, J.D.; Butts, C.; Seal, A.; Scott, D.; Melander, O.; Lemetais, G.; Dolci, A.; et al. Hypertonic saline infusion affects glycemic responses following glucose load in healthy men. FASEB J. 2018, 32 (Suppl. 1), 597.4. [Google Scholar]
- Burge, M.R.; Garcia, N.; Qualls, C.R.; Schade, D.S. Differential effects of fasting and dehydration in the pathogenesis of diabetic ketoacidosis. Metab. Clin. Exp. 2001, 50, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Carroll, H.A.; Johnson, L.; Betts, J.A. Effect of hydration status on glycemic control: A pilot study. In Proceedings of the American College of Sports Medicine, Boston, MA, USA, 31 May–4 June 2016. [Google Scholar]
- Johnson, E.C.; Bardis, C.N.; Jansen, L.T.; Adams, J.D.; Kirkland, T.W.; Kavouras, S.A. Reduced water intake deteriorates glucose regulation in patients with type 2 diabetes. Nutr. Res. 2017, 43, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Bergen, S.S., Jr.; Sullivan, R.; Hilton, J.G.; Willis, S.W., Jr.; Van Itallie, T.B. Glycogenolytic effect of vasopressin in the canine liver. Am. J. Physiol. 1960, 199, 136–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, G.Y.; Hems, D.A. Inhibition of fatty acid synthesis and stimulation of glycogen breakdown by vasopressin in the perfused mouse liver. Biochem. J. 1975, 152, 389–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, D.M. Vasopressin and oxytocin: Hypothalamic modulators of the stress response: A review. Psychoneuroendocrinology 1986, 11, 131–139. [Google Scholar] [CrossRef]
- Stachenfeld, N.S. Sex hormone effects on body fluid regulation. Exerc. Sport Sci. Rev. 2008, 36, 152–159. [Google Scholar] [CrossRef]
- Enhorning, S.; Leosdottir, M.; Wallstrom, P.; Gullberg, B.; Berglund, G.; Wirfalt, E.; Melander, O. Relation between human vasopressin 1a gene variance, fat intake, and diabetes. Am. J. Clin. Nutr. 2009, 89, 400–406. [Google Scholar] [CrossRef]
- Enhorning, S.; Sjogren, M.; Hedblad, B.; Nilsson, P.M.; Struck, J.; Melander, O. Genetic vasopressin 1b receptor variance in overweight and diabetes mellitus. Eur. J. Endocrinol. 2016, 174, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Kant, A.K.; Graubard, B.I.; Atchison, E.A. Intakes of plain water, moisture in foods and beverages, and total water in the adult US population--nutritional, meal pattern, and body weight correlates: National Health and Nutrition Examination Surveys 1999–2006. Am. J. Clin. Nutr. 2009, 90, 655–663. [Google Scholar] [CrossRef]
- Tanoue, A. New Topics in Vasopressin Receptors and Approach to Novel Drugs: Effects of Vasopressin Receptor on Regulations of Hormone Secretion and Metabolisms of Glucose, Fat, and Protein. J. Pharmacol. Sci. 2009, 109, 50–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, C.H.; Baylis, P.H.; Malins, J.M. Plasma arginine vasopressin in diabetic ketoacidosis. Diabetologia 1979, 16, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.F.; Sontrop, J.M.; Huang, S.H.; Moist, L.; Bouby, N.; Bankir, L. Hydration and Chronic Kidney Disease Progression: A Critical Review of the Evidence. Am. J. Nephrol. 2016, 43, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Hooton, T.M.; Vecchio, M.; Iroz, A.; Tack, I.; Dornic, Q.; Seksek, I.; Lotan, Y. Effect of Increased Daily Water Intake in Premenopausal Women with Recurrent Urinary Tract Infections: A Randomized Clinical Trial. JAMA Intern. Med. 2018, 178, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Judelson, D.A.; Maresh, C.M.; Yamamoto, L.M.; Farrell, M.J.; Armstrong, L.E.; Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Casa, D.J.; Anderson, J.M. Effect of hydration state on resistance exercise-induced endocrine markers of anabolism, catabolism, and metabolism. J. Appl. Physiol. (1985) 2008, 105, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Haussinger, D.; Lang, F.; Gerok, W. Regulation of cell function by the cellular hydration state. Am. J. Physiol. 1994, 267, E343–355. [Google Scholar] [CrossRef] [PubMed]
- Haussinger, D. The role of cellular hydration in the regulation of cell function. Biochem. J. 1996, 313 Pt 3, 697–710. [Google Scholar] [CrossRef] [Green Version]
- Bisdee, J.T.; Garlick, P.J.; James, W.P.T. Metabolic changes during the menstrual cycle. Br. J. Nutr. 2007, 61, 641. [Google Scholar] [CrossRef]
- Liu, D.; Moberg, E.; Kollind, M.; Lins, P.E.; Adamson, U.; Macdonald, I.A. Arterial, arterialized venous, venous and capillary blood glucose measurements in normal man during hyperinsulinaemic euglycaemia and hypoglycaemia. Diabetologia 1992, 35, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Carroll, H.A.; Templeman, I.; Chen, Y.-C.; Edinburgh, R.M.; Burch, E.K.; Jewitt, J.T.; Povey, G.; Robinson, T.D.; Dooley, W.L.; Rogers, P.J.; et al. The effect of hydration status on glycaemic control and appetite regulation. Ann. Nutr. Metab. 2018, 72 (Suppl. 2), 42–43. [Google Scholar] [CrossRef]
- Shafiee, M.A.; Charest, A.F.; Cheema-Dhadli, S.; Glick, D.N.; Napolova, O.; Roozbeh, J.; Semenova, E.; Sharman, A.; Halperin, M.L. Defining conditions that lead to the retention of water: The importance of the arterial sodium concentration. Kidney Int. 2005, 67, 613–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, J.A.; Fallon, J.K.; Kicman, A.T.; Hutt, A.J.; Cowan, D.A.; Forsling, M. Low-dose MDMA (“ecstasy”) induces vasopressin secretion. Lancet 1998, 351, 1784. [Google Scholar] [CrossRef]
- Simmler, L.D.; Hysek, C.M.; Liechti, M.E. Sex differences in the effects of MDMA (ecstasy) on plasma copeptin in healthy subjects. J. Clin. Endocrinol. Metab. 2011, 96, 2844–2850. [Google Scholar] [CrossRef] [PubMed]
- Wolff, K.; Tsapakis, E.M.; Winstock, A.R.; Hartley, D.; Holt, D.; Forsling, M.L.; Aitchison, K.J. Vasopressin and oxytocin secretion in response to the consumption of ecstasy in a clubbing population. J. Psychopharmacol. 2006, 20, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Baggott, M.J.; Garrison, K.J.; Coyle, J.R.; Galloway, G.P.; Barnes, A.J.; Huestis, M.A.; Mendelson, J.E. MDMA Impairs Response to Water Intake in Healthy Volunteers. Adv. Pharmacol. Sci. 2016, 2016, 2175896. [Google Scholar] [CrossRef]
- Soto-Montenegro, M.L.; Vaquero, J.J.; Arango, C.; Ricaurte, G.; Garcia-Barreno, P.; Desco, M. Effects of MDMA on blood glucose levels and brain glucose metabolism. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 916–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downing, J. The psychological and physiological effects of MDMA on normal volunteers. J. Psychoact. Drugs 1986, 18, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Wolff, K.; Tsapakis, E.M.; Pariante, C.M.; Kerwin, R.W.; Forsling, M.L.; Aitchison, K.J. Pharmacogenetic studies of change in cortisol on ecstasy (MDMA) consumption. J. Psychopharmacol. 2012, 26, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Gross, P. Clinical management of SIADH. Ther. Adv. Endocrinol. Metab. 2012, 3, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Hartung, T.K.; Schofield, E.; Short, A.I.; Parr, M.J.A.; Henry, J.A. Hyponatraemic states following 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) ingestion. QJM-Int. J. Med. 2002, 95, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.L. Diabetes Insipidus. Endocrinol. Metab. Clin. N. Am. 1995, 24, 549–572. [Google Scholar] [CrossRef]
- Morello, J.P.; Bichet, D.G. Nephrogenic diabetes insipidus. Annu. Rev. Physiol. 2001, 63, 607–630. [Google Scholar] [CrossRef] [PubMed]
- Allan, F.N.; Rowntree, L.G. The Association of Diabetes Insipidus and Diabetes Mellitus. Endocrinology 1931, 15, 97–106. [Google Scholar] [CrossRef]
- Chu, J.Y.; Lee, L.T.; Lai, C.H.; Vaudry, H.; Chan, Y.S.; Yung, W.H.; Chow, B.K. Secretin as a neurohypophysial factor regulating body water homeostasis. Proc. Natl. Acad. Sci. USA 2009, 106, 15961–15966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author, Year | Study Design | Participants | Method/Assessment of HYPO | Level of HYPO Achieved | Glucoregulatory Assessment | Findings |
---|---|---|---|---|---|---|
OBSERVATIONAL STUDIES | ||||||
Zerbe et al., 1979 [17] | Cross-sectional | n = 15 men, 13 women with uncontrolled diabetes | AVP concentrations | N/A | Disease status | ↑ AVP associated with poor gluco-regulation |
Enhorning et al., 2010 [12] | Cross-sectional and longitudinal | n = 1418 healthy, 364 IFG, 205 T2D men, 2284 healthy, 311 IFG, 160 T2D women | Copeptin concentrations | N/A | T2D risk | Cross-sectional: ↑ copeptin associated with ↑ T2D prevalence and IR Longitudinal: ↑ copeptin associated with ↑ T2D (healthy at baseline OR Q1 vs. Q4 2.64; IFG at baseline OR Q1 vs. Q4 3.48) |
Roussel et al., 2011 [18] | Longitudinal | n = 1707 healthy men, 1908 healthy women | Plain water intake | N/A | Risk of new-onset hyperglycaemia | ↑ Water intake associated with ↓ risk of hyperglycaemia (<0.5 vs. <1.0 and >1.0 L/d OR 0.68–0.79) |
Pan et al., 2012 [19] | Longitudinal | n = 82,902 healthy women | Plain water intake | N/A | T2D risk | × <1 vs. categories up to ≥6 cups/d RR 0.93–1.09 |
Carroll et al., 2015 [20] | Cross-sectional | n = 60 healthy men, 78 healthy women | Plain water intake | N/A | T2D risk score | ↑ 1 cup water/d associated with 0.72 ↓ T2D risk score |
Carroll et al., 2016 [21] | Cross-sectional | n = 456 healthy men, 579 health women | Plain water intake | N/A | HbA1c | Men: ↑ 1 cup water/d associated with ↓ 0.04% HbA1c Women: ↑ 1 cup/d associated with × HbA1c |
INFUSION STUDIES | ||||||
Spruce et al., 1985 [22] | Randomised crossover trial | n = 6 healthy men | IV low then high dose AVP vs. (isotonic?) IV saline | ↑ AVP by ≥15 pmol∙L−1 | Fasted glucose kinetics | ↑ Arterialised venous blood glucose concentration (low dose AVP Δ ~0.3, high dose Δ ~0.8 mmol∙L−1) × insulin concentration ↑ glucagon concentration (Δ ~41 pg∙L−1) |
Keller et al., 2003 [23] | Randomised crossover trial | n = 10 healthy men | HypoOsm: IV 4 μg desmopressin + 200 mL/h water → IV 4 μg desmopressin + IV mL/h 0.4% saline; vs. HyperOsm: IV 1 mL/kg/h 2% saline → IV 200 mL/h 5%; vs. IsoOsm: ad libitum water ingestion | HypoOsm: ↓ Posm ~ 21 mOsm/kg; ↑ body mass (~1.6 kg); ↑ urine output (~1.6 L) HyperOsm: ↑ Posm ~ 13 mOsm/kg; × body mass or urine output IsoOsm: × Posm, body mass | Fasting glucose concentrations and hyperinsulinaemic-euglycaemic clamping | ↑ Glucose concentration after HyperOsm (5.1 mmol∙L−1) vs. HypoOsm (4.7 mmol∙L−1) vs. IsoOsm (4.9 mmol∙L−1) ↓ Insulin concentration HypoOsm vs. IsoOsm and HyperOsm ↑ Endogenous glucose appearance during HyperOsm vs. IsoOsm and HypoOsm |
Jansen et al., 2018 [abstract only] [24] | Randomised crossover trial | n = 30 healthy men | HyperOsm: IV 3.0% saline vs. IsoOsm: IV 0.9% saline | HyperOsm: ↑ Posm ~ 18 mOsm/kg IsoOsm: ↑ Posm ~ 3 mOsm/kg | OGTT gluco-regulatory profile | ↑ Glucose concentration at 60 (157 vs. 145 mg∙dL−1) and 90 (139 vs. 128 mg∙dL−1) min HyperOsm vs. IsoOsm |
WATER INTAKE MANIPULATION STUDIES | ||||||
Burge et al., 2001 [25] | Controlled before-and-after study | n = 10 men, 5 women with T1D during insulin withdrawal | Control (euhydrated) phase followed by fluid restriction (750 mL/d) + oral 5 mg metolazone + IV 40–120 mg furosemide | ↓ Body mass (4.1%); ↓ body water% (~3%) | Fasted insulin withdrawn gluco-regulatory profile (5 h) | ↑ Glucose (6.00 vs. 5.88 mmol∙L−1), glucagon (66 vs. 58 ng∙L−1), cortisol (497 vs. 384 nmol∙L−1) concentrations HYPO vs. control phase × Insulin concentration ↓ Glucosuria (13.9 vs. 27.6 g) HYPO vs. control phase |
Carroll et al., 2016 [26] | Pilot randomised crossover trial | n = 4 healthy men, 1 healthy woman | HYPO: 45 min sauna + fluid restriction (≤200 mL water between sauna and testing) Control (euhydration): 45 min sauna + ≥ 150% sweat losses in water between sauna and testing | ↓ Body mass (~1.3%), ↑ urine osmolality (↑ ~463 mOsm/kg vs. control) | Fasted and OGTT glucose and lactate concentrations | ↑ Glucose concentrations at 45 (5.88 vs. 4.74 mmol∙L−1) and 60 (4.87 vs. 4.09 mmol∙L−1) HYPO vs. control ↑ Glucose iAUC (72.9 vs. 66.6 mmol × 120 min∙L−1) HYPO vs. control × Lactate concentration |
Johnson et al., 2017 [27] | Randomised crossover trial | n = 9 men with T2D during medication withdrawal | HYPO: 24–72 h pre-trial, 1 L/d + medication withdrawal → 24 h pre-trial, 0.5 L water + medication withdrawal Control (euhydration): 72 h pre-trial 3 L/d water + medication withdrawal | ↓ Body mass (1.5%), ↑ urine specific gravity (~0.018), urine osmolality (~482 mOsm/kg), Posm (~10 mOsm/kg), serum sodium (~3 mEq/L) HYPO vs. control | Fasted and OGTT gluco-regulatory profile | × Fasted glucose, insulin, cortisol, plasma renin activity, aldosterone concentrations ↑ Postprandial glucose concentration HYPO vs. control (AUC 1822 vs. 1689 mmol∙L−1∙min−1) × Postprandial insulin, plasma renin activity, or aldosterone concentrations ↓ Postprandial cortisol concentration control vs. HYPO (interaction p = 0.017, but no differences between time points) |
Enhorning et al., 2019 [10] | Randomised crossover trial | n = 9 healthy men, 28 healthy women | (i) Acute 1 L (vs. 10 mL) water intake and copeptin (ii) 1 week 3 L/d added water intake and copeptin vs. control (habitual intake) | N/A | Fasted and OGTT gluco-regulatory profile | Acute: × glucose or insulin concentrations during OGTT but ↓ glucagon concentration 1 week intervention: × fasted glucose, insulin, glucagon concentrations |
Carroll et al., 2019 [11] | Randomised crossover trial | n = 8 healthy men, 8 healthy women | HYPO: 1 h heat tent + 3 mL/kg body mass/~34 h water Control (euhydration): 1 h heat tent + 150% sweat losses + 40 mL/kg lean body mass in water | ↓ Body mass (1.9%), CSMA (365 mm2), muscle water (~11.1 g/kg vs. control), ↑ urine specific gravity (~0.010), urine osmolality (~442 mOsm/kg), serum osmolality (9 mOsm/kg), copeptin (14.32 pmol∙L−1) × In above after control condition | Fasted and OGTT gluco-regulatory profile | × Fasted or postprandial glucose, insulin, ACTH, or cortisol concentrations HYPO vs. control |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carroll, H.A.; James, L.J. Hydration, Arginine Vasopressin, and Glucoregulatory Health in Humans: A Critical Perspective. Nutrients 2019, 11, 1201. https://doi.org/10.3390/nu11061201
Carroll HA, James LJ. Hydration, Arginine Vasopressin, and Glucoregulatory Health in Humans: A Critical Perspective. Nutrients. 2019; 11(6):1201. https://doi.org/10.3390/nu11061201
Chicago/Turabian StyleCarroll, Harriet A., and Lewis J. James. 2019. "Hydration, Arginine Vasopressin, and Glucoregulatory Health in Humans: A Critical Perspective" Nutrients 11, no. 6: 1201. https://doi.org/10.3390/nu11061201
APA StyleCarroll, H. A., & James, L. J. (2019). Hydration, Arginine Vasopressin, and Glucoregulatory Health in Humans: A Critical Perspective. Nutrients, 11(6), 1201. https://doi.org/10.3390/nu11061201