Apple Preload Halved the Postprandial Glycaemic Response of Rice Meal in Healthy Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Subjects
2.3. Study Design
2.4. Preparation of Test Meals
2.5. Blood Glucose Measurement
2.6. Measurements of Satiety
2.7. Statistical Analysis
3. Results
3.1. Subject Enrolment
3.2. Subject Characteristics
3.3. Blood Glucose
3.4. Subjective Satiety
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shahdadian, F.; Saneei, P.; Milajerdi, A.; Esmaillzadeh, A. Dietary glycemic index, glycemic load, and risk of mortality from all causes and cardiovascular diseases: A systematic review and dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2019, 110, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Bhupathiraju, S.N.; Tobias, D.K.; Malik, V.S.; Pan, A.; Hruby, A.; Manson, J.E.; Willett, W.C.; Hu, F.B. Glycemic index, glycemic load, and risk of type 2 diabetes: Results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 2014, 100, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Sieri, S.; Krogh, V.D. Dietary glycemic index, glycemic load and cancer: An overview of the literature. Nutr. Metab. Cardiovasc. Dis. 2016, 27, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Zaenglein, A.L.; Pathy, A.L.; Schlosser, B.J.; Alikhan, A.; Baldwin, H.E.; Berson, D.S.; Bowe, W.P.; Graber, E.M.; Harper, J.C.; Kang, S.; et al. Guidelines of care for the management of acne vulgaris. J. Am. Acad. Dermatol. 2016, 74, 945–973. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Norstedt, G.; Hu, Z.; Yu, P.; Li, D.; Li, J.; Yu, Q.; Sederholm, M.; Yu, D. Effects of a Macro-Nutrient Preload on Type 2 Diabetic Patients. Front. Endocrinol. 2015, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- Bjørnshave, A.; Hermansen, K.; Holst, J. Pre-Meal Effect of Whey Proteins on Metabolic Parameters in Subjects with and without Type 2 Diabetes: A Randomized, Crossover Trial. Nutrients 2018, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Watson, L.E.; Phillips, L.K.; Wu, T.Z.; Bound, M.J.; Checklin, H.L.; Grivell, J.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. A whey/guar “preload” improves postprandial glycaemia and glycated haemoglobin levels in type 2 diabetes: A 12-week, single-blind, randomized, placebo-controlled trial. Diabetes Obes. Metab. 2019, 21, 930–938. [Google Scholar] [CrossRef]
- Ma, J.; Stevens, J.E.; Cukier, K.; Maddox, A.F.; Wishart, J.M.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Effects of a Protein Preload on Gastric Emptying, Glycemia, and Gut Hormones After a Carbohydrate Meal in Diet-Controlled Type 2 Diabetes. Diabetes Care 2009, 32, 1600–1602. [Google Scholar] [CrossRef]
- Heacock, P.M.; Hertzler, S.R.; Wolf, B.W. Fructose prefeeding reduces the glycemic response to a high-glycemic index, starchy food in humans. J. Nutr. 2002, 132, 2601–2604. [Google Scholar] [CrossRef]
- Brouns, F. WHO Guideline: “Sugars intake for adults and children” raises some question marks. Agro Food Ind. Hi-Tech 2015, 26, 34–36. [Google Scholar]
- Millen, B.E.; Abrams, S.; Adams-Campbell, L.; Anderson, C.A.M.; Brenna, J.T.; Campbell, W.W.; Clinton, S.; Hu, F.; Nelson, M.; Neuhouser, M.L.; et al. The 2015 Dietary Guidelines Advisory Committee Scientific Report: Development and Major Conclusions. Adv. Nutr. 2016, 7, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.L.C. Dietary Guidelines in Singapore. Asia Pac. J. Clin. Nutr. 2011, 20, 472–476. [Google Scholar] [PubMed]
- Wang, S.; Lay, S.; Yu, H.; Shen, S. Dietary Guidelines for Chinese Residents (2016): Comments and comparisons. J. Zhejiang Univ. Sci. B 2016, 17, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Lustig, R.H.; Schmidt, L.A.; Brindis, C.D. The toxic truth about sugar. Nature 2012, 482, 27–29. [Google Scholar] [CrossRef]
- Carvalho, C.T.; de Souza, M.Z.; Arbex, N.; Sá, D.; de Souza Rodrigues, L.C.D.S.; de Sá, D.A.R.; de Sá, L.B.P.C.; Arbex, A.K. The Role of Fructose in Public Health and Obesity. Health 2018, 10, 434–441. [Google Scholar] [CrossRef]
- Dornas, W.C.; de Lima, W.G.; Pedrosa, M.L.; Silva, M.E. Health Implications of High-Fructose Intake and Current Research. Adv. Nutr. 2015, 6, 729–737. [Google Scholar] [CrossRef]
- Angelino, D.; Godos, J.; Ghelfi, F.; Tieri, M.; Titta, L.; Lafranconi, A.; Marventano, S.; Alonzo, E.; Gambera, A.; Sciacca, S.; et al. Fruit and vegetable consumption and health outcomes: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2019, 70, 652–667. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Zhu, R.; Fan, Z.; Dong, Y.; Liu, M.; Wang, L.; Pan, H. Postprandial Glycaemic Responses of Dried Fruit-Containing Meals in Healthy Adults: Results from a Randomised Trial. Nutrients 2018, 10, 694. [Google Scholar] [CrossRef]
- Lubransky, A.; Monro, J.; Mishra, S.; Yu, H.; Haszard, J.; Venn, B. Postprandial Glycaemic, Hormonal and Satiety Responses to Rice and Kiwifruit Preloads in Chinese Adults: A Randomised Controlled Crossover Trial. Nutrients 2018, 10, 1110. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Srichaikul, K.; Kendall, C.W.C.; Sievenpiper, J.L.; Abdulnour, S.; Mirrahimi, A.; Meneses, C.; Nishi, S.; He, X.; Lee, S.; et al. The relation of low glycaemic index fruit consumption to glycaemic control and risk factors for coronary heart disease in type 2 diabetes. Diabetologia 2011, 54, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed]
- Choo, V.L.; Viguiliouk, E.; Blanco Mejia, S.; Cozma, A.I.; Khan, T.A.; Ha, V.; Wolever, T.M.S.; Leiter, L.A.; Vuksan, V.; Kendall, C.W.C.; et al. Food sources of fructose-containing sugars and glycaemic control: Systematic review and meta-analysis of controlled intervention studies. BMJ 2018, 363, k4644. [Google Scholar] [CrossRef] [PubMed]
- Alperet, D.J.; Butler, L.M.; Koh, W.; Yuan, J.; van Dam, R.M. Influence of temperate, subtropical, and tropical fruit consumption on risk of type 2 diabetes in an Asian population. Am. J. Clin. Nutr. 2017, 105, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yang, B.; Tang, J.; Jiang, J.; Li, D. Apple and pear consumption and type 2 diabetes mellitus risk: A meta-analysis of prospective cohort studies. Food Funct. 2017, 8, 927–934. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Evans, R.A.; Frese, M.; Romero, J.; Cunningham, J.H.; Mills, K.E. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 506–518. [Google Scholar] [CrossRef]
- Cozma, A.I.; Sievenpiper, J.L.; de Souza, R.J.; Chiavaroli, L.; Ha, V.; Wang, D.D.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Di Buono, M.; et al. Effect of fructose on glycemic control in diabetes: A systematic review and meta-analysis of controlled feeding trials. Diabetes Care. 2012, 35, 1611–1620. [Google Scholar] [CrossRef]
- Shao, S.; Xu, W.; Tao, J.; Zhang, J.; Zhou, X.; Yuan, G.; Yang, Y.; Zhang, J.; Zhang, H.; Xu, Q.; et al. Glycemic index, glycemic load, and glycemic response to pomelo in patients with type 2 diabetes. J. Huazhong Univ. Sci. Technol. Med. Sci. 2017, 37, 711–718. [Google Scholar] [CrossRef]
- Lott, J.A.; Turner, K. Evaluation of Trinders Glucose Oxidase Method for Measuring Glucose in Serum and Urine. Clin. Chem. 1975, 21, 1754–1760. [Google Scholar]
- Koch, T.R.; Nipper, H.C. Evaluation of Automated Glucose Oxidase Methods for Serum Glucose—Comparison to Hexokinase of a Colorimetric and an Electrometric Method. Clin. Chim. Acta 1977, 78, 315–322. [Google Scholar] [CrossRef]
- Blundell, J.; de Graaf, C.; Hulshof, T.; Jebb, S.; Livingstone, B.; Lluch, A.; Mela, D.; Salah, S.; Schuring, E.; van der Knaap, H.; et al. Appetite control: Methodological aspects of the evaluation of foods. Obes. Rev. 2010, 11, 251–270. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Tan, K.W.J.; Han, C.M.S.; Leow, M.K.; Henry, C.J. Impact of preloading either dairy or soy milk on postprandial glycemia, insulinemia and gastric emptying in healthy adults. Eur. J. Nutr. 2017, 56, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scares in assessment of appetite sensations in single test meal studies. Int. J. Obes. 2000, 24, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Brand-Miller, J.C.; Stockmann, K.; Atkinson, F.; Petocz, P.; Denyer, G. Glycemic index, postprandial glycemia, and the shape of the curve in healthy subjects: Analysis of a database of more than 1000 foods. Am. J. Clin. Nutr. 2009, 89, 97–105. [Google Scholar] [CrossRef]
- Wolever, T. Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. Br. J. Nutr. 2004, 91, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.C.; Cherrington, A.D.; Mann, S.L.; Davis, S.N. Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults. J. Clin. Endocr. Metab. 2000, 85, 4515–4519. [Google Scholar] [CrossRef]
- Moore, M.C.; Davis, S.N.; Mann, S.L.; Cherrington, A.D. Acute Fructose Administration Improves Oral Glucose Tolerance in Adults with Type 2 Diabetes. Diabetes Care 2001, 24, 1882–1887. [Google Scholar] [CrossRef] [Green Version]
- Yau, A.M.W.; McLaughlin, J.; Maughan, R.J.; Gilmore, W.; Evans, G.H. The Effect of Short-Term Dietary Fructose Supplementation on Gastric Emptying Rate and Gastrointestinal Hormone Responses in Healthy Men. Nutrients 2017, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Sievenpiper, J.L.; Chiavaroli, L.; de Souza, R.J.; Mirrahimi, A.; Cozma, A.I.; Ha, V.; Wang, D.; Yu, M.E.; Carleton, A.J.; Beyene, J.; et al. Catalytic’ doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: A small meta-analysis of randomised controlled feeding trials. Br. J. Nutr. 2012, 108, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Edwards, H.; Hedderley, D.; Podd, J.; Monro, J. Kiwifruit Non-Sugar Components Reduce Glycaemic Response to Co-Ingested Cereal in Humans. Nutrients 2017, 9, 1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunstein, C.R.; Noronha, J.C.; Glenn, A.J.; Viguiliouk, E.; Noseworthy, R.; Khan, T.A.; Au-Yeung, F.; Mejia, S.B.; Wolever, T.M.S.; Josse, R.G.; et al. A Double-Blind, Randomized Controlled, Acute Feeding Equivalence Trial of Small, Catalytic Doses of Fructose and Allulose on Postprandial Blood Glucose Metabolism in Healthy Participants: The Fructose and Allulose Catalytic Effects (FACE) Trial. Nutrients 2018, 10, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geidl-Flueck, B.; Gerber, P.A. Insights into the Hexose Liver MetabolismGlucose versus Fructose. Nutrients 2017, 9, 1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhavan, T.; Luhovyy, B.L.; Panahi, S.; Kubant, R.; Brown, P.H.; Anderson, G.H. Mechanism of action of pre-meal consumption of whey protein on glycemic control in young adults. J. Nutr. Biochem. 2014, 25, 36–43. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, B.R.; Bound, M.J.; Checklin, H.L.; Bellon, M.; Little, T.J.; Young, R.L.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans. Am. J. Clin. Nutr. 2012, 95, 78–83. [Google Scholar] [CrossRef]
- Adam, C.L.; Thomson, L.M.; Williams, P.A.; Ross, A.W. Soluble dietary fibre (pectin) increases satiety and decreases adiposity in fat rats on a high fat diet. Proc. Nutr. Soc. 2015, 74, E140. [Google Scholar] [CrossRef] [Green Version]
- Barrett, A.H.; Farhadi, N.F.; Smith, T.J. Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins—A review of efficacy and mechanisms. LWT Food Sci. Technol. 2018, 87, 394–399. [Google Scholar] [CrossRef]
- Yau, A.M.W.; McLaughlin, J.; Maughan, R.J.; Gilmore, W.; Evans, G.H. Short-term dietary supplementation with fructose accelerates gastric emptying of a fructose but not a glucose solution. Nutrition 2014, 30, 1344–1348. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Krop, E.M.; Hetherington, M.M.; Nekitsing, C.; Miquel, S.; Postelnicu, L.; Sarkar, A. Influence of oral processing on appetite and food intake—A systematic review and meta-analysis. Appetite 2018, 125, 253–269. [Google Scholar] [CrossRef]
- Miquel-Kergoat, S.; Azais-Braesco, V.; Burton-Freeman, B.; Hetherington, M.M. Effects of chewing on appetite, food intake and gut hormones: A systematic review and meta-analysis. Physiol. Behav. 2015, 151, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, M.R.; Marfella, R.; Barbieri, M.; Boccardi, V.; Vestini, F.; Lettieri, B.; Canonico, S.; Paolisso, G. Relationships Between Daily Acute Glucose Fluctuations and Cognitive Performance Among Aged Type 2 Diabetic Patients. Diabetes Care 2010, 33, 2169–2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Polished Rice (g) | Apple (g) | AC 2 (g) | Protein (g) | Fat (g) | Dietary Fiber (g) | Meal Size 3 (g) | Energy (kcal) | ||
---|---|---|---|---|---|---|---|---|---|---|
Starch | Glucose | Fructose | ||||||||
Glucose | - | - | - | 50.0 | - | - | - | - | 258.5 | 200.0 |
Rice | 176.0 | - | 50.0 | - | - | 6.2 | 0.5 | 0.7 | 258.5 | 228.8 |
A+R | 115.7 | 142.8 | 35.0 | 6.7 | 8.3 | 4.7 | 0.9 | 1.4 | 258.5 | 227.0 |
PA+R | 115.7 | 142.8 | 35.0 | 6.7 | 8.3 | 4.7 | 0.9 | 1.4 | 258.5 | 227.0 |
PSS+R | 115.7 | - | 35.0 | 6.7 | 8.3 | 4.3 | 0.4 | 0.5 | 258.5 | 220.8 |
Characteristics | Value | Reference Values | |
---|---|---|---|
Mean | SD | ||
Number of participants (n) | 18 | - | - |
Age (year) | 23.6 | 1.1 | - |
Body height (cm) | 165.3 | 4.4 | - |
Body weight (kg) | 54.2 | 4.9 | - |
BMI (kg/m2) | 20.3 | 1.6 | 18.0~23.9 |
Fat mass (%) | 25.7 | 3.0 | 17.0~30.0 |
Basal metabolism rate (BMR) (kcal/day) | 1242.1 | 51.6 | 1210 |
Fasting blood glucose (mmol/L) | 5.3 | 0.2 | 3.9~6.1 |
Sample | iAUC0–120 (mmol/L·2 h) | iAUC120–210 (mmol/L·1.5 h) | GI | Incremental Peak of Glucose (mmol/L) | Incremental Low of Glucose (mmol/L) | Peak Time (min) | Low Time (min) | MAGE0-240 (mmol/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | |
Glucose | 276.7 a | 16.3 | 32.4 a | 6.9 | 100 | − | 4.4 a | 0.2 | −0.8 a | 0.1 | 35 ab | 2 | 185 ab | 10 | 5.2 a | 0.2 |
Rice | 220.0 b | 14.0 | 40.5 ab | 7.0 | 82 a | 6 | 3.7 b | 0.1 | −0.1 b | 0.1 | 34 a | 2 | 193 a | 9 | 3.8 b | 0.1 |
A+R | 170.6 c | 10.2 | 20.6 a | 6.2 | 64 b | 4 | 3.1 c | 0.2 | −0.2 b | 0.1 | 35 ab | 2 | 193 a | 9 | 3.3 c | 0.1 |
PA+R | 108.9 d | 13.0 | 39.1 ab | 9.5 | 40 c | 4 | 1.9 d | 0.1 | −0.1 b | 0.1 | 41 ab | 5 | 127 c | 12 | 2.0 d | 0.1 |
PSS+R | 176.9 c | 14.0 | 59.0 b | 9.7 | 69 ab | 7 | 2.6 e | 0.2 | 0.0 b | 0.1 | 46 b | 6 | 154 bc | 16 | 2.6 e | 0.2 |
Sample | iAUC0–60 (mm·1 h) | iAUC60–120 (mm·1 h) | iAUC120–210 (mm·1.5 h) | iAUC0–210 (mm·3.5 h) | Incremental Peak of Satiety (mm) | Incremental Low of Satiety (mm) | First Negative Time* (min) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | |
Rice | 2176.7 a | 148.0 | 1485.1 ab | 164.2 | 945.8 a | 223.4 | 4607.6 ab | 497.0 | 45.8 a | 2.6 | −3.8 a | 3.2 | 183 a | 11 |
A+R | 2342.7 a | 134.7 | 1883.6 a | 154.2 | 1448.2 a | 239.3 | 5674.4 a | 495.9 | 46.9 a | 2.7 | 5.3 b | 2.7 | 200 a | 6 |
PA+R | 1938.4 a | 124.0 | 1380.2 b | 118.8 | 851.4 a | 198.4 | 4169.9 b | 370.5 | 40.0 a | 2.7 | −3.3 a | 2.6 | 180 a | 10 |
PASS+R | 2073.7 a | 128.9 | 1671.2 ab | 162.4 | 1018.9 a | 204.4 | 4763.8 ab | 466.1 | 41.8 a | 2.3 | −1.7 ab | 2.8 | 186 a | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Zhao, W.; Wang, L.; Fan, Z.; Zhu, R.; Wu, Y.; Zhou, Y. Apple Preload Halved the Postprandial Glycaemic Response of Rice Meal in Healthy Subjects. Nutrients 2019, 11, 2912. https://doi.org/10.3390/nu11122912
Lu J, Zhao W, Wang L, Fan Z, Zhu R, Wu Y, Zhou Y. Apple Preload Halved the Postprandial Glycaemic Response of Rice Meal in Healthy Subjects. Nutrients. 2019; 11(12):2912. https://doi.org/10.3390/nu11122912
Chicago/Turabian StyleLu, Jiacan, Wenqi Zhao, Linlin Wang, Zhihong Fan, Ruixin Zhu, Yixue Wu, and Ying Zhou. 2019. "Apple Preload Halved the Postprandial Glycaemic Response of Rice Meal in Healthy Subjects" Nutrients 11, no. 12: 2912. https://doi.org/10.3390/nu11122912
APA StyleLu, J., Zhao, W., Wang, L., Fan, Z., Zhu, R., Wu, Y., & Zhou, Y. (2019). Apple Preload Halved the Postprandial Glycaemic Response of Rice Meal in Healthy Subjects. Nutrients, 11(12), 2912. https://doi.org/10.3390/nu11122912