Effects of Moringa oleifera on Glycaemia and Insulin Levels: A Review of Animal and Human Studies
Abstract
:1. Introduction
2. MO Tree Parts and Overall Mechanisms of Action
2.1. MO Fruit, Seed, and Oil
2.2. Leaves
2.3. Roots and Barks
2.4. Mechanisms of Action of MO
3. Preclinical Evidence of MO Effects on Glucose and Insulin
4. Clinical Evidence of MO Effects on Glucose and Insulin
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera Leaves: An overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef]
- Popoola, J.O.; Obembe, O.O. Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. J. Ethnopharmacol. 2013, 150, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Afolayan, A.J.; Muchenje, V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res. Int. 2018, 106, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phyther. Res. 2007, 21, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Jaja-Chimedza, A.; Graf, B.L.; Simmler, C.; Kim, Y.; Kuhn, P.; Pauli, G.F.; Raskin, I. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS ONE 2017, 12, e0182658. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.L.; Garber, A.J. Metabolic Syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef]
- González-Reyes, R.E.; Aliev, G.; Ávila-Rodrigues, M.; Barreto, G.E. Alterations in glucose metabolism on cognition: A possible link between diabetes and dementia. Curr. Pharm. Des. 2016, 22, 812–818. [Google Scholar] [CrossRef]
- Feldman, E.L.; Nave, K.; Jensen, T.S.; Bennett, D.L.H. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 2017, 93, 1296–1313. [Google Scholar] [CrossRef]
- Azad, S.B.; Ansari, P.; Azam, S.; Hossain, S.M.; Shahid, M.I.; Hasan, M.; Hannan, J.M.A. Anti-hyperglycaemic activity of Moringa oleifera is partly mediated by carbohydrase inhibition and glucose-fibre binding. Biosci. Rep. 2017, 37, BSR20170059. [Google Scholar] [CrossRef]
- Abd El Latif, A.; El Bialy, B.E.S.; Mahboub, H.D.; Abd Eldaim, M.A. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of β cells and reduction of pyruvate carboxylase expression. Biochem. Cell Biol. 2014, 92, 413–419. [Google Scholar] [CrossRef]
- Igado, O.O.; Olopade, J.O. A Review on the possible neuroprotective effects of Moringa oleifera leaf extract. Niger. J. Physiol. Sci. 2017, 31, 183–187. [Google Scholar] [PubMed]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int. J. Mol. Sci. 2016, 17, 2141. [Google Scholar] [CrossRef] [PubMed]
- Guevara, A.P.; Vargas, C.; Sakurai, H.; Fujiwara, Y.; Hashimoto, K.; Maoka, T.; Kozuka, M.; Ito, Y.; Tokuda, H.; Nishino, H. An antitumor promoter from Moringa oleifera Lam. Mutat. Res. 1999, 440, 181–188. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M. Promising features of Moringa oleifera oil: Recent updates and perspectives. Lipids Health Dis. 2016, 15, 212. [Google Scholar] [CrossRef]
- Mehta, K.; Balaraman, R.; Amin, A.H.; Bafna, P.A.; Gulati, O.D. Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits. J. Ethnopharmacol. 2003, 86, 191–195. [Google Scholar] [CrossRef]
- Kumar, N.A.; Pari, L. Antioxidant action of Moringa oleifera Lam. (Drumstick) against antitubercular drugs induced lipid peroxidation in rats. J. Med. Food 2003, 6, 255–259. [Google Scholar] [CrossRef]
- Olson, M.E.; Sankaran, R.P.; Fahey, J.W.; Grusak, M.A.; Odee, D.; Nouman, W. Leaf protein and mineral concentrations across the “Miracle Tree” genus Moringa. PLoS ONE 2016, 11, e0159782. [Google Scholar] [CrossRef]
- Kou, X.; Li, B.; Olayanju, J.B.; Drake, J.M.; Chen, N. Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients 2018, 10, 343. [Google Scholar] [CrossRef]
- Mahdi, J.H.; Khan, N.K.A.; Asmawi, M.Z.B.; Mahmud, R.; A/L Murugaiyah, V. In vivo anti-arthritic and anti-nociceptive effects of ethanol extract of Moringa oleifera leaves on complete Freund’s adjuvant (CFA)-induced arthritis in rats. Integr. Med. Res. 2018, 7, 85–94. [Google Scholar] [CrossRef]
- He, T.; Huang, Y.; Huang, Y.; Wang, X.; Hu, J.; Sheng, J. Structural elucidation and antioxidant activity of an arabinogalactan from the leaves of Moringa oleifera. Int. J. Biol. Macromol. 2018, 112, 126–133. [Google Scholar] [CrossRef]
- Feustel, S.; Ayón-Pérez, F.; Sandoval-Rodriguez, A.; Rodríguez-Echevarría, R.; Contreras-Salinas, H.; Armendáriz-Borunda, J.; Sánchez-Orozco, L. Protective effects of Moringa oleifera on HBV genotypes C and H transiently transfected Huh7 cells. J. Immunol. Res. 2017, 2017, 6063850. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, A.; Cabrera, O.; Morales, O.; Mollinedo, P.; Mendia, P. Pharmacological properties of Moringa oleifera. 1: Preliminary screening for antimicrobial activity. J. Ethnopharmacol. 1991, 33, 213–216. [Google Scholar] [CrossRef]
- Vergara-Jimenez, M.; Almatrafi, M.M.; Fernandez, M.L. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Igwilo, I.O.; Ezeonu, F.C.; Ezekwesili-Ofili, J.O.; Igwilo, S.; Nsofor, C.; Abdulsalami, M.; Obi, E. Anti-nutritional factors in the roots of a local cultivar of Moringa oleifera (Lam). Pak. J. Biol. Sci. 2014, 17, 114–117. [Google Scholar] [CrossRef]
- Choudhary, M.K.; Bodakhe, S.H.; Gupta, S.K. Assessment of the antiulcer potential of Moringa oleifera root-bark extract in rats. J. Acupunct. Meridian Stud. 2013, 6, 214–220. [Google Scholar] [CrossRef]
- Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Dhakarey, R.; Upadhyay, G.; Singh, H.B. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. 2009, 47, 1109–1116. [Google Scholar] [CrossRef]
- Ndong, M.; Uehara, M.; Katsumata, S.; Suzuki, K. Effects of oral administration of Moringa oleifera Lam on glucose tolerance in Goto-Kakizaki and Wistar rats. J. Clin. Biochem. Nutr. 2007, 40, 229–233. [Google Scholar] [CrossRef]
- Kellett, G.L.; Brot-Laroche, E. Apical GLUT2: A major pathway of intestinal sugar absorption. Diabetes 2005, 54, 3056–3062. [Google Scholar] [CrossRef]
- Dyer, J.; Wood, I.S.; Palejwala, A.; Ellis, A.; Shirazi-Beechey, S.P. Expression of monosaccharide transporters in intestine of diabetic humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 282, G241–G248. [Google Scholar] [CrossRef]
- Meneses, M.J.; Silva, B.M.; Sousa, M.; Sá, R.; Oliveira, P.F.; Alves, M.G. Antidiabetic drugs: Mechanisms of action and potential outcomes on cellular metabolism. Curr. Pharm. Des. 2015, 21, 3606–3620. [Google Scholar] [CrossRef]
- Kwon, O.; Eck, P.; Chen, S.; Corpe, C.P.; Lee, J.; Kruhlak, M.; Levine, M. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007, 21, 366–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Kwon, O.; Chen, S.; Daruwala, R.; Eck, P.; Park, J.B.; Levine, M. Flavonoid Inhibition of Sodium-dependent Vitamin C Transporter 1 (SVCT1) and Glucose Transporter Isoform 2 (GLUT2), Intestinal Transporters for Vitamin C and Glucose. J. Biol. Chem. 2002, 277, 15252–15260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eid, H.M.; Nachar, A.; Thong, F.; Sweeney, G.; Haddad, P.S. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn. Mag. 2015, 11, 74–81. [Google Scholar] [PubMed] [Green Version]
- Adisakwattana, S.; Chanathong, B. Alpha-glucosidase inhibitory activity and lipid-lowering mechanisms of Moringa oleifera leaf extract. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 803–808. [Google Scholar]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J.; Gross, R.; Petit, P.; et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic b-cells against oxidative damage via the ERK1/2. Br. J. Pharmacol. 2010, 161, 799–814. [Google Scholar] [CrossRef] [Green Version]
- Ríos, J.L.; Francini, F.; Schinella, G.R. Natural products for the treatment of Type 2 Diabetes Mellitus. Planta Med. 2015, 81, 975–994. [Google Scholar] [CrossRef] [Green Version]
- Pitschmann, A.; Zehl, M.; Atanasov, A.G.; Dirsch, V.M.; Heiss, E.; Glasl, S. Walnut leaf extract inhibits PTP1B and enhances glucose-uptake in vitro. J. Ethnopharmacol. 2014, 152, 599–602. [Google Scholar] [CrossRef]
- Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003, 135, 357–364. [Google Scholar] [CrossRef]
- Mbikay, M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front. Pharmacol. 2012, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Wolff, S.P.; Jiang, Z.Y.; Hunt, J.V. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med. 1991, 10, 339–352. [Google Scholar] [CrossRef]
- Nunthanawanich, P.; Sompong, W.; Sirikwanpong, S.; Mäkynen, K.; Adisakwattana, S.; Dahlan, W.; Ngamukote, S. Moringa oleifera aqueous leaf extract inhibits reducing monosaccharide-induced protein glycation and oxidation of bovine serum albumin. Springerplus 2016, 5, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G. Kinetics of glycoxidation of bovine serum albumin by methylglyoxal and glyoxal and its prevention by various compounds. Molecules 2014, 19, 4880–4896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.R.; Vijayakumar, M.; Mathela, C.S.; Rao, C.V. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem. Toxicol. 2009, 47, 2196–2201. [Google Scholar] [CrossRef] [PubMed]
- Sangkitikomol, W.; Rocejanasaroj, A.; Tencomnao, T. Effect of Moringa oleifera on advanced glycation end-product formation and lipid metabolism gene expression in HepG2 cells. Genet. Mol. Res. 2014, 13, 723–735. [Google Scholar] [CrossRef]
- Moyo, B.; Oyedemi, S.; Masika, P.J.; Muchenje, V. Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Sci. 2012, 91, 441–447. [Google Scholar] [CrossRef]
- Sosa-Gutiérrez, J.A.; Valdéz-Solana, M.A.; Forbes-Hernández, T.Y.; Avitia-Domínguez, C.I.; Garcia-Vargas, G.G.; Salas-Pacheco, J.M.; Flores-Herrera, O.; Téllez-Valencia, A.; Battino, M.; Sierra-Campos, E. Effects of Moringa oleifera leaves extract on high glucose-induced metabolic changes in HepG2 cells. Biology (Basel) 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Chumark, P.; Khunawat, P.; Sanvarinda, Y.; Phornchirasilp, S.; Morales, N.P.; Phivthong-Ngam, L.; Ratanachammong, P.; Srisawat, S.; Pongrapeeporn, K.U. The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. J. Ethnopharmacol. 2008, 116, 439–446. [Google Scholar] [CrossRef]
- Alhakmani, F.; Kumar, S.; Khan, S.A. Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac. J. Trop. Biomed. 2013, 3, 623–627. [Google Scholar] [CrossRef] [Green Version]
- Giacoppo, S.; Rajan, T.S.; De Nicola, G.R.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. The isothiocyanate isolated from Moringa oleifera shows potent anti-inflammatory activity in the treatment of murine subacute Parkinson’s disease. Rejuvenation Res. 2017, 20, 50–63. [Google Scholar] [CrossRef]
- Xu, Y.-B.; Chen, G.-L.; Guo, M.-Q. Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants 2019, 8, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, E.J.; Cheenpracha, S.; Chang, L.C.; Kondratyuk, T.P.; Pezzuto, J.M. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2′-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera. Nutr. Cancer 2012, 63, 971–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-J.; Jeong, Y.-J.; Lee, T.-S.; Park, Y.-Y.; Chae, W.-G.; Chung, I.-K.; Chang, H.-W.; Kim, C.-H.; Choi, Y.-H.; Kim, W.-J.; et al. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κB activation in RAW264.7 cells. Am. J. Chin. Med. 2013, 41, 1109–1123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur. J. Pharmacol. 2011, 670, 325–332. [Google Scholar] [CrossRef]
- Randriamboavonjy, J.I.; Loirand, G.; Vaillant, N.; Lauzier, B.; Derbré, S.; Michalet, S.; Pacaud, P.; Tesse, A. Cardiac protective effects of Moringa oleifera seeds in spontaneous hypertensive rats. Am. J. Hypertens. 2016, 29, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Botta, M.; Audano, M.; Sahebkar, A.; Sirtori, C.R.; Mitro, N.; Ruscica, M. PPAR agonists and metabolic syndrome: An established role? Int. J. Mol. Sci. 2018, 19, 1197. [Google Scholar] [CrossRef] [Green Version]
- Villaruel-López, A.; López-de la Mora, D.; Vasquez-Paulino, O.; Puebla-Mora, A.; Torres-vitela, M.; Guerrero-Quiroz, L.; Nuño, K. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement. Altern. Med. 2018, 18, 127. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Ríos-Silva, M.; Huerta, M.; Cárdenas, Y.; Bricio-Barrios, J.A.; Díaz-Reval, M.I.; Urzúa, Z.; Huerta-Trujillo, M.; López-Quesada, K.; Trujillo, X. Effects of Moringa oleifera leaf powder on metabolic syndrome induced in male Wistar rats: A preliminary study. J. Int. Med. Res. 2018, 46, 3327–3336. [Google Scholar] [CrossRef] [Green Version]
- Paula, P.C.; Sousa, D.O.; Oliveira, J.T.; Carvalho, A.F.; Alves, B.G.; Pereira, M.L.; Farias, D.F.; Viana, M.P.; Santos, F.A.; Morais, T.C.; et al. A protein isolate from Moringa oleifera leaves has hypoglycemic and antioxidant effects in alloxan-induced diabetic mice. Molecules 2017, 22, 271. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, D.; Rai, P.K.; Kumar, A.; Mehta, S.; Watal, G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J. Ethnopharmacol. 2009, 123, 392–396. [Google Scholar] [CrossRef]
- Yassa, H.D.; Tohamy, A.F. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats. Acta Histochem. 2014, 116, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Abd Eldaim, M.A.; Shaban Abd Elrasoul, A.; Abd Elaziz, S.A. An aqueous extract from Moringa oleifera leaves ameliorates hepatotoxicity in alloxan-induced diabetic rats. Biochem. Cell Biol. 2017, 95, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Parveen, R.; Chester, K.; Parveen, S.; Ahmad, S. Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and in vivo GC-MS metabolomics. Front. Pharmacol. 2017, 8, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olayaki, L.A.; Irekpita, J.E.; Yakubu, M.T.; Ojo, O.O. Methanolic extract of Moringa oleifera leaves improves glucose tolerance, glycogen synthesis and lipid metabolism in alloxan-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 583–593. [Google Scholar] [CrossRef]
- Omodanisi, E.I.; Aboua, Y.G.; Chegou, N.N.; Oguntibeju, O.O. Hepatoprotective, Antihyperlipidemic, and Anti-inflammatory Activity of Moringa oleifera in Diabetic-induced Damage in Male Wistar Rats. Pharmacogn. Res. 2017, 9, 182–187. [Google Scholar]
- Sánchez-Muñoz, M.A.; Valdez-Solana, M.A.; Campos-Almazán, M.I.; Flores-Herrera, O.; Esparza-Perusquía, M.; Olvera-Sánchez, S.; García-Arenas, G.; Avitia-Domínguez, C.; Téllez-Valencia, A.; Sierra-Campos, E. Streptozotocin-Induced Adaptive Modification of Mitochondrial Supercomplexes in Liver of Wistar Rats and the Protective Effect of Moringa oleifera Lam. Biochem. Res. Int. 2018, 2018, 5681081. [Google Scholar]
- Olurishe, C.; Kwanashie, H.; Zezi, A.; Danjuma, N.; Mohammed, B. Chronic administration of ethanol leaf extract of Moringa oleifera Lam. (Moringaceae) may compromise glycaemic efficacy of Sitagliptin with no significant effect in retinopathy in a diabetic rat model. J. Ethnopharmacol. 2016, 194, 895–903. [Google Scholar] [CrossRef]
- Tang, Y.; Choi, E.J.; Han, W.C.; Oh, M.; Kim, J.; Hwang, J.-Y.; Park, P.-J.; Moon, S.-H.; Kim, Y.-S.; Kim, E.-K. Moringa oleifera from Cambodia ameliorates oxidative stress, hyperglycemia, and kidney dysfunction in Type 2 diabetic mice. J. Med. Food 2017, 20, 502–510. [Google Scholar] [CrossRef]
- Al-Malki, A.L.; El Rabey, H.A. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. BioMed Res. Int. 2015, 2015, 381040. [Google Scholar] [CrossRef] [Green Version]
- Jaja-Chimedza, A.; Zhang, L.; Wol, K.; Graf, B.L.; Kuhn, P.; Moskal, K.; Carmouche, R.; Newman, S.; Salbaum, J.M.; Raskin, I. A dietary isothiocyanate-enriched moringa (Moringa oleifera) seed extract improves glucose tolerance in a high-fat-diet mouse model and modulates the gut microbiome. J. Funct. Foods 2018, 47, 376–385. [Google Scholar] [CrossRef]
- Wang, F.; Zhong, H.; Chen, W.; Liu, Q.; Li, C. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds. Nat. Prod. Res. 2017, 31, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- Rafaat, K.; Hdaib, F. Neuroprotective effects of Moringa oleifera: Bio-guided GC-MS identification of active compounds in diabetic neuropathic pain model. Chin. J. Integr. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Mathur, M.; Bajaj, V.K.; Katariya, P.; Yadav, S.; Kamal, R.; Gupta, R.S. Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J. Diabetes 2012, 4, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Olurishe, C.O.; Kwanashie, H.O.; Zezi, A.U.; Danjuma, N.M.; Mohammed, B. Sitagliptin-Moringa oleifera coadministration did not delay the progression nor ameliorated functional and morphological anomalies in alloxan-induced diabetic nephropathy. Indian J. Pharmacol. 2017, 49, 366–373. [Google Scholar]
- Cazarolli, L.H.; Zanatta, L.; Jorge, A.P.; De Sousa, E.; Horst, H.; Woehl, V.M.; Pizzolatti, M.G.; Szpoganicz, B.; Silva, F.R. Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes. Chem. Biol. Interact. 2006, 163, 177–191. [Google Scholar] [CrossRef]
- Amelia, D.; Santoso, B.; Purwanto, B.; Miftahussurur, M.; Joewono, H.T.; Budiono. Effects of Moringa oleifera on insulin levels and folliculogenesis in polycystic ovary syndrome model with insulin resistance. Immunol. Endocr. Metab. Agents Med. Chem. 2018, 18, 22–30. [Google Scholar] [CrossRef]
- Kushwaha, S.; Chawla, P.; Kochhar, A. Effect of supplementation of drumstick (Moringa oleifera) and amaranth (Amaranthus tricolor) leaves powder on antioxidant profile and oxidative status among postmenopausal women. J. Food Sci. Technol. 2014, 51, 3464–3469. [Google Scholar] [CrossRef] [Green Version]
- Anthanont, P.; Lumlerdkij, N.; Akarasereenont, P.; Vannasaeng, S.; Sriwijitkamol, A. Moringa Oleifera leaf increases insulin secretion after single dose administration: A preliminary study in healthy subjects. J. Med. Assoc. Thail. 2016, 99, 308–313. [Google Scholar]
- Ngamukote, S.; Khannongpho, T.; Siriwatanapaiboon, M.; Dahlan, W.; Adisakwattana, S. Moringa Oleifera leaf extract increases plasma antioxidant status associated with reduced plasma malondialdehyde concentration without hypoglycemia in fasting healthy volunteers. Chin. J. Integr. Med. 2016, 1–6. [Google Scholar] [CrossRef]
- Taweerutchana, R.; Lumlerdkij, N.; Vannasaeng, S.; Akarasereenont, P.; Sriwijitkamol, A. Effect of Moringa oleifera leaf capsules on glycemic control in therapy-naive Type 2 diabetes patients: A randomized placebo controlled study. Evid. Based Complement. Altern. Med. 2017, 2017, 6581390. [Google Scholar] [CrossRef] [Green Version]
- Mozo, R.N.; Caole-Ang, I. The effects of Malunggay (Moringa oleifera) leaves capsule supplements on high specificity C-reactive protein and hemoglobin A1c levels of diabetic patients in Ospital ng Maynila Medical Center: A prospective cohort study. Philipp. J. Intern. Med. 2015, 53, 1–10. [Google Scholar]
- Leone, A.; Bertoli, S.; Di Lello, S.; Bassoli, A.; Ravasenghi, S.; Borgonovo, G.; Forlani, F.; Battezzati, A. Effect of Moringa oleifera leaf powder on postprandial blood glucose response: In vivo study on Saharawi people living in refugee camps. Nutrients 2018, 10, 1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Animal Model | MO Tree Part | MO Treatment | Results of MO Treatment | Ref | ||
---|---|---|---|---|---|---|
Blood Glucose | Insulin Levels | Other Effects | ||||
Goto-Kakizaki (GK) diabetic rats and nondiabetic Wistar rats used as controls | Leaf powder (in a glucose solution). | Treatment time: 120 min Con: glucose 2 g/kg MO: glucose 2 g/kg + 200 mg/kg MO | MO decreased BG at 20, 30, 45, and 60 min (p < 0.05) as compared with controls. | Not measured | Food was retained for longer periods in the MO treated animals. | [27] |
Alloxan-induced diabetic Sprague-Dawley rats | Leaf powder, | Treatment time: 8 weeks Con: Untreated Con MO: 50 mg/kg MO Diabetic Con: Untreated Diabetic MO: 50 mg/kg MO Diabetic Exp: 50 mg/kg MO + glibenclamide 600 µg/Kg | At the second week, a significant reduction was observed in BG in diabetic rats treated with MO, from 300 mg/dL to 100 mg/dL as compared with controls. | Not measured | No change in enumeration of lactic acid bacteria. | [57] |
Wistar rats with metabolic syndrome (MS) induced with high-fat diet | Leaf powder | Treatment time: 3 weeks Con: Untreated Preventive: 700 mg/Kg/day MO for 3 weeks before MS induction Treatment: 700 mg/Kg/day MO for 3 weeks after MS induction | Reduction in fasting glucose levels in preventive group compared with controls (80.09 ± 5.5 vs. 103 ± 3.8 mg/dL, p < 0.05); Reduction in OGTT in MS group compared with controls (12,616 ± 316.8 vs. 138,22.5 ± 213.93 mg/dL/120 min, p < 0.05). | No changes in treated rats | Significant reduction in triglyceride levels and in abdominal circumference. | [58] |
Alloxan-induced diabetic mice | Leaf powder | Treatment time: 1, 3 and 5 h Diabetic Con: Untreated Diabetic positive Con: Insulin 0.7 IU/kg Diabetic MO: 100, 300, and 500 mg/kg MO | Reduction in diabetic rats at 5 h with 300 and 500 mg/kg MO (p < 0.01). 500 mg/kg dose presented significant BG reductions of 34.3%, 60.9%, and 66.4% after 1, 3, and 5 h, respectively. | No changes in diabetic mice | Significant increase in catalase, no changes in superoxide dismutase and significant reduction in MDA. | [59] |
STZ-induced diabetic Wistar rats | Aqueous leaf extract | Treatment time: 3 weeks Con: Untreated Con MO: 100, 200, and 300 mg/kg MO Diabetic MO: 100, 200, and 300 mg/kg MO Diabetic positive Con: Glipizide 2.5 mg/kg | Significant reduction in fasting BG of diabetic rats treated with MO. Reduction after 1, 2, and 3 weeks with 200 mg was 25.9%, 53.5%, and 69.2%, respectively. | Not measured | Improvement of Hb and total protein levels. | [60] |
Alloxan-induced diabetic Wistar rats | Aqueous leaf extract | Treatment time: 18 days Con: Untreated Diabetic Con: Untreated Con MO: 250 mg/kg MO Diabetic MO: 250 mg/kg MO | Reduction in diabetic rats. MO treatment reduced BG from 400 mg/dL to 200 mg/dL, p < 0.05. | Not measured | Significant reduction in triglycerides and MDA. | [10] |
STZ-induced diabetic Sprague-Dawley rats | Aqueous leaf extract | Treatment time: 4 weeks Con: Untreated Con MO: 200 mg/kg MO Diabetic Con: Untreated Diabetic MO: 200 mg/kg MO | Reduction in BG of diabetic rats, from 266.50 ± 2.17 mg/dL to 148.83 ± 2.44 mg/dL after 200 mg of MO treatment, p < 0.001. | Not measured | Significant rescue of GSH and reduction of MDA. | [61] |
Alloxan-induced diabetic Wistar rats | Aqueous leaf extract | Treatment time: 18 days Con: Untreated Diabetic Con: Untreated Con MO: 250 mg/kg MO Diabetic MO: 250 mg/kg MO | Reduction in diabetic rats treated with MO. Blood glucose levels lowered 3.6-fold, as compared with controls, p < 0.05. | Not measured | Normalization of SOD and catalase, and significant increase in GSH and reduction of MDA. | [62] |
STZ-induced diabetic Wistar rats.High-fat diet induced diabetes C57BL/6 mice. | Aqueous leaf extract | Treatment time: 3 weeks Con: Untreated Con MO: 100 mg/kg (rats); 200 mg/kg (mice) Diabetic Con: Untreated Diabetic MO: 100 mg/kg (rats); 200 mg/kg (mice) Diabetic positive Con: metformin 42 mg/kg | Acute and chronic significant reduction in diabetic rats and mice. In rats, a reduction of 53.2% in fasting glucose after 4 h of oral administration of MO, whereas reduction of 41.7% was observed after 8 h, on day 1 and day 2, p < 0.05. In mice, a reduction of 34.23% on day 2, and 58.69% on day 3, p < 0.01. | Not measured | Improvement of hepatic functions. Significant increase in HDL. Significant decrease in cholesterol, VLDL, LDL, and triglycerides. | [63] |
Alloxan-induced diabetic Wistar rats | Methanolic leaf extract | Treatment time: 6 weeks Con: Untreated Diabetic Con: Untreated Diabetic MO: 300 or 600 mg/kg MO Diabetic positive Con: metformin 100 mg/kg | Reduction in diabetic rats. BG was reduced by 76% at 300 mg/kg and 84% at 600 mg/kg, p < 0.001. In addition, glucose tolerance was improved by 56% and 57% with 300 or 600 mg/kg of MO, respectively, p < 0.001. | Significant increase in diabetic rats. Serum insulin levels increased 1.3–1.7-fold, p < 0.01. | Significant reductions in triglycerides, total cholesterol and LDL. Significant increase in HDL. | [64] |
STZ-induced diabetic Wistar rats | Methanolic leaf extract | Treatment time: 6 weeks Con: Untreated Con MO: 250 mg/kg MO Diabetic Con: Untreated Diabetic MO: 250 mg/kg MO | Reduction in diabetic rats from 30.96 to 27.6 mmol/L, p < 0.05. | Not measured | Reduction in the activities of hepatic enzymes. Significant reduction of cholesterol, LDL, IL-6, TNF and MCP-1. Significant increase in HDL. | [65] |
STZ-induced diabetic Wistar rats | Methanolic leaf extract | Treatment time: 3 weeks Con: Untreated Diabetic Con: Untreated Diabetic MO: 200 mg/kg/day MO | Reduction in BG levels in diabetic rats from 229 ± 9.05 mg/dL to 86 ± 4.2 mg/dL, p < 0.05. | Not measured | Oxidative stress attenuation and normalization of mitochondrial function in liver. | [66] |
Alloxan-induced diabetic Wistar rats | Ethanolic leaf extract | Treatment time: 3 weeks Con: Untreated Diabetic Con: Untreated Diabetic positive Con: Sitagliptin 50 mg/kg Diabetic MO: 300 mg/kg MO Sitagliptin + MO: 50 mg/kg + 300 mg/kg MO | Acute but not chronic significant reduction in diabetic rats. The co-administration of sitagliptin and MO produced a decrease of 60% (90.00 ± 9.77 mg/dL, p < 0.01) in fasting BG after 2 weeks, as compared with day 1 levels (226.85 ± 21.81 mg/dl). No significant reduction at 4 weeks (38%, 138.57 ± 15.66 mg/dL). | No changes in diabetic rats | No changes in hyperglycemic retinopathy. | [67] |
STZ-induced diabetic Long Evan rats | Ethanolic leaf extract | Treatment time: 120 min Diabetic Con: Untreated Diabetic MO: 250 mg/kg MO Diabetic positive Con: Glibenclamide 0.5 mg/kg | Reduction in diabetic rats (from ~6.5 to ~5.5 mmol/L, p < 0.05). | No changes in diabetic rats | - | [9] |
C57BLKS/J Iar-+Leprdb/+Ledprdb and C57BLKS/J Iar-m+/Leprdb mice | Separate ethanolic extracts from leaves, seeds, and stem | Treatment time: 5 weeks Con: Untreated MO: 150 mg/kg MO Metformin: 150 mg/kg | Reduction in diabetic mice (only studied in leaves extract). Reduction in fasting BG from 483 to 312 mg/dL, p < 0.05. | Significant increase in diabetic mice (only studied in leaves extract). Increased insulin levels from 946 ± 92 to 1678 ± 268 pg/mL, p < 0.05. | Significant decrease in triglycerides and LDL. Decreased expression of inflammatory markers in the kidneys. | [68] |
STZ-induced diabetic Albino rats | Seed powder | Treatment time: 4 weeks Con: Untreated Diabetic Con: Untreated Diabetic MO: 50 or 100 mg/kg MO for 4 weeks | Reduction in diabetic rats from 266 to 148 mg/dL, p < 0.05. | Not measured | Significant decrease in HbA1C. Significant reduction in lipid peroxide. Significant increase in antioxidant enzymes. Significant decrease in IL-6. Improvement of urinary and kidney functions. | [69] |
C57BL/6J mice fed with very high-fat (VHF) or low-fat diet (LF) | Ethanolic Seeds extract | Treatment time: 12 weeks VHF: Untreated VHF + MO: MO mixed with ad libitum diet LF: Untreated LF + MO: MO mixed with ad libitum diet | Reduction in VHF-fed mice at 2 weeks from 500 to 250 ng/dL, p < 0.05. | Not measured | Reduced body weight, reduced inflammatory gene expression, increased antioxidant gene expression, and antibiotic-like restructuring of the gut microbiota. | [70] |
STZ-induced diabetic ICR mice | Compounds extracted from seeds | Treatment time 2 weeks Con: Untreated Diabetic Con: Untreated Diabetic MO: 20 mg/kg per MO compound | Reduction in diabetic mice (p < 0.05). | Not measured | - | [71] |
Alloxan-induced Swiss-Webster mice | N-hexane seeds extract | Treatment time: 8 days Con: Untreated Con MO: 40, 60, and 80 mg/kg MO Diabetic MO: 40, 60, and 80 mg/kg MO Diabetic beta-sitosterol: 18, 25, and 35 mg/kg | Significant reduction in diabetic mice (both in acute <6 h, and in subchronic treatment, up to 8 days). MO doses of 40, 60, and 80 mg/kg, shown a decrease of BG after 6 h of 49.2% (~130 mg/dL, p < 0.05), 53.4% (~115 mg/dL, p < 0.05), and 60.6% (~100 mg/dL, p < 0.05), respectively, as compared with controls (~240 mg/dL). Treatment with MO at day 8 showed BG reduction of 55.1% (~110 mg/dL, p < 0.05) with 40 mg/kg, 62.0% (~100 mg/dL) with 60 mg/kg, and 70.1% (~70 mg/dL, p < 0.05) with 80 mg/kg, as compared with controls (~250 mg/dL). | Significant increase in diabetic mice (8 weeks after subchronic MO treatment). Treatment with 40 mg/kg showed an increase to ~2.7 mg/L (p < 0.05), with 60 mg/kg to ~3 mg/L (p < 0.05), and with 80 mg/kg to ~3.7 mg/L (p < 0.05), compared with controls (1.5 mg/L). | Inhibition of alpha-glucosidase activity, increase in antioxidant activity, and reduction in HbA1C levels. Improvement of diabetic neuropathy with significant decrease in tail-flick and hot plate latencies, and significant attenuation of static mechanical allodynia. | [72] |
STZ-induced diabetic Wistar rats | Methanolic fruit extract | Treatment time: 3 weeks Con: Untreated Diabetic Con: Untreated Con + MO: 150 or 300 mg/kg MO Diabetic + MO: 150 or 300 mg/kg MO Diabetic positive Con: Glibenclamide 0.3 mg/kg | Reduction in diabetic rats treated with both 150 mg/kg MO (261.28 ± 13.20 to 213.37 ± 28.36 mg/dL, p < 0.05) and 300 mg/kg MO (261.8 ± 13.20 to 162.37 ± 22.78 mg/dL, p < 0.05). | Significant increase in diabetic rats treated with both 150 mg/kg MO (9.14 ± 1.11 to 12.21 ± 0.35 μU/mL, p < 0.05) and 300 mg/kg (9.14 ± 1.11 to 13.31 ± 0.78 μU/mL, p < 0.05). | Increases in protein levels, SOD, GSH, and catalase activity. Significant decrease in lipid peroxidation | [73] |
Condition (Type of Study) | Participants | MO Tree Part | MO Treatment (Duration) | Results of MO Treatment | Ref | |
---|---|---|---|---|---|---|
Blood Glucose | Other Effects | |||||
Postmenopausal women (Randomized controlled trial) | 30 females; age range 45–55 years | Leaf powder | 7 g daily for 3 months | Reduction from a baseline of 125.6 ± 9.15 to 106.7 ± 7.23 mg/dL (p ≤ 0.01) in fasting BG levels. | Insulin not measured. Significant increase in Hb. Significant increase in antioxidant agents. | [77] |
Healthy subjects (Quasi-experimental study) | 5 females, 5 males; age range 20–40 years | Leaf powder | 0 g (baseline), 1 g (first dose after 2 weeks), 2 g (second dose after 2 weeks) and 4 g (third dose after 2 weeks). | No significant changes. | Significant increase in plasma insulin 6 h after MO ingestion. Insulin levels with MO 0 g, 1 g, 2 g, and 4 g were 2.3 ± 0.9, 2.7 ± 1.0, 3.3 ± 1.4, and 4.1 ± 1.7 μU/mL, respectively (p = 0.024 and p = 0.011 for high dose vs. baseline and high dose vs. low dose, respectively). No changes in BUN, creatinine, ALT or AST. | [78] |
Healthy subjects (Randomized crossover design study) | 6 females, 4 males; age average 22.2 ± 0.2 years | Aqueous Leaf extract | 500 mg on the first visit and 500 mg on the second visit, 2 weeks later. | No significant changes. | Insulin not measured.Significant increase in antioxidant capacity. Significant reduction in MDA. | [79] |
Type 2 DM(Prospective randomized placebo-controlled study) | 9 females, 7 males; age range 20–70 years | Leaf powder capsules | 4 g daily before breakfast and dinner for 1 month. | No significant changes. | Insulin not measured. No significant difference in HbA1C. No changes in BUN, creatinine, ALT or AST. | [80] |
DM (type not specified)(Prospective quasi experimental study) | 48 females, 12 males; age range 19–65 years | Leaf powder capsules | 500 mg capsule (3 times/day) for 12 weeks | Glycaemia not reported, but significant reduction in HbA1c in MO-treated patients. | Insulin not measured. Significant reduction in high specificity C-Reactive Protein, in MO-treated patients. | [81] |
Type 2 DM and healthy subjects (Randomized controlled trial) | 17 DM (9 females, 8 males); 10 healthy (6 females, 4 males) | Leaf powder | 20 g once | Significant reduction in glycaemia up to 150 min after intake. The mean glycemic meal response was lower with 20 g MO (268 ± 18 mg/dL) than that obtained with Con (296 ± 17 mg/dL, p < 0.001) in diabetic subjects. | Insulin not measured. Significant reduction in α-amylase activity. | [82] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Sánchez, K.; Garay-Jaramillo, E.; González-Reyes, R.E. Effects of Moringa oleifera on Glycaemia and Insulin Levels: A Review of Animal and Human Studies. Nutrients 2019, 11, 2907. https://doi.org/10.3390/nu11122907
Vargas-Sánchez K, Garay-Jaramillo E, González-Reyes RE. Effects of Moringa oleifera on Glycaemia and Insulin Levels: A Review of Animal and Human Studies. Nutrients. 2019; 11(12):2907. https://doi.org/10.3390/nu11122907
Chicago/Turabian StyleVargas-Sánchez, Karina, Edwin Garay-Jaramillo, and Rodrigo E. González-Reyes. 2019. "Effects of Moringa oleifera on Glycaemia and Insulin Levels: A Review of Animal and Human Studies" Nutrients 11, no. 12: 2907. https://doi.org/10.3390/nu11122907
APA StyleVargas-Sánchez, K., Garay-Jaramillo, E., & González-Reyes, R. E. (2019). Effects of Moringa oleifera on Glycaemia and Insulin Levels: A Review of Animal and Human Studies. Nutrients, 11(12), 2907. https://doi.org/10.3390/nu11122907