Low Calorie Sweeteners Differ in Their Physiological Effects in Humans
Abstract
:1. Introduction
2. Efficacy for Weight Loss
2.1. Evidence from Human Prospective Cohort Studies
2.2. Evidence from Human Randomized Controlled Trials (RCTs)
3. Sweet Taste Receptor
3.1. Sweet Taste Receptors in the Oral Cavity
3.2. Sweet Taste Receptors outside the Oral Cavity
4. Brain Activation
5. Microbiota
6. Appetite
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grocock, C.; Grainger, S. Apicius: A Critical Edition with an Introduction and English Translation; Prospect Books: London, UK, 2006. [Google Scholar]
- Schiffman, S.S.; Rother, K.I. Sucralose, A Synthetic Organochlorine Sweetener: Overview of Biological Issues. J. Toxicol. Environ. Health Part B 2013, 16, 399–451. [Google Scholar] [CrossRef]
- Swithers, S.E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 2013, 24, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Panel on Food Additives and Nutrient Sources Added to Foodmill. Scientific Opinion on the re-evaluation of aspartame (E 951) as a food additive. EFSA J. 2013, 11, 3496. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Raposo, A.; Aranceta-Bartrina, J.; Varela-Moreiras, G.; Logue, C.; Laviada, H.; Socolovsky, S.; Perez-Rodrigo, C.; Aldrete-Velasco, J.A.; Meneses Sierra, E.; et al. Libero(-)American Consensus on Low- and No-Calorie Sweeteners: Safety, Nutritional Aspects and Benefits in Food and Beverages. Nutrients 2018, 10, 818. [Google Scholar] [CrossRef]
- Roberts, A. The safety and regulatory process for low calorie sweeteners in the United States. Physiol. Behav. 2016, 164, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Kroger, M.; Meister, K.; Kava, R. Low-calorie Sweeteners and Other Sugar Substitutes: A Review of the Safety Issues. Compr. Rev. Food Sci. Food Saf. 2006, 5, 35–47. [Google Scholar] [CrossRef]
- He Feng, J.; Markandu Nirmala, D.; Coltart, R.; Barron, J.; MacGregor Graham, A. Effect of Short-Term Supplementation of Potassium Chloride and Potassium Citrate on Blood Pressure in Hypertensives. Hypertension 2005, 45, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Rust, P.; Ekmekcioglu, C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. Adv. Exp. Med. Biol. 2017, 956, 61–84. [Google Scholar] [CrossRef] [PubMed]
- USDA. Scientific Report of the 2015 Dietary Guidelines Advisory Committee Report. Available online: https://health.gov/dietaryguidelines/2015-scientific-report/pdfs/scientific-report-of-the-2015-dietary-guidelines-advisory-committee.pdf (accessed on 10 July 2019).
- Johnson, R.K.; Lichtenstein, A.H.; Anderson, C.A.M.; Carson, J.A.; Despres, J.-P.; Hu, F.B.; Kris-Etherton, P.M.; Otten, J.J.; Towfighi, A.; Wylie-Rosett, J.; et al. Low-Calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory from the American Heart Association. Circulation 2018, 138, e126–e140. [Google Scholar] [CrossRef]
- Fitch, C.; Kathryn, K.S.; Academy of Nutrition and Dietetics. Position of the Academy of Nutrition and Dietetics: Use of Nutritive and Nonnutritive Sweeteners. J. Acad. Nutr. Diet. 2012, 112, 739–758. [Google Scholar] [CrossRef]
- Gougeon, R.; Spidel, M.; Lee, K.; Field, C.J. The Current Canadian Diabetes Association Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada Canadian Diabetes Association National Nutrition Committee Technical Review: Non-Nutritive Intense Sweeteners in Diabetes Management. Can. J. Diabetes 2004, 28, 385–399. [Google Scholar]
- Rogers, P.J.; Hogenkamp, P.S.; de Graaf, C.; Higgs, S.; Lluch, A.; Ness, A.R.; Penfold, C.; Perry, R.; Putz, P.; Yeomans, M.R.; et al. Does Low-Energy Sweetener Consumption Affect Energy Intake and Body Weight? A Systematic Review, Including Meta-Analyses, of the Evidence from Human and Animal Studies. Int. J. Obes. 2016, 40, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Perez, V. Low-Calorie Sweeteners and Body Weight and Composition: A Meta-Analysis of Randomized Controlled Trials and Prospective Cohort Studies. Am. J. Clin. Nutr. 2014, 100, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Abou-Setta, A.M.; Chauhan, B.F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Jeyaraman, M.M.; Reid, A.E.; Fiander, M.; et al. Nonnutritive Sweeteners and Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Prospective Cohort Studies. CMAJ 2017, 189, E929–939. [Google Scholar] [CrossRef] [PubMed]
- Toews, I.; Lohner, S.; de Gaudry, D.K.; Sommer, H.; Meerpohl, J.J. Association between Intake of Non-Sugar Sweeteners and Health Outcomes: Systematic Review and Meta-Analyses of Randomised and Non-Randomised Controlled Trials and Observational Studies. BMJ 2019, 364, k4718. [Google Scholar] [CrossRef]
- Fowler, S.P.; Williams, K.; Resendez, R.G.; Hunt, K.J.; Hazuda, H.P.; Stern, M.P. Fueling the Obesity Epidemic? Artificially Sweetened Beverage Use and Long-Term Weight Gain. Obesity 2008, 16, 1894–1900. [Google Scholar] [CrossRef]
- Holt, G.M.; Owen, L.J.; Till, S.; Cheng, Y.; Grant, V.A.; Harden, C.J.; Corfe, B.M. Systematic Literature Review Shows That Appetite Rating Does Not Predict Energy Intake. Crit. Rev. Food Sci. Nutr. 2017, 57, 3577–3582. [Google Scholar] [CrossRef]
- Vanselow, M.S.; Pereira, M.A.; Neumark-Sztainer, D.; Raatz, S.K. Adolescent Beverage Habits and Changes in Weight over Time: Findings from Project EAT. Am. J. Clin. Nutr. 2009, 90, 1489–1495. [Google Scholar] [CrossRef]
- Pan, A.; Malik, V.S.; Hao, T.; Willett, W.C.; Mozaffarian, D.; Hu, F.B. Changes in Water and Beverage Intake and Long-Term Weight Changes: Results from Three Prospective Cohort Studies. Int. J. Obes. 2013, 37, 1378–1385. [Google Scholar] [CrossRef]
- Gearon, E.; Peeters, A.; Hodge, A.; Backholer, K. The Role of Dietary and Physical Activity Behaviours in Educational Differences in Weight Gain among Australian Adults—The Melbourne Collaborative Cohort Study. Obes. Res. Clin. Pract. 2014, 8, 35–36. [Google Scholar] [CrossRef]
- Berkey, C.S.; Rockett, H.R.; Field, A.E.; Gillman, M.W.; Colditz, G.A. Sugar-added beverages and adolescent weight change. Obes. Res. 2004, 12, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.K.; Peterson, K.E.; Berkey, C.S.; Leppert, J.; Willett, W.C.; Colditz, G.A. Beverage Consumption Is Not Associated with Changes in Weight and Bodys Mass Index among Low-Income Preschool Children in North Dakota. J. Am. Diet. Assoc. 2004, 104, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Striegel-Moore, R.H.; Thompson, D.; Affenito, S.G.; Franko, D.L.; Obarzanek, E.; Barton, B.A.; Schreiber, G.B.; Daniels, S.R.; Schmidt, M.; Crawford, P.B. Correlates of Beverage Intake in Adolescent Girls: The National Heart, Lung, and Blood Institute Growth and Health Study. J. Pediatrics 2006, 148, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.N.; Murray, D.M.; Lytle, L.A.; Harnack, L.J. Longitudinal Associations between Key Dietary Behaviors and Weight Gain over Time: Transitions through the Adolescent Years. Obesity 2012, 20, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Field, A.E.; Sonneville, K.R.; Falbe, J.; Flint, A.; Haines, J.; Rosner, B.; Camargo, C.A. Association of Sports Drinks with Weight Gain among Adolescents and Young Adults. Obesity 2014, 22, 2238–2243. [Google Scholar] [CrossRef]
- Colditz, G.A.; Willett, W.C.; Stampfer, M.J.; London, S.J.; Segal, M.R.; Speizer, F.E. Patterns of Weight Change and Their Relation to Diet in a Cohort of Healthy Women. Am. J. Clin. Nutr. 1990, 51, 1100–1105. [Google Scholar] [CrossRef]
- Parker, D.R.; Gonzalez, S.; Derby, C.A.; Gans, K.M.; Lasater, T.M.; Carleton, R.A. Dietary Factors in Relation to Weight Change among Men and Women from Two Southeastern New England Communities. Int. J. Obes. 1997, 21, 103–109. [Google Scholar] [CrossRef]
- Schulze, M.B.; Manson, J.A.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages, Weight Gain, and Incidence of Type 2 Diabetes in Young and Middle-Aged Women. J. Am. Med. Assoc. 2004, 292, 927–934. [Google Scholar] [CrossRef]
- Smith, J.D.; Hou, T.; Hu, F.B.; Rimm, E.B.; Spiegelman, D.; Willett, W.C.; Mozaffarian, D. A Comparison of Different Methods for Evaluating Diet, Physical Activity, and Long-Term Weight Gain in 3 Prospective Cohort Studies. J. Nutr. 2015, 145, 2527–2534. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.; Mander, A.P.; Jones, L.R.; Emmett, P.M.; Jebb, S.A. Is Sugar-Sweetened Beverage Consumption Associated with Increased Fatness in Children? Nutrition 2007, 23, 557–563. [Google Scholar] [CrossRef]
- Kanders, B.S.; Lavin, P.T.; Kowalchuk, M.B.; Greenberg, I.; Blackburn, G.L. An Evaluation of the Effect of Aspartame on Weight Loss. Appetite 1988, 11, 73–84. [Google Scholar] [CrossRef]
- Hsieh, M.-H.; Chan, P.; Sue, Y.-M.; Liu, J.-C.; Liang, T.H.; Huang, T.-Y.; Tomlinson, B.; Chow, M.S.S.; Kao, P.-F.; Chen, Y.-J. Efficacy and Tolerability of Oral Stevioside in Patients with Mild Essential Hypertension: A Two-Year, Randomized, Placebo-Controlled Study. Clin. Ther. 2003, 25, 2797–2808. [Google Scholar] [CrossRef]
- Ferri, L.A.; Alves-Do-Prado, W.; Yamada, S.S.; Gazola, S.; Batista, M.R.; Bazotte, R.B. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother. Res. 2006, 20, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.; Hammersley, R.; Hill, A.J.; Skidmore, P. Long-Term Dietary Compensation for Added Sugar: Effects of Supplementary Sucrose Drinks over a 4-Week Period. Br. J. Nutr. 2007, 97, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Njike, V.Y.; Faridi, Z.; Shuval, K.; Dutta, S.; Kay, C.D.; West, S.G.; Kris-Etherton, P.M.; Katz, D.L. Effects of Sugar-Sweetened and Sugar-Free Cocoa on Endothelial Function in Overweight Adults. Int. J. Cardiol. 2011, 149, 83–88. [Google Scholar] [CrossRef]
- Madjd, A.; Taylor, M.A.; Delavari, A.; Malekzadeh, R.; Macdonald, I.A.; Farshchi, H.R. Effects on Weight Loss in Adults of Replacing Diet Beverages with Water during a Hypoenergetic Diet: A Randomized, 24-Wk Clinical Trial. Am. J. Clin. Nutr. 2015, 102, 1305–1312. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Feldman, H.A.; Osganian, S.K.; Chomitz, V.R.; Ellenbogen, S.J.; Ludwig, D.S. Effects of Decreasing Sugar-Sweetened Beverage Consumption on Body Weight in Adolescents: A Randomized, Controlled Pilot Study. Pediatrics 2006, 117, 673–680. [Google Scholar] [CrossRef] [Green Version]
- Ebbeling, C.B.; Feldman, H.A.; Chomitz, V.R.; Antonelli, T.A.; Gortmaker, S.L.; Osganian, S.K.; Ludwig, D.S. A Randomized Trial of Sugar-Sweetened Beverages and Adolescent Body Weight. N. Engl. J. Med. 2012, 367, 1407–1416. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, G.L.; Kanders, B.S.; Lavin, P.T.; Keller, S.D.; Whatley, J. The Effect of Aspartame as Part of a Multidisciplinary Weight-Control Program on Short- and Long-Term Control of Body Weight. Am. J. Clin. Nutr. 1997, 65, 409–418. [Google Scholar] [CrossRef]
- Gatenby, S.J.; Aaron, J.I.; Jack, V.A.; Mela, D.J. Extended Use of Foods Modified in Fat and Sugar Content: Nutritional Implications in a Free-Living Female Population. Am. J. Clin. Nutr. 1997, 65, 1867–1873. [Google Scholar] [CrossRef]
- Tordoff, M.G.; Alleva, A.M. Effect of Drinking Soda Sweetened with Aspartame or High-Fructose Corn Syrup on Food Intake and Body Weight. Am. J. Clin. Nutr. 1990, 51, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Raben, A.; Møller, A.C.; Vasilaras, T.H.; Astrup, A. A Randomized 10 Week Trial of Sucrose vs. Artificial Sweeteners on Body Weight and Blood Pressure after 10 Weeks. Obes. Res. 2001, 9, 86S. [Google Scholar]
- Raben, A.; Vasilaras, T.H.; Møller, A.C.; Astrup, A. Sucrose Compared with Artificial Sweeteners: Different Effects on Ad Libitum Food Intake and Body Weight after 10 Wk of Supplementation in Overweight Subjects. Am. J. Clin. Nutr. 2002, 76, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Gostner, A.; Schäffer, V.; Theis, S.; Menzel, T.; Lührs, H.; Melcher, R.; Schauber, J.; Kudlich, T.; Dusel, G.; Dorbath, D.; et al. Effects of Isomalt Consumption on Gastrointestinal and Metabolic Parameters in Healthy Volunteers. Br. J. Nutr. 2005, 94, 575–581. [Google Scholar] [CrossRef]
- Maki, K.C.; Curry, L.L.; Carakostas, M.C.; Tarka, S.M.; Reeves, M.S.; Farmer, M.V.; McKenney, J.M.; Toth, P.D.; Schwartz, S.L.; Lubin, B.C.; et al. The Hemodynamic Effects of Rebaudioside A in Healthy Adults with Normal and Low-Normal Blood Pressure. Food Chem. Toxicol. 2008, 46 (Suppl. 7), S40–S46. [Google Scholar] [CrossRef]
- Reid, M.; Hammersley, R.; Duffy, M. Effects of Sucrose Drinks on Macronutrient Intake, Body Weight, and Mood in Overweight Women over 4 Weeks. Appetite 2010, 55, 130–136. [Google Scholar] [CrossRef]
- Maersk, M.; Belza, A.; Stødkilde-jørgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-Sweetened Beverages Increase Fat Storage in the Liver, Muscle, and Visceral Fat Depot: A 6-Mo Randomized Intervention Study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef]
- Tate, D.F.; Turner-Mcgrievy, G.; Lyons, E.; Stevens, J.; Erickson, K.; Polzien, K.; Diamond, M.; Wang, X.; Popkin, B. Replacing Caloric Beverages with Water or Diet Beverages for Weight Loss in Adults: Main Results of the Choose Healthy Options Consciously Everyday (CHOICE) Randomized Clinical Trial. Am. J. Clin. Nutr. 2012, 95, 555–563. [Google Scholar] [CrossRef]
- Reid, M.; Hammersley, R.; Duffy, M.; Ballantyne, C. Effects on Obese Women of the Sugar Sucrose Added to the Diet over 28 d: A Quasi-Randomised, Single-Blind, Controlled Trial. Br. J. Nutr. 2014, 111, 563–570. [Google Scholar] [CrossRef]
- Peters, J.C.; Wyatt, H.R.; Foster, G.D.; Pan, Z.; Wojtanowski, A.C.; Vander Veur, S.S.; Herring, S.J.; Brill, C.; Hill, J.O. The Effects of Water and Non-Nutritive Sweetened Beverages on Weight Loss During a 12-Week Weight Loss Treatment Program. Obesity 2014, 22, 1415–1421. [Google Scholar] [CrossRef]
- Kuzma, J.N.; Cromer, G.; Hagman, D.K.; Breymeyer, K.L.; Roth, C.L.; Foster-Schubert, K.E.; Holte, S.E.; Callahan, H.S.; Weigle, D.S.; Kratz, M. No Difference in Ad Libitum Energy Intake in Healthy Men and Women Consuming Beverages Sweetened with Fructose, Glucose, or High-Fructose Corn Syrup: A Randomized Trial. Am. J. Clin. Nutr. 2015, 102, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.C.; Beck, J.; Cardel, M.; Wyatt, H.R.; Foster, G.D.; Pan, Z.; Wojtanowski, A.C.; Vander Veur, S.S.; Herring, S.J.; Brill, C.; et al. The Effects of Water and Non-Nutritive Sweetened Beverages on Weight Loss and Weight Maintenance: A Randomized Clinical Trial. Obesity 2016, 24, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Knopp, R.H.; Brandt, K.; Arky, R.A. Effects of Aspartame in Young Persons during Weight Reduction. J. Toxicol. Environ. Health 1976, 2, 417–428. [Google Scholar] [CrossRef] [PubMed]
- De Ruyter, J.C.; Olthof, M.R.; Seidell, J.C.; Katan, M.B. A Trial of Sugar-Free or Sugar-Sweetened Beverages and Body Weight in Children. N. Engl. J. Med. 2012, 367, 1397–1406. [Google Scholar] [CrossRef]
- Higgins, K.A.; Considine, R.V.; Mattes, R.D. Aspartame Consumption for 12 Weeks Does Not Affect Glycemia, Appetite, or Body Weight of Healthy, Lean Adults in a Randomized Controlled Trial. J. Nutr. 2018, 148, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Kinnamon, S.C. A Plethora of Taste Receptors. Neuron 2000, 25, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Running, C.A.; Craig, B.A.; Mattes, R.D. Oleogustus: The Unique Taste of Fat. Chem. Senses 2015, 40, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.R.; Tanaka, T.; McDaniel, A.H. Diverse tastes: Genetics of sweet and bitter perception. Physiol. Behav. 2006, 88, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Staszewski, L.; Xu, H.; Durick, K.; Zoller, M.; Adler, E. Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. USA 2002, 99, 4692–4696. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.; Hoon, M.A.; Chandrashekar, J.; Zhang, Y.; Ryba, N.J.P.; Zuker, C.S. Mammalian Sweet Taste Receptors. Cell 2001, 106, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Ide, N.; Sato, E.; Ohta, K.; Masuda, T.; Kitabatake, N. Interactions of the Sweet-Tasting Proteins Thaumatin and Lysozyme with the Human Sweet-Taste Receptor. J. Agric. Food Chem. 2009, 57, 5884–5890. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.; Meyerhof, W. Gustatory and extragustatory functions of mammalian taste receptors. Physiol. Behav. 2011, 105, 4–13. [Google Scholar] [CrossRef]
- Morini, G.; Bassoli, A.; Temussi, P.A. From Small Sweeteners to Sweet Proteins: Anatomy of the Binding Sites of the Human T1R2_T1R3 Receptor. J. Med. Chem. 2005, 48, 5520–5529. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Chen, Y.; Abrol, R.; Goddard, W.A.; Guthrie, B. Activation mechanism of the G protein-coupled sweet receptor heterodimer with sweeteners and allosteric agonists. Proc. Natl. Acad. Sci. USA 2017, 114, 2568–2573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Y.; Vigues, S.; Hobbs, J.R.; Conn, G.L.; Munger, S.D. Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli. Curr. Biol. 2005, 15, 1948–1952. [Google Scholar] [CrossRef] [PubMed]
- Meyers, B.; Brewer, M.S. Sweet Taste in Man: A Review. J. Food Sci. 2008, 73, R81–R90. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ha, M.; Meng, X.-Y.; Kaur, T.; Khaleduzzaman, M.; Zhang, Z.; Jiang, P.; Li, X.; Cui, M. Molecular Mechanism of Species-Dependent Sweet Taste Toward Artificial Sweeteners. J. Neurosci. 2011, 31, 11070–11076. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Staszewski, L.; Tang, H.; Adler, E.; Zoller, M.; Li, X. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl. Acad. Sci. USA 2004, 101, 14258–14263. [Google Scholar] [CrossRef] [Green Version]
- Masuda, K.; Koizumi, A.; Nakajima, K.; Tanaka, T.; Abe, K.; Misaka, T.; Ishiguro, M. Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds. PLoS ONE 2012, 7, e35380. [Google Scholar] [CrossRef]
- Brown, R.J.; Rother, K.I. Non-Nutritive Sweeteners and their Role in the Gastrointestinal Tract. J. Clin. Endocrinol. Metab. 2012, 97, 2597–2605. [Google Scholar] [CrossRef] [Green Version]
- Striem, B.J.; Naim, M.; Lindemann, B. Generation of cyclic AMP in taste buds of the rat circumvallate papilla in response to sucrose. Cell. Physiol. Biochem. 1991, 1, 46–54. [Google Scholar] [CrossRef]
- Bernhardt, S.J.; Naim, M.; Zehavi, U.; Lindemann, B. Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J. Physiol. 1996, 490, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Nagasawa, M.; Mogami, H.; Lohse, M.; Ninomiya, Y.; Kojima, I. Multimodal function of the sweet taste receptor expressed in pancreatic &beta-cells: Generation of diverse patterns of intracellular signals by sweet agonists. Endocr. J. 2013, 60, 1191–1206. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, Y.; Nakagawa, Y.; Nagasawa, M.; Takeda, S.; Arakawa, H.; Kojima, I. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells. Mol. Cell. Endocrinol. 2014, 394, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Nagasawa, M.; Yamada, S.; Hara, A.; Mogami, H.; Nikolaev, V.O.; Lohse, M.J.; Shigemura, N.; Ninomiya, Y.; Kojima, I. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Kojima, I.; Nakagawa, Y.; Ohtsu, Y.; Medina, A.; Nagasawa, M. Sweet Taste-Sensing Receptors Expressed in Pancreatic β-Cells: Sweet Molecules Act as Biased Agonists. Endocrinol. Metab. 2014, 29, 12–19. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Sattely-Miller, E.A.; Bishay, I.E. Sensory properties of neotame: Comparison with other sweeteners. Sweetness Sweeten. 2008, 511–529. [Google Scholar] [CrossRef]
- Moraru, C. Formulating in Sweetness. Prepared Foods 2011. [Google Scholar]
- Gwak, M.-J.; Chung, S.-J.; Kim, Y.J.; Lim, C.S. Relative sweetness and sensory characteristics of bulk and intense sweeteners. Food Sci. Biotechnol. 2012, 21, 889–894. [Google Scholar] [CrossRef]
- Kuhn, C.; Bufe, B.; Winnig, M.; Hofmann, T.; Frank, O.; Behrens, M.; Lewtschenko, T.; Slack, J.P.; Ward, C.D.; Meyerhof, W. Bitter taste receptors for saccharin and acesulfame K. J. Neurosci. 2004, 24, 10260–10265. [Google Scholar] [CrossRef]
- Wiet, S.G.; Beyts, P.K. Sensory characteristics of sucralose and other high intensity sweeteners. J. Food Sci. 1992, 57, 1014–1019. [Google Scholar] [CrossRef]
- Teff, K.L.; Mattes, R.D.; Engelman, K. Cephalic phase insulin release in normal weight males: Verification and reliability. Am. J. Physiol.-Endocrinol. Metab. 1991, 261, E430–E436. [Google Scholar] [CrossRef] [PubMed]
- Just, T.; Pau, H.W.; Engel, U.; Hummel, T. Cephalic phase insulin release in healthy humans after taste stimulation? Appetite 2008, 51, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Sakaguchi, T. Effects of D-glucose anomers on sweetness taste and insulin release in man. Brain Res. Bull. 1986, 17, 271–274. [Google Scholar] [CrossRef]
- Hartel, B.; Graubaum, H.-J.; Schneider, B.; Bier, A. The influence of sweetener solutions on the secretion of insulin and the blood glucose level. Eur. Soc. Ecol. Med. 1993, 40, 152–155. [Google Scholar]
- Dhillon, J.; Lee, J.Y.; Mattes, R.D. The cephalic phase insulin response to nutritive and low-calorie sweeteners in solid and beverage form. Physiol. Behav. 2017, 181, 100–109. [Google Scholar] [CrossRef]
- Smeets, P.A.M.; de Graaf, C.; Stafleu, A.; van Osch, M.J.P.; van der Grond, J. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am. J. Clin. Nutr. 2005, 82, 1011–1016. [Google Scholar] [CrossRef]
- Bruce, D.G.; Storlien, L.H.; Furler, S.M.; Chisholm, D.J. Cephalic phase metabolic responses in normal weight adults. Metabolism 1987, 36, 721–725. [Google Scholar] [CrossRef]
- Glendinning, J.I.; Frim, Y.G.; Hochman, A.; Lubitz, G.S.; Basile, A.J.; Sclafani, A. Glucose elicits cephalic-phase insulin release in mice by activating KATP channels in taste cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R597–R610. [Google Scholar] [CrossRef]
- Yee, K.K.; Sukumaran, S.K.; Kotha, R.; Gilbertson, T.A.; Margolskee, R.F. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc. Natl. Acad. Sci. USA 2011, 108, 5431–5436. [Google Scholar] [CrossRef]
- Teff, K.L.; Engelman, K. Oral sensory stimulation improves glucose tolerance in humans: Effects on insulin, C-peptide, and glucagon. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 270, R1371–R1379. [Google Scholar] [CrossRef] [PubMed]
- Teff, K. Nutritional implications of the cephalic-phase reflexes: Endocrine responses. Appetite 2000, 34, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Smeets, P.A.M.; Erkner, A.; de Graaf, C. Cephalic phase responses and appetite. Nutr. Rev. 2010, 68, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Laffitte, A.; Neiers, F.; Briand, L. Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 379–385. [Google Scholar] [CrossRef]
- Ford, H.E.; Peters, V.; Martin, N.M.; Sleeth, M.L.; Ghatei, M.A.; Frost, G.S.; Bloom, S.R. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. European J. Clin. Nutr. 2011, 65. [Google Scholar] [CrossRef]
- Brown, A.W.; Brown, M.M.; Onken, K.L.; Beitz, D.C. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women. Nutr. Res. 2011, 31, 882–888. [Google Scholar] [CrossRef]
- Hall, W.L.; Millward, D.J.; Rogers, P.J.; Morgan, L.M. Physiological mechanisms mediating aspartame-induced satiety. Physiol. Behav. 2003, 78, 557–562. [Google Scholar] [CrossRef]
- Ma, J.; Bellon, M.; Wishart, J.M.; Young, R.; Blackshaw, L.A.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am. J. Physiol.-Gastrointest. Liver Physiol. 2009, 296, G735–G739. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Chang, J.; Checklin, H.L.; Young, R.L.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects. Br. J. Nutr. 2010, 104, 803–806. [Google Scholar] [CrossRef] [Green Version]
- Steinert, R.E.; Frey, F.; Töpfer, A.; Drewe, J.; Beglinger, C. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br. J. Nutr. 2011, 105, 1320–1328. [Google Scholar] [CrossRef] [Green Version]
- Temizkan, S.; Deyneli, O.; Yasar, M.; Arpa, M.; Gunes, M.; Yazici, D.; Sirikci, O.; Haklar, G.; Imeryuz, N.; Yavuz, D.G. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur. J. Clin. Nutr. 2014, 69. [Google Scholar] [CrossRef] [PubMed]
- Sylvetsky, A.C.; Rother, K.I. Trends in the consumption of low-calorie sweeteners. Physiol. Behav. 2016, 164, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvetsky, A.C.; Brown, R.J.; Blau, J.E.; Walter, M.; Rother, K.I. Hormonal responses to non-nutritive sweeteners in water and diet soda. Nutr. Metab. 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.; Walter, M.; Rother, K.I. Ingestion of Diet Soda Before a Glucose Load Augments Glucagon-Like Peptide-1 Secretion. Diabetes Care 2009, 32, 2184–2186. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.J.; Walter, M.; Rother, K.I. Effects of Diet Soda on Gut Hormones in Youths with Diabetes. Diabetes Care 2012, 35, 959–964. [Google Scholar] [CrossRef]
- Egan, J.M.; Margolskee, R.F. Taste cells of the gut and gastrointestinal chemosensation. Mol. Interv. 2008, 8, 78–81. [Google Scholar] [CrossRef]
- Frank, G.K.; Kaye, W.H.; Carter, C.S.; Brooks, S.; May, C.; Fissell, K.; Stenger, V.A. The evaluation of brain activity in response to taste stimuli—A pilot study and method for central taste activation as assessed by event-related fMRI. J. Neurosci. Methods 2003, 131, 99–105. [Google Scholar] [CrossRef]
- Haase, L.; Cerf-Ducastel, B.; Murphy, C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. NeuroImage 2009, 44, 1008–1021. [Google Scholar] [CrossRef] [Green Version]
- Frank, G.K.W.; Oberndorfer, T.A.; Simmons, A.N.; Paulus, M.P.; Fudge, J.L.; Yang, T.T.; Kaye, W.H. Sucrose activates human taste pathways differently from artificial sweetener. NeuroImage 2008, 39, 1559–1569. [Google Scholar] [CrossRef]
- McCutcheon, J.E.; Beeler, J.A.; Roitman, M.F. Sucrose-predictive cues evoke greater phasic dopamine release than saccharin-predictive cues. Synapse 2012, 66, 346–351. [Google Scholar] [CrossRef]
- Obermdorfer, T.A.; Grank, G.K.W.; Simmons, A.N.; Wagner, A.; McCurdy, D.; Fudge, J.L.; Yang, T.T.; Paulus, M.P.; Kaye, W.H. Altered insula response to sweet taste processing after recovery from anorexia and bulimia nervosa. Am. J. Psychiatry 2013, 170, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Smeets, P.A.M.; Weijzen, P.; de Graaf, C.; Viergever, M.A. Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. NeuroImage 2011, 54, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.S.; Bridge, M.W.; Jones, D.A. Carbohydrate sensing in the human mouth: Effects on exercise performance and brain activity. J. Physiol. 2009, 587, 1779–1794. [Google Scholar] [CrossRef] [PubMed]
- Rudenga, K.J.; Small, D.M. Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite 2012, 58, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, E.; Murphy, C. Altered processing of sweet taste in the brain of diet soda drinkers. Physiol. Behav. 2012, 107, 560–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, M.V.; Small, D.M. Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiol. Behav. 2015, 152, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, A.V.M.; Generoso, S.V.; Teixeira, A.L. Do low-calorie drinks ‘cheat’ the enteral-brain axis? Opin. Clin. Nutr. Metab. Care 2014, 17. [Google Scholar] [CrossRef]
- Swithers, S.E.; Ogden, S.B.; Laboy, A.F.; Davidson, T.L. Saccharin pre-exposure enhances appetitive flavor learning in pre-weanling rats. Dev. Psychobiol. 2012, 54, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Davidson, T.L.; Martin, A.A.; Clark, K.; Swithers, S.E. Intake of high-intensity sweeteners alters the ability of sweet taste to signal caloric consequences: Implications for the learned control of energy and body weight regulation. Q. J. Exp. Psychol. 2011, 64, 1430–1441. [Google Scholar] [CrossRef]
- Griffioen-Roose, S.; Smeets, P.A.M.; Weijzen, P.L.G.; van Rijn, I.; van den Bosch, I.; de Graaf, C. Effect of Replacing Sugar with Non-Caloric Sweeteners in Beverages on the Reward Value after Repeated Exposure. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Wise, R.A. Forebrain substrates of reward and motivation. J. Comp. Neurol. 2005, 493, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldfield, G.S.; Lorello, C.; Doucet, É. Methylphenidate reduces energy intake and dietary fat intake in adults: A mechanism of reduced reinforcing value of food? Am. J. Clin. Nutr. 2007, 86, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Van de Wouw, M.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. J. Nutr. 2017, 147, 727–745. [Google Scholar] [CrossRef] [Green Version]
- Alcock, J.; Maley, C.C.; Aktipis, C.A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 2014, 36, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 2010, 26, 5–11. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Lobach, A.R.; Roberts, A.; Rowland, I.R. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem. Toxicol. 2019, 124, 385–399. [Google Scholar] [CrossRef]
- Fetissov, S.O. Role of the gut microbiota in host appetite control: Bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 2017, 13, 11–25. [Google Scholar] [CrossRef]
- Magnuson, B.A.; Carakostas, M.C.; Moore, N.H.; Poulos, S.P.; Renwick, A.G. Biological fate of low-calorie sweeteners. Nutr. Rev. 2016, 74, 670–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankenfeld, C.L.; Sikaroodi, M.; Lamb, E.; Shoemaker, S.; Gillevet, P.M. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann. Epidemiol. 2015, 25, 736–742.e4. [Google Scholar] [CrossRef] [PubMed]
- Palmnas, M.S.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE 2014, 9, e109841. [Google Scholar] [CrossRef]
- Uebanso, T.; Ohnishi, A.; Kitayama, R.; Yoshimoto, A.; Nakahashi, M.; Shimohata, T.; Mawatari, K.; Takahashi, A. Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice. Nutrients 2017, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.E.; Klancic, T.; Schick, A.; Choo, A.C.; Shearer, J.; Borgland, S.L.; Chleilat, F.; Mayengbam, S.; Reimer, R.A. Low-Dose Stevia (Rebaudioside A) Consumption Perturbs Gut Microbiota and the Mesolimbic Dopamine Reward System. Nutrients 2019, 11, 1248. [Google Scholar] [CrossRef]
- Abou-Donia, M.B.; El-Masry, E.M.; Abdel-Rahman, A.A.; McLendon, R.E.; Schiffman, S.S. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J. Toxicol. Environ. Health A 2008, 71, 1415–1429. [Google Scholar] [CrossRef]
- Brusick, D.; Borzelleca, J.F.; Gallo, M.; Williams, G.; Kille, J.; Wallace Hayes, A.; Xavier Pi-Sunyer, F.; Williams, C.; Burks, W. Expert Panel report on a study of Splenda in male rats. Regul. Toxicol. Pharmacol. 2009, 55, 6–12. [Google Scholar] [CrossRef]
- Council Spokesperson, Berna Magnuson, Reviews Nature Study on Low-Calorie Sweeteners. Available online: https://caloriecontrol.org/council-spokesperson-berna-magnuson-reviews-nature-study-on-low-calorie-sweeteners/ (accessed on 10 July 2019).
- Nettleton, J.E.; Reimer, R.A.; Shearer, J. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiol. Behav. 2016, 164, 488–493. [Google Scholar] [CrossRef]
- Bian, X.; Chi, L.; Gao, B.; Tu, P.; Ru, H.; Lu, K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE 2017, 12, e0178426. [Google Scholar] [CrossRef]
- Anderson, R.L.; Kirkland, J.J. The effect of sodium saccharin in the diet on caecal microflora. Food Cosmet. Toxicol. 1980, 18, 353–355. [Google Scholar] [CrossRef]
- Li, S.; Chen, T.; Dong, S.; Xiong, Y.; Wei, H.; Xu, F. The Effects of Rebaudioside and on Microbial Diversity in Mouse Intestine. Food Sci. Technol. Res. 2014, 20, 459–467. [Google Scholar] [CrossRef]
- Samuel, P.; Ayoob, K.T.; Magnuson, B.A.; Wölwer-Rieck, U.; Jeppesen, P.B.; Rogers, P.J.; Rowland, I.; Mathews, R. Stevia Leaf to Stevia Sweetener: Exploring Its Science, Benefits, and Future Potential. J. Nutr. 2018, 148, 1186S–1205S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattes, R.D.; Popkin, B.M. Nonnutritive sweetener consumption in humans: Effects on appetite and food intake and their putative mechanisms. Am. J. Clin. Nutr. 2009, 89, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.J.; Carlyle, J.A.; Hill, A.J.; Blundell, J.E. Uncoupling sweet taste and calories: Comparison of the effects of glucose and three intense sweeteners on hunger and food intake. Physiol. Behav. 1988, 43, 547–552. [Google Scholar] [CrossRef]
- Tordoff, M.G.; Alleva, A.M. Oral stimulation with aspartame increases hunger. Physiol. Behav. 1990, 47, 555–559. [Google Scholar] [CrossRef]
- Yang, Q. Gain weight by “going diet?” Artificial sweeteners and the neurobiology of sugar cravings: Neuroscience 2010. Yale J. Biol. Med. 2010, 83, 101–108. [Google Scholar]
- Ludwig, D.S. Artificially Sweetened Beverages: Cause for Concern. JAMA 2009, 302, 2477–2478. [Google Scholar] [CrossRef]
- Jamel, H.A.; Sheiham, A.; Cowell, C.R.; Watt, R.G. Taste preference for sweetness in urban and rural populations in Iraq. J. Dent. Res. 1996, 75, 1879–1884. [Google Scholar] [CrossRef]
- Rogers, P.J.; Blundell, J.E. Separating the actions of sweetness and calories: Effects of saccharin and carbohydrates on hunger and food intake in human subjects. Physiol. Behav. 1989, 45, 1093–1099. [Google Scholar] [CrossRef]
- Mattes, R. Interaction Between the Energy Content and Sensory Properties of Foods; Synergy: Hampshire, UK, 1994; pp. 39–51. [Google Scholar]
- Anton, S.D.; Martin, C.K.; Han, H.; Coulon, S.; Cefalu, W.T.; Geiselman, P.; Williamson, D.A. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite 2010, 55, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, D.S.; Majzoub, J.A.; Al-Zahrani, A.; Dallal, G.E.; Blanco, I.; Roberts, S.B. High glycemic index foods, overeating, and obesity. Pediatrics 1999, 103, E26. [Google Scholar] [CrossRef]
- Reimann, F.; Habib, A.M.; Tolhurst, G.; Parker, H.E.; Rogers, G.J.; Gribble, F.M. Glucose sensing in L cells: A primary cell study. Cell Metab. 2008, 8, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Kokrashvili, Z.; Theodorakis, M.J.; Carlson, O.D.; Kim, B.J.; Zhou, J.; Kim, H.H.; Xu, X.; Chan, S.L.; Juhaszova, M.; et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl. Acad. Sci. USA 2007, 104, 15069–15074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margolskee, R.F.; Dyer, J.; Kokrashvili, Z.; Salmon, K.S.; Ilegems, E.; Daly, K.; Maillet, E.L.; Ninomiya, Y.; Mosinger, B.; Shirazi-Beechey, S.P. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl. Acad. Sci. USA 2007, 104, 15075–15080. [Google Scholar] [CrossRef] [PubMed]
- Geraedts, M.C.P.; Troost, F.J.; Saris, W.H.M. Different tastants and low-caloric sweeteners induce differential effects on the release of satiety hormones. Food Chem. 2011, 129, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Wideman, R.D.; Speck, M.; Asadi, A.; King, D.S.; Webber, T.D.; Haneda, M.; Kieffer, T.J. Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am. J. Physiol.-Endocrinol. Metab. 2009, 296, E473–E479. [Google Scholar] [CrossRef]
SCREENING CRITERIA | |||||||
Meta-Analysis Papers | Miller, 2014 [15] | Rogers, 2016 [14] | Azad, 2017 [16] | Toews, 2019 | |||
Inclusion Criteria |
|
|
|
| |||
Exclusion Criteria | Hospitalized or acutely ill populations |
|
|
| |||
Database |
16 September 2013. |
1 February 2015. |
1 January 2016. | Published Papers (1946-25, May 2017)
23 November 2017 | |||
Sweeteners | LCS, polyols | LCS | LCS, xylitol | LCS approved by FDA, as well as brazzein and thaumatin | |||
Controls | Sugar | Water or sugar (analyzed separately) | Mixed control (water, placebo, avoidance) | Sugar/placebo/any other alternative intervention | |||
Study Duration | Cohort | >6 months | >1 year | >6 months | >7 days | ||
RCT | >2 weeks | >4 weeks | >6 months | >7 days | |||
RESULTS | |||||||
I. COHORT STUDIES | |||||||
1. BMI | Included Papers | LCS | Miller | Rogers | Azad | Toews | |
Adults | Fowler et al., 2008 [18] | LCS Beverage | I | I | |||
Chen et al., 2009 [19] | LCS Beverage | I | |||||
Vanselow et al., 2009 [20] | LCS Beverage | I | |||||
Pan et al., 2013 [21] | LCS Beverage | I | |||||
Gearon et al., 2014 [22] | LCS Beverage | I | |||||
Children | Berkey et al., 2004 [23] | LCS Beverage | I | I | |||
Newby et al., 2004 [24] | LCS Beverage | I | |||||
Striegel-Moore et al., 2006 [25] | LCS Beverage | I | |||||
Laska et al., 2012 [26] | LCS Beverage | I | I | ||||
Field et al., 2014 [27] | LCS Beverages | I | |||||
Combined Results | Mean Difference (kg/m2) | 0.03 | −0.002/year | 0.05 | No Results | ||
Confidence Interval | (0.01, 0.06) | (−0.009, 0.005) | (0.03, 0.06) | No Results | |||
Conclusion | Positive | No Significance | Positive | No Results | |||
2. Body Weight | Included Papers | LCS | Miller | Rogers | Azad | Toews | |
Adults | Colditz et al., 1990 [28] | Saccharin | I | I | |||
Parker et al., 1997 [29] | Saccharin | I | I | ||||
Schulze et al., 2004 [30] | LCS Beverage | I | |||||
Smith et al., 2015 [31] | LCS Beverage | I | |||||
Children | Newby et al., 2004 [24] | LCS Beverage | I | ||||
Combined Results | Mean Difference (kg) | 0.02 | No Results | 0.06 | No Results | ||
Confidence Interval | (−0.01, 0.06) | No Results | (0.05, 0.07) | No Results | |||
Conclusion | No Significance | No Results | Positive | No Results | |||
3. Fat Mass | Included Papers | LCS | Miller | Rogers | Azad | Toews | |
Children | Laska et al., 2012 [26] | LCS Beverage | I | ||||
Johnson et al., 2007 [32] | LCS Beverage | I | |||||
Combined Results | Mean Difference (kg) | 0.035 | No Results | No Results | No Results | ||
Confidence Interval | (−0.026, 0.096) | No Results | No Results | No Results | |||
Conclusion | No Significance | No Results | No Results | No Results | |||
II. RANDOMIZED CONTROLLED TRIALS | |||||||
1. BMI | Included Papers | LCS | Miller | Rogers | Azad | Toews | |
Adults | Kanders et al., 1988 [33] | Aspartame | I | ||||
Hsieh et al., 2003 [34] | Stevioside powder | I | |||||
Ferri et al., 2006 [35] | Stevioside (3.75 mg/kg/day-7 weeks) (7.5 mg/kg/day-11 weeks) (15 mg/kg/day-6 weeks) | I | |||||
Reid et al., 2007 [36] | Aspartame | I | I | I | |||
Njike et al., 2011 [37] | Ace-K/aspartame | I | |||||
Madjd et al., 2015 [38] | Not specified | I | |||||
Children | Ebbeling et al., 2006 [39] | 21.7 oz/day of beverage, LCS not specified | I | ||||
Ebbeling et al., 2012 [40] | 10.08 oz/day of beverage, LCS not specified | I | |||||
Combined Results | Mean Difference (kg/m2) | −0.24 | No Results | −0.37 | No Results | ||
Confidence Interval | (−0.41, −0.07) | No Results | (−1.10, 0.36) | No Results | |||
Conclusion | Negative | No Results | No Significance | No Results | |||
2. Body Weight | Included Papers | LCS | Miller | Rogers | Azad | Toews | |
Adults | Blackburn et al., 1997 [41] | Aspartame | I | I | I | ||
Gatenby et al., 1997 [42] | Reduced-sugar foods | I | |||||
Kanders et al., 1988 [33] | Aspartame | I | |||||
Tordoff et al., 1990 [43] | Aspartame-sweetened soda | I | |||||
Raben et al., 2001 [44] | Mixture of LCS 54% aspartame +22% Ace-K +23% cyclamate +1% saccharin | I | |||||
Raben et al., 2002 [45] | Mixture of LCS 54% aspartame +22% Ace-K +23% cyclamate +1% saccharin | I | I | ||||
Gostner et al., 2005 [46] | Polyolsomalt (Palatinit) | I | |||||
Reid et al., 2007 [36] | Aspartame | I | |||||
Maki et al., 2008 [47] | Aspartame | I | |||||
Njike et al., 2011 [37] | Ace-K- and aspartame- sweetened hot cocoa | I | I | ||||
Reid et al., 2010 [48] | Aspartame | I | I | ||||
Maersk et al., 2012 [49] | Aspartame | I | I | I | I | ||
Tate et al., 2012 [50] | Diet beverage, LCS not specified | I | I | I | |||
Reid et al., 2014 [51] | Aspartame | I | |||||
Peters et al., 2014 [52] | Not specified | I | |||||
Madjd et al., 2015 [38] | 250 ml/day of diet beverage, LCS not specified | I | |||||
Kuzma et al., 2015 [53] | Fructose-, glucose-, or aspartame-sweetened beverage | I | |||||
Peters et al., 2016 [54] | Not specified | I | |||||
Children | Knopp et al., 1976 [55] | Aspartame capsule | I | ||||
de Ruyter et al., 2012 [56] | 34 mg sucralose +12 mg Ace-K | I | I | ||||
Ebbeling et al., 2006 [39] | 21.7 oz/day of beverage, LCS not specified | I | |||||
Combined Results | Mean Difference (kg) | −0.8 1 | −1.35 1 | −0.17 2 | Adult: −1.29 1 Children: −0.6 1 | ||
1.24 3 | |||||||
Confidence Interval | (−1.17, −0.43) 1 | (−2.28, −0.42) 1 (−2.22, −0.26) 3 | (−0.54, 0.21) 2 | Adult: (−2.80, 0.21) 1 Children: (−1.33, 0.14) 1 | |||
Conclusion | Negative | Negative 1,3 | No Significance | No Significance | |||
3. Fat Mass | Included Papers | LCS | Miller | Rogers | Azad | Toews | |
Adults | Kanders et al., 1988 [33] | Aspartame | I | ||||
Maersk et al., 2012 [49] | Aspartame | I | |||||
Raben et al., 2002 [45] | Mixture of LCS 54% aspartame +22% Ace-K +23% cyclamate +1% saccharin | I | |||||
Children | Ebbeling et al., 2006 [39] | 21.7 oz/day of beverage, LCS not specified | I | ||||
de Ruyter et al., 2012 [56] | 34 mg sucralose +12 mg Ace-K | I | |||||
Combined Results | Mean Difference (kg) | −1.1 | No Results | No Results | No Results | ||
Confidence Interval | (−1.77, −0.44) | No Results | No Results | No Results | |||
Conclusion | Negative | No Results | No Results | No Results | |||
4. Waist Circumference | Included Papers | LCS | Miller | Rogers | Azad | Toews | |
Adults | Njike et al., 2011 [37] | Ace-K and aspartame- sweetened hot cocoa | I | ||||
Tate et al., 2012 [50] | Diet beverage, LCS not specified | I | |||||
Children | Ebbeling et al., 2006 [39] | 21.7 oz/day of beverage, LCS not specified | I | ||||
de Ruyter et al., 2012 [56] | 34 mg sucralose +12 mg Ace-K | I | |||||
Combined Results | Mean Difference (cm) | −0.83 | No Results | No Results | No Results | ||
Confidence Interval | (−1.29, −0.37) | No Results | No Results | No Results | |||
Conclusion | Negative | No Results | No Results | No Results |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunter, S.R.; Reister, E.J.; Cheon, E.; Mattes, R.D. Low Calorie Sweeteners Differ in Their Physiological Effects in Humans. Nutrients 2019, 11, 2717. https://doi.org/10.3390/nu11112717
Hunter SR, Reister EJ, Cheon E, Mattes RD. Low Calorie Sweeteners Differ in Their Physiological Effects in Humans. Nutrients. 2019; 11(11):2717. https://doi.org/10.3390/nu11112717
Chicago/Turabian StyleHunter, Stephanie R., Evan J. Reister, Eunjin Cheon, and Richard D. Mattes. 2019. "Low Calorie Sweeteners Differ in Their Physiological Effects in Humans" Nutrients 11, no. 11: 2717. https://doi.org/10.3390/nu11112717
APA StyleHunter, S. R., Reister, E. J., Cheon, E., & Mattes, R. D. (2019). Low Calorie Sweeteners Differ in Their Physiological Effects in Humans. Nutrients, 11(11), 2717. https://doi.org/10.3390/nu11112717