Gut Microbiota and Obesity: A Role for Probiotics
Abstract
:1. Introduction
Literature Search Methodology
2. Historical and Current Perspectives
3. Gut Environment: Microbiota Evolutionary Development
4. Gut Microbiota Distribution and Its Relationship with Obesity
4.1. Bacterial Species and Obesity
4.2. Archaea and Obesity
4.3. Bariatric Surgery and Gut Microbiota
4.4. Gut Microbiota of Twins and Obesity
4.5. Gut Microbiota in Obese Children
4.6. Gut Microbiota and Obesity in Pregnant Women
5. Mechanism Linking the Microbiota to Obesity
5.1. SCFA and Energy Harvesting
5.2. Gut Microbes and Inflammation
5.3. Gut Microbes and Entero-Endocrine Cells
6. Probiotics and Obesity
6.1. Main Probiotics Used in Obesity Treatment in Animals and Humans
6.2. Mechanisms of Action of Probiotics Efficacy in Obesity
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Overweight and Obesity. Available online: http://www.who.int/gho/ncd/risk_factors/overweight/en/ (accessed on 1 June 2019).
- Abenavoli, L.; Milic, N.; Di Renzo, L.; Preveden, T.; Medić-Stojanoska, M.; De Lorenzo, A. Metabolic aspects of adult patients with nonalcoholic fatty liver disease. World J. Gastroenterol. 2016, 22, 7006–7016. [Google Scholar] [CrossRef]
- Castaner, O.; Goday, A.; Park, Y.M.; Lee, S.H.; Magkos, F.; Shiow, S.T.E.; Schröder, H. The Gut Microbiome Profile in Obesity: A Systematic Review. Int. J. Endocrinol. 2018, 2018, 4095789. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.G. The Epigenomic Analysis of Human Obesity. Obesity 2017, 25, 1471–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Festi, D.; Schiumerini, R.; Eusebi, L.H.; Marasco, G.; Taddia, M.; Colecchia, A. Gut microbiota and metabolic syndrome. World J. Gastroenterol. 2014, 20, 16079–16094. [Google Scholar] [CrossRef] [PubMed]
- Kobyliak, N.; Virchenko, O.; Falalyeyeva, T. Pathophysiological role of host microbiota in the development of obesity. Nutr. J. 2016, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, G.; Mazzola, M.; Jurjus, A.; Cappello, F.; Carini, F.; Damiani, P.; Gerges Geagea, A.; Zeenny, M.N.; Leone, A. The fingerprint of the human gastrointestinal tract microbiota: A hypothesis of molecular mapping. J. Biol. Regul. Homeost. Agents 2017, 31, 245–249. [Google Scholar]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Metchnikoff, E.; Mitchell, P.C. The Prolongation of Life: Optimistic Studies; G.P. Putnam’s Sons: New York, NY, USA; London, UK, 1908. [Google Scholar]
- Green, E.D.; Watson, J.D.; Collins, F.S. Human Genome Project: Twenty-five years of big biology. Nature 2015, 526, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef]
- Preveden, T.; Scarpellini, E.; Milić, N.; Luzza, F.; Abenavoli, L. Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 813–819. [Google Scholar] [CrossRef]
- Moore, W.E.; Holdeman, L.V. Human fecal flora: The normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 1974, 27, 961–979. [Google Scholar] [PubMed]
- Gill, S.R.; Pop, M.; Deboy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- Kolde, R.; Franzosa, E.A.; Rahnavard, G.; Hall, A.B.; Vlamakis, H.; Stevens, C.; Daly, M.J.; Xavier, R.J.; Huttenhower, C. Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome Med. 2018, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Nash, A.K.; Auchtung, T.A.; Wong, M.C.; Smith, D.P.; Gesell, J.R.; Ross, M.C.; Stewart, C.J.; Metcalf, G.A.; Muzny, D.M.; Gibbs, R.A.; et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 2017, 5, 153. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Gordon, J.I. The core gut microbiome, energy balance and obesity. J. Physiol. 2009, 587, 4153–4158. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Anderson, J.M.; Bharti, R.; Raes, J.; Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 2017, 15, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Corfield, A.P. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, A.; Totino, V.; Cacciotti, F.; Iebba, V.; Neroni, B.; Bonfiglio, G.; Trancassini, M.; Passariello, C.; Pantanella, F.; Schippa, S. Rebuilding the Gut Microbiota Ecosystem. Int. J. Environ. Res. Public Health 2018, 15, 1679. [Google Scholar] [CrossRef]
- Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 2017, 66, 515–522. [Google Scholar] [CrossRef]
- Francino, M.P. Birth Mode-Related Differences in Gut Microbiota Colonization and Immune System DevelopmenT. Ann. Nutr. Metab. 2018, 73, 12–16. [Google Scholar] [CrossRef]
- Dzidic, M.; Boix-Amorós, A.; Selma-Royo, M.; Mira, A.; Collado, M.C. Gut Microbiota and Mucosal Immunity in the Neonate. Med. Sci. 2018, 6, 56. [Google Scholar] [CrossRef]
- Goldsmith, F.; O’Sullivan, A.; Smilowitz, J.T.; Freeman, S.L. Lactation and Intestinal Microbiota: How Early Diet Shapes the Infant Gut. J. Mammary Gland Biol. Neoplasia 2015, 20, 149–158. [Google Scholar] [CrossRef]
- Le Doare, K.; Holder, B.; Bassett, A.; Pannaraj, P.S. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front. Immunol. 2018, 9, 361. [Google Scholar] [CrossRef]
- Voreades, N.; Kozil, A.; Weir, T.L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 2014, 5, 494. [Google Scholar] [CrossRef]
- Pérez Martínez, G.; Bäuerl, C.; Collado, M.C. Understanding gut microbiota in elderly’s health will enable intervention through probiotics. Benef. Microbes 2014, 5, 235–246. [Google Scholar] [CrossRef]
- Hillman, E.T.; Lu, H.; Yao, T.; Nakatsu, C.H. Microbial Ecology along the Gastrointestinal Tract. Microbes Environ. 2017, 32, 300–313. [Google Scholar] [CrossRef] [Green Version]
- De Faria Ghetti, F.; Oliveira, D.G.; de Oliveira, J.M.; de Castro Ferreira, L.E.V.V.; Cesar, D.E.; Moreira, A.P.B. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur. J. Nutr. 2018, 57, 861–876. [Google Scholar] [CrossRef]
- Ottman, N.; Smidt, H.; de Vos, W.M.; Belzer, C. The function of our microbiota: Who is out there and what do they do? Front. Cell. Infect. Microbiol. 2012, 2, 104. [Google Scholar] [CrossRef]
- Sittipo, P.; Lobionda, S.; Lee, Y.K.; Maynard, C.L. Intestinal microbiota and the immune system in metabolic diseases. J. Microbiol. 2018, 56, 154–162. [Google Scholar] [CrossRef]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, R.; Ingerslev, H.C.; Sturek, M.; Alloosh, M.; Cirera, S.; Christoffersen, B.Ø.; Moesgaard, S.G.; Larsen, N.; Boye, M. Characterisation of gut microbiota in Ossabaw and Göttingen minipigs as models of obesity and metabolic syndrome. PLoS ONE 2013, 8, e56612. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.K.; Hansen, C.H.; Krych, L.; Nielsen, D.S. Impact of the gut microbiota on rodent models of human disease. World J. Gastroenterol. 2014, 20, 17727–17736. [Google Scholar] [CrossRef] [PubMed]
- Waldram, A.; Holmes, E.; Wang, Y.; Rantalainen, M.; Wilson, I.D.; Tuohy, K.M.; McCartney, A.L.; Gibson, G.R.; Nicholson, J.K. Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J. Proteome Res. 2009, 8, 2361–2375. [Google Scholar] [CrossRef] [PubMed]
- Armougom, F.; Henry, M.; Vialettes, B.; Raccah, D.; Raoult, D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE 2009, 4, e7125. [Google Scholar] [CrossRef]
- Million, M.; Maraninchi, M.; Henry, M.; Armougom, F.; Richet, H.; Carrieri, P.; Valero, R.; Raccah, D.; Vialettes, B.; Raoult, D. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. 2012, 36, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.J.; Xie, Z.M.; Zhang, W.W.; Li, Y.R.; Wang, W.; Ding, X.B.; Pei, X.F. Gut bacteria alteration in obese people and its relationship with gene polymorphism. World J. Gastroenterol. 2011, 17, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370. [Google Scholar] [CrossRef] [Green Version]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Isolauri, E.; Laitinen, K.; Salminen, S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 2008, 88, 894–899. [Google Scholar] [CrossRef]
- Kalliomäki, M.; Collado, M.C.; Salminen, S.; Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 2008, 87, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Lobley, G.E.; Holtrop, G.; Ince, J.; Johnstone, A.M.; Louis, P.; Flint, H.J. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 2008, 32, 1720–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, V.; McCrary, Q.M.; Sinha, R.; Glei, M. Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: An observational study in African American and Caucasian American volunteers. Nutr. J. 2009, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Nadal, I.; Santacruz, A.; Marcos, A.; Warnberg, J.; Garagorri, J.M.; Moreno, L.A.; Martin-Matillas, M.; Campoy, C.; Martí, A.; Moleres, A.; et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int. J. Obes. 2009, 33, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Santacruz, A.; Marcos, A.; Wärnberg, J.; Martí, A.; Martin-Matillas, M.; Campoy, C.; Moreno, L.A.; Veiga, O.; Redondo-Figuero, C.; Garagorri, J.M.; et al. EVASYON Study Group. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 2009, 17, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, R.; George, G.; Kabeerdoss, J.; Hepsiba, J.; Chandragunasekaran, A.M.; Ramakrishna, B.S. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br. J. Nutr. 2010, 103, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Santacruz, A.; Collado, M.C.; García-Valdés, L.; Segura, M.T.; Martín-Lagos, J.A.; Anjos, T.; Martí-Romero, M.; Lopez, R.M.; Florido, J.; Campoy, C.; et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010, 104, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah Ismail, N.; Ragab, S.H.; Abd Elbaky, A.; Shoeib, A.R.; Alhosary, Y.; Fekry, D. Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch. Med. Sci. 2011, 7, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Furet, J.P.; Kong, L.C.; Tap, J.; Poitou, C.; Basdevant, A.; Bouillot, J.L.; Mariat, D.; Corthier, G.; Doré, J.; Henegar, C.; et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: Links with metabolic and low-grade inflammation markers. Diabetes 2010, 59, 3049–3057. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.N.; Chassard, C.; Zimmermann, M.; Müller, P.; Stinca, S.; Lacroix, C. The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr. Diabetes 2011, 1, e12. [Google Scholar] [CrossRef]
- Vael, C.; Verhulst, S.L.; Nelen, V.; Goossens, H.; Desager, K.N. Intestinal microbiota and body mass index during the first three years of life: An observational study. Gut Pathog. 2011, 3, 8. [Google Scholar] [CrossRef]
- Patil, D.P.; Dhotre, D.P.; Chavan, S.G.; Sultan, A.; Jain, D.S.; Lanjekar, V.B.; Gangawani, J.; Shah, P.S.; Todkar, J.S.; Shah, S.; et al. Molecular analysis of gut microbiota in obesity among Indian individuals. J. Biosci. 2012, 37, 647–657. [Google Scholar] [CrossRef]
- Zupancic, M.L.; Cantarel, B.L.; Liu, Z.; Drabek, E.F.; Ryan, K.A.; Cirimotich, S.; Jones, C.; Knight, R.; Walters, W.A.; Knights, D.; et al. Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome. PLoS ONE 2012, 7, e43052. [Google Scholar] [CrossRef]
- Xu, P.; Li, M.; Zhang, J.; Zhang, T. Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol. 2012, 12, 283. [Google Scholar] [CrossRef]
- Munukka, E.; Wiklund, P.; Pekkala, S.; Völgyi, E.; Xu, L.; Cheng, S.; Lyytikäinen, A.; Marjomäki, V.; Alen, M.; Vaahtovuo, J.; et al. Women with and without metabolic disorder differ in their gut microbiota composition. Obesity 2012, 20, 1082–1087. [Google Scholar] [CrossRef]
- Simões, C.D.; Maukonen, J.; Kaprio, J.; Rissanen, A.; Pietiläinen, K.H.; Saarela, M. Habitual dietary intake is associated with stool microbiota composition in monozygotic twins. J. Nutr. 2013, 143, 417–423. [Google Scholar] [CrossRef]
- Ferrer, M.; Ruiz, A.; Lanza, F.; Haange, S.B.; Oberbach, A.; Till, H.; Bargiela, R.; Campoy, C.; Segura, M.T.; Richter, M.; et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ. Microbiol. 2013, 15, 211–226. [Google Scholar] [CrossRef]
- Bervoets, L.; Van Hoorenbeeck, K.; Kortleven, I.; Van Noten, C.; Hens, N.; Vael, C.; Goossens, H.; Desager, K.N.; Vankerckhoven, V. Differences in gut microbiota composition between obese and lean children: A cross-sectional study. Gut Pathog. 2013, 5, 10. [Google Scholar] [CrossRef]
- Tims, S.; Derom, C.; Jonkers, D.M.; Vlietinck, R.; Saris, W.H.; Kleerebezem, M.; de Vos, W.M.; Zoetendal, E.G. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 2013, 7, 707–717. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 74–180. [Google Scholar] [CrossRef]
- Angelakis, E.; Armougom, F.; Million, M.; Raoult, D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 2012, 7, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Fried, M.; Yumuk, V.; Oppert, J.M.; Scopinaro, N.; Torres, A.; Weiner, R.; Yashkov, Y.; Frühbeck, G. International Federation for Surgery of Obesity and Metabolic Disorders-European Chapter (IFSO-EC); European Association for the Study of Obesity (EASO); European Association for the Study of Obesity Obesity Management Task Force (EASO OMTF). Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes. Surg. 2014, 24, 42–55. [Google Scholar] [PubMed]
- Graessler, J.; Qin, Y.; Zhong, H.; Zhang, J.; Licinio, J.; Wong, M.L.; Xu, A.; Chavakis, T.; Bornstein, A.B.; Ehrhart-Bornstein, M.; et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: Correlation with inflammatory and metabolic parameters. Pharm. J. 2013, 13, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Li, J.V.; Ashrafian, H.; Bueter, M.; Kinross, J.; Sands, C.; le Roux, C.W.; Bloom, S.R.; Darzi, A.; Athanasiou, T.; Marchesi, J.R.; et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 2011, 60, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Liou, A.P.; Paziuk, M.; Luevano, J.M., Jr.; Machineni, S.; Turnbaugh, P.J.; Kaplan, L.M. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 2013, 5, 178ra41. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Quince, C.; Faith, J.J.; McHardy, A.C.; Yatsunenko, T.; Niazi, F.; Affourtit, J.; Egholm, M.; Henrissat, B.; Knight, R.; et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl. Acad. Sci. USA 2010, 107, 7503–7508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Sung, J.; Lee, J.; Ko, G. Comparison of the gut microbiotas of healthy adult twins living in South Korea and the United States. Appl. Environ. Microbiol. 2011, 77, 7433–7437. [Google Scholar] [CrossRef] [PubMed]
- Luoto, R.; Kalliomäki, M.; Laitinen, K.; Delzenne, N.M.; Cani, P.D.; Salminen, S.; Isolauri, E. Initial dietary and microbiological environments deviate in normal-weight compared to overweight children at 10 years of age. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.N.; Chassard, C.; Banz, Y.; Lacroix, C. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiol. Ecol. 2012, 80, 608–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanmiguel, C.; Gupta, A.; Mayer, E.A. Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Curr. Obes. Rep. 2015, 4, 250–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, R.W.; Arhire, L.; Covasa, M. Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity 2018, 26, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemas, D.J.; Young, B.E.; Baker, P.R., 2nd; Tomczik, A.C.; Soderborg, T.K.; Hernandez, T.L.; de la Houssaye, B.A.; Robertson, C.E.; Rudolph, M.C.I.D.; Patinkin, Z.W.; et al. Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome. Am. J. Clin. Nutr. 2016, 103, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Manchester, J.K.; Semenkovich, C.F.; Gordon, J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 2007, 104, 979–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpellini, E.; Cazzato, A.; Lauritano, C.; Gabrielli, M.; Lupascu, A.; Gerardino, L.; Abenavoli, L.; Petruzzellis, C.; Gasbarrini, G.; Gasbarrini, A. Probiotics: Which and when? Dig. Dis. 2008, 26, 175–182. [Google Scholar] [CrossRef]
- Duncan, S.H.; Belenguer, A.; Holtrop, G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 2007, 73, 1073–1078. [Google Scholar] [CrossRef]
- Murphy, E.F.; Cotter, P.D.; Healy, S.; Marques, T.M.; O’Sullivan, O.; Fouhy, F.; Clarke, S.F.; O’Toole, P.W.; Quigley, E.M.; Stanton, C.; et al. Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models. Gut 2010, 59, 1635–1642. [Google Scholar] [CrossRef]
- Cuevas-Sierra, A.; Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv. Nutr. 2019, 10, S17–S30. [Google Scholar] [CrossRef] [Green Version]
- Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients 2018, 10, 988. [Google Scholar] [CrossRef]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef]
- Zhao, Y.; He, X.; Shi, X.; Huang, C.; Liu, J.; Zhou, S.; Heng, C.K. Association between serum amyloid A and obesity: A meta-analysis and systematic review. Inflamm. Res. 2010, 59, 323–334. [Google Scholar] [CrossRef]
- Reigstad, C.S.; Lundén, G.O.; Felin, J.; Bäckhed, F. Regulation of serum amyloid A3 (SAA3) in mouse colonic epithelium and adipose tissue by the intestinal microbiota. PLoS ONE 2009, 4, e5842. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Balercia, G.; Barrea, L.; Cignarelli, A.; Giorgino, F.; Holst, J.J.; Laudisio, D.; Orio, F.; Tirabassi, G.; Colao, A. Gut: A key player in the pathogenesis of type 2 diabetes? Crit. Rev. Food Sci. Nutr. 2018, 58, 1294–1309. [Google Scholar] [CrossRef]
- Alex, S.; Lichtenstein, L.; Dijk, W.; Mensink, R.P.; Tan, N.S.; Kersten, S. ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract. Histochem. Cell Biol. 2014, 141, 383–391. [Google Scholar] [CrossRef]
- Ohira, H.; Tsutsui, W.; Fujioka, Y. Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis? J. Atheroscler. Thromb. 2017, 24, 660–672. [Google Scholar] [CrossRef] [Green Version]
- Cerdó, T.; García-Santos, J.A.; Bermúdez, M.G.; Campoy, C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients 2019, 11, 635. [Google Scholar] [CrossRef]
- Luoto, R.; Kalliomäki, M.; Laitinen, K.; Isolauri, E. The impact of perinatal probiotic intervention on the development of overweight and obesity: Follow-up study from birth to 10 years. Int. J. Obes. 2010, 34, 1531–1537. [Google Scholar] [CrossRef]
- Vajro, P.; Mandato, C.; Licenziati, M.R.; Franzese, A.; Vitale, D.F.; Lenta, S.; Caropreso, M.; Vallone, G.; Meli, R. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 740–743. [Google Scholar] [CrossRef]
- Alisi, A.; Bedogni, G.; Baviera, G.; Giorgio, V.; Porro, E.; Paris, C.; Giammaria, P.; Reali, L.; Anania, F.; Nobili, V. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment. Pharm. Ther. 2014, 39, 1276–1285. [Google Scholar]
- Famouri, F.; Shariat, Z.; Hashemipour, M.; Keikha, M.; Kelishadi, R. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 413–417. [Google Scholar] [CrossRef]
- Sanchis-Chordà, J.; del Pulgar, E.M.G.; Carrasco-Luna, J.; Benítez-Páez, A.; Sanz, Y.; Codoñer-Franch, P. Bifidobacterium pseudocatenulatum CECT 7765 supplementation improves inflammatory status in insulin-resistant obese children. Eur. J. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Gøbel, R.J.; Larsen, N.; Jakobsen, M.; Mølgaard, C.; Michaelsen, K.F. Probiotics to adolescents with obesity: Effects on inflammation and metabolic syndrome. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.B.; Alderete, T.L.; Martin, A.A.; Geary, B.A.; Hwang, D.H.; Palmer, S.L.; Goran, M.I. Probiotic supplementation increases obesity with no detectable effects on liver fat or gut microbiota in obese Hispanic adolescents: A 16-week, randomized, placebo-controlled trial. Pediatr. Obes. 2018, 13, 705–771. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, Y.J.; Kim, M.; Kim, M.; Kwak, J.H.; Lee, J.-W.; Ahn, Y.T.; Hun, J.; HoLee, S. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduced body adiposity and Lp-PLA2 activity in overweight subjects. J. Funct. Foods 2015, 19, 744–752. [Google Scholar] [CrossRef]
- Gomes, A.C.; de Sousa, R.G.M.; Botelho, P.B.; Gomes, T.L.N.; Prada, P.O.; Mota, J.F. The additional effects of a probiotic mix on abdominal adiposity and antioxidant Status: A double-blind, randomized trial. Obesity 2017, 25, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Higashikawa, F.; Noda, M.; Awaya, T.; Danshiitsoodol, N.; Matoba, Y.; Kumagai, T.; Sugiyama, M. Antiobesity effect of Pediococcus pentosaceus LP28 on overweight subjects: A randomized, double-blind, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2016, 70, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yun, J.M.; Kim, M.K.; Kwon, O.; Cho, B. Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Med. Food 2018, 21, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Minami, J.; Iwabuchi, N.; Tanaka, M.; Yamauchi, K.; Xiao, J.-Z.; Abe, F.; Sakane, N. Effects of Bifidobacterium breve B-3 on body fat reductions in pre-obese adults: A randomized, double-blind, placebo-controlled trial. Biosci. Microbiota Food Health 2018, 37, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Pedret, A.; Valls, R.M.; Calderón-Pérez, L.; Llauradó, E.; Companys, J.; Pla-Pagà, L.; Moragas, A.; Martín-Luján, F.; Ortega, Y.; Giralt, M.; et al. Effects of daily consumption of the probiotic Bifidobacterium animalis subsp. lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: A randomized controlled trial. Int. J. Obes. 2018, 43, 1863–1868. [Google Scholar] [CrossRef] [PubMed]
- Szulinska, M.; Łoniewski, I.; van Hemert, S.; Sobieska, M.; Bogdanski, P. Dose-dependent effects of multispecies probiotic supplementation on the lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: A 12-week randomized clinical trial. Nutrients 2018, 10, 773. [Google Scholar] [CrossRef]
- Sanchez, M.; Darimont, C.; Panahi, S.; Drapeau, V.; Marette, A.; Taylor, V.H.; Doré, J.; Tremblay, A. Effects of a diet-based weight-reducing program with probiotic supplementation on satiety efficiency, eating behavior traits, and psychosocial behaviours in obese individuals. Nutrients 2017, 9, 284. [Google Scholar] [CrossRef] [PubMed]
- Kadooka, Y.; Sato, M.; Imaizumi, K.; Ogawa, A.; Ikuyama, K.; Akai, Y.; Okano, M.; Kagoshima, M.; Tsuchida, T. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 2010, 64, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, K.L.; Boutagy, N.E.; McMillan, R.P.; Stevens, J.R.; Frisard, M.I.; Kavanaugh, J.W.; Davy, B.M.; Davy, K.P.; Hulver, M.W. Probiotic supplementation attenuates increases in body mass and fat mass during high-fat diet in healthy young adults. Obesity 2015, 23, 2364–2370. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.N.; Verma, P.; Kumar, R.; Kumar, S.; Kumar, V.; Kumar, K. Probiotic microbes: Biodiversity, mechanisms of action and potential role in human health. In Proceedings of the National Conference on Advances in Food Science and Technology, Paris, France, 23–25 October 2017; p. 33. [Google Scholar]
- Markowiak, P.; Slizewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Lara, M.J.; Robles-Sanchez, C.; Ruiz-Ojeda, F.J.; Plaza-Diaz, J.; Gil, A. Effects of Probiotics and Synbiotics on Obesity, Insulin Resistance Syndrome, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease: A Review of Human Clinical Trials. Int. J. Mol. Sci. 2016, 17, 928. [Google Scholar] [CrossRef] [PubMed]
Domain | Phylum | Class | Order | Family | Genus |
---|---|---|---|---|---|
Bacteria | Bacteroidetes | Bacteroidia | Bacteroidales | Bacteroidacee | Bacteroides |
Prevotellacee | Prevotella | ||||
Xylanibacter | |||||
Rikenellacee | Rikenella | ||||
Firmicutes | Clostridia | Clostridiales | Clostridiacee | Clostridium | |
Ruminococcae | Faecalibacterium | ||||
Ruminococcus | |||||
Peptostreptococcae | Peptostreptococcus | ||||
Fusibacter | |||||
Eubacteriacee | Eubacterium | ||||
Veillonellacee | Veillonella | ||||
Lachnospiraceae | Roseburia | ||||
Bacilli | Bacillales | Bacillaceae | Bacillus | ||
Lysteriaceae | Lysteria | ||||
Staphylococcaceae | Staphylococcus | ||||
Pasteuriaceae | Pasteuria | ||||
Lactobacillales | Lactobacillaceae | Lactobacillus | |||
Enterococcaceae | Enterococcus | ||||
Streptococcaceae | Streptococcus | ||||
Actinobacteria | Actinobacteria | Bifidobacteriales | Bifidobacteriaceae | Bifidobacterium | |
Gardnerella | |||||
Actinomycetales | Actinomycetaceae | Actynomices | |||
Proteobacteria | Deltaproteobacteria | Desulfobacteriales | Desulfobulbaceae | Desulfovibrio | |
Gammaproteobacteria | Enterobacteriales | Enterobacteriaceae | Escherichia | ||
Enterobacter | |||||
Klebsiella | |||||
Proteus | |||||
Epsilonproteobacteria | Campylobacteriales | Campylobacteriaceae | Campylobacter | ||
Helycobacteriaceae | Helycobacter | ||||
Fusobacteria | Fusobacteria | Fusobacteriales | Fusobacteriaceae | Fusobacterium | |
Verrucomicrobia | Verrucomicrobiae | Verrucomicrobiales | Verrucomicrobiaceae | Verrucomicrobium | |
Synergistetes | Synergistia | Synergistales | Synergistaceae | Synergistes | |
Spirochaetes | Spirochaetes | Spirochaetales | Spirochaetaceae | Spirochaeta | |
Treponema | |||||
Cyanobacteria | Cyanobacteria | ||||
Archaea | Euryarchaeota | Methanobacteria | Methanobacteriales | Methanobacteriaceae | Methanobrevibacter |
Methanobacterium | |||||
Methanosphaera |
Source | Study Subjects | Comparison | No. of Subjects | Methods | Community Measured | Major Findings |
---|---|---|---|---|---|---|
Ley et al. [32] | Human adults | Obese vs. controls | 12 obese, 2 normal weight | 16S rRNA sequencing | Bacteroidetes Firmicutes | Significantly reduced level of Bacteroidetes in obese subjects. |
Collado et al. [42] | Pregnant women | Obese vs. lean pregnant | 18 overweight, 36 normal weight pregnant women | FCM-FISH qPCR | Bacteroides Bifidobacteria Staphylococcus aureus | High numbers of Bacteroides group and S.aureus in the overweight pregnant women. |
Zhang et al. [40] | Human adults | Obese vs. control vs. after RYGB | 3 normal weight, 3 obese, 3 post-gastric bypass | 16S Pyrosequencing qPCR | Firmicutes Bacteroidetes Proteobacteria Actinobacteria Fusobacteria Verrucomicrobia | More Bacteroidetes in obese subjects (not significant). Prevotellacee (phylum Bacteroidetes) and Coriobacteriacee (phylum Actinobacteria) increased in obese. Significant increase in Methanobacteriales in obese subjects. |
Kalliomaki et al. [43] | Human children | Overweight/obese Normal weight | 25 overweight: 7 obese, 24 normal weight | FISH | Bifidobacteria Lactobacilli Clostridia Staphylococcus aureus | Lower number of bifidobacteria and greaternumber of S. aureus predict Obese/overweight phenotype. |
Duncan et al. [44] | Human male | Obese vs. normal weight | 15 obese, 14 lean | FISH | Bacteroides Firmicutes E.rectale/C. coccoides | No differences in Bacteroides level in obese and normal weight subjects. Significant diet-dependent reduction in Eubacterium rectale/C. coccoides (phylum Firmicutes) levels in obese subjects. |
Turnbaugh et al. [33] | Human twins | Obese and normal twins, mothers | 154 subjects: 31 monozygotic twin pairs, 23 dizygotic twin pairs, 46 mothers | 16S pyrosequencing V2 and V6 variable region | Bacteroidetes Firmicutes Proteobacteria Actinobacteria | Significantly reduced levels of Bacteroidetes in obese and increased level of Actinobacteria. Nearly half of the lean-enriched genes are from Bacteroidetes. |
Armougom et al. [37] | Human adults | Anorexic, normal weight and obese | 20 normal weight, 20 obese, 9 anorexic | qPCR | Lactobacillus M. smithii Bacteroidetes Firmicutes | Significantly reduced levels of Bacteroidetes in obese subjects versus healthy subjects (p < 0.01). Firmicutes data are similar in the three categories. Significantly higher levels of Lactobacillus. Increase of M. smithii in anorexic subjects (p < 0.05). |
Mai et al. [45] | Human adults | African American and Caucasian American | 98 subjects | FISH qPCR | Bacteroidetes Clostridia cluster XIV (Firmicutes) | No significant difference in Bacteroidetes numbers between obese and normal-weight subjects. |
Nadal et al. [46] | Human adolescents | Before and after 10 weeks of calorie-restricted diet | 39 overweight adolescents | FISH | Bacteroidetes/Prevotella Bifidobacterium C. histolyticum E. rectale/C. coccoides Lactobacillus/En-terococcus | Greater weight loss after a multidisciplinary treatment program associated with: significant reduction of Eubacterium rectale, Clostridium coccoides and C. histolyticum; significant increase in Bacteroides/Prevotella. |
Santacruz et al. [47] | Human adolescents | Before and after diet and exercise for 10 weeks | 36 obese adolescents | qPCR | Bacteroides fragilis Lactobacillus C. coccoides C. leptum Bifidobacterium Escherichia coli | After an obese group submitted to a weight program lost >4 Kg: significant reduction in C.coccoides; increase in the Bacteroides fragilis and Lactobacillus group. |
Schwiertz et al. [41] | Human adults | Obese vs. overweight vs.normal weight | 98 subjects: 30 lean, 35 overweight, 33 obese subjects | qPCR | Firmicutes Bacteroidetes Bifidobacteria | Significantly increased level of Bacteroidetes in obese subjects and decreased level of Firmicutes. Significant decrease in Bifidobacteria and Methanobrevibacter spp. in obese subjects. |
Balamurugan et al. [48] | Human children | Obese vs. non obese | 15 obese, 13 normal weight | qPCR | Bacteroidetes Bifidobacterium Lactobacillus acidophilus E. rectale F. prausntzi | No significant difference in Bacteroides/Prevotella and Bifidobacterium spp. Significant increase of Fecalibacterium prausntzi levels (Firmicutes species) in obese subjects. |
Santacruz et al. [49] | Pregnant women | Overweight/obese pregnant women vs. normal weight women | 16 overweight pregnant, 34 normal weight pregnant women | qPCR | Bifidobacterium Lactobacilli Bacteroidetes Escherichia coli Staphilococcus | Significant reduction of Bifidobacterium and Bacteroides numbers in obese pregnant women. Increased levels of Staphilococcus and E. coli in overweight women. |
Abdallah Ismail et al. [50] | Human children and adults | Obese vs. normal weight | 79 subjects: 51 obese, 28 normal weight | qPCR | Bacteroidetes Firmicutes | Significantly increased distribution of Bacteroidetes and Firmicutes in the obese group. |
Furet et al. [51] | Obese after RYGB | Obese subjects enrolled in a bariatric-surgery program | 30 obese after RYGB, 13 lean | qPCR | Bacteroides/Prevotella E. Coli F. Prausnitzii Bifidobacterium Lactobacilli | Bacteroides/Prevotella group was lower in obese subjects than in control subjects and increased after 3 months. Escherichia coli species after 3 months and inversely correlated with fat mass and leptin levels. F. prausnitzii species was lower in subjects with diabetes and associated negatively with inflammatory markers. |
Zuo et al. [39] | Human adults | Obese vs. normal weight | 52 obese, 52 normal weight | Culture | Bacteroides Clostridium perfringens | Significantly reduced levels of Clostridium perfringens and Bacteroides in obese population. |
Payne et al. [52] | Human children | Obese vs. normal weight children | 30 subjects: 15 obese, 15 normal weight | qPCR TGGE | Bacteroides Firmicutes Roseburia/E.rectale Lactobacillus Bifidobacterium Enterobacteriacee F. prausnitzii | No significant differences for any population tested between obese and normal weight children. |
Vael et al. [53] | Human children | Children at 3, 26 and 52 weeks of age | 138 subjects | Culture | Bacteroides fragilis Bifidobacterium Lactobacillus Enterobacteriacea Staphylococcus Clostridium | High intestinal Bacteroides fragilis and low Staphylococcus concentrations in infants between the age of 3 weeks and 1 year are associated with a higher risk of obesity later in life. |
Patil et al. [54] | Human adults | Lean, normal, obese and surgically-treated obese subjects | 20 subjects: 5 lean, 5 normal, 5 obese, 5 surgically treated | qPCR | Bacteroidetes Firmicutes | Bacteroides are prominent among the obese subjects. |
Zupancic et al. [55] | Human adults | Stratified by BMI | 310 adult subjects | 16S rRNA pyrosequencing V1-V3 | Bacteroidetes spp. Firmicutes spp. | Bacteroidetes/ Firmicutes ratio is not associated with BMI or metabolic syndrome traits. |
Xu et al. [56] | Human children | Normal, overweight and obese subjects | 175 children: 91 normal, 62 overweight, 22 obese | qPCR | Bacteroidetes Firmicutes | Reduction of Bacteroidetes level in obese group (p = 0.002).No differences in Firmicutes level between lean and obese children (p = 0.628). |
Munukka et al. [57] | Premenopausal women | Overweight/obese women with and without metabolic disorders | 85 premenopausal women | FISH | Bacteroidetes Bifidobacterium spp. Enterobacteriacee E. rectale/C. coccoides F. prausnitzii | Proportion of E. rectale/C. coccoides is higher in MDG women compared to NMDG and NWG women. Certain members of E. rectale/C. coccoides are associated with obesity related metabolic disease, not obesity per se. |
Million et al. [38] | Human adults | Obese vs. normal weight | 115 subjects: 68 obese, 47 controls | Culture (Lactobacillus spp.) qPCR | Lactobacillus spp. Bacteroidetes Firmicutes M. smithii | L. paracasei is significantly associated with lean status. L. reuteri, L. gasseri are significantly associated with obesity. M. smithii is less abundant in human obesity. Bacteroidetes are lower in obeses (not significant, p = 0.25) |
Simões et al. [58] | Human twins | Obese, overweight, normal weight | 20 twin pairs | qPCR DGGE | Eubacterium rectale group Clostridium leptum group Lactobacillus group Bacteroides spp. | The abundance and diversity of the bacterial groups not differ between normal weight, overweight and obese individuals. Diet plays an important role in the modulation of the stool microbiota, in particular Bacteroides spp. and Bifidobacteria |
Ferrer et al. [59] | Human adolescents | Lean and obese subjects | 1 obese, 1 lean individual | qPCR | Bacteroidetes Firmicutes Actinobacteria Proteobacteria | Lower Bacteroidetes abundance and greater frequencies of Clostridia (Firmicutes spp.) in obese subjects. |
Million et al. [41] | Humans adults | Obese, overweight, lean and anorexic subjects | 263 individuals: 134 obese, 38 overweight, 76 lean, 15 anorexic | qPCR | Bacteroidetes Firmicutes, M. smithii Lactobacillus spp. E.coli | L. reuterii was positively correlated with BMI. M. smithii was negatively associated with BMI. Bacteroidetes was not correlated with BMI. |
Bervoets et al. [60] | Human children | Obese, overweight and morbidly obese (O/O group) and normal-weight, thinness (C group) | 26 overweight/obese, 27 lean | qPCR Mass spectrometry | Bacteroides Bifidobacterium Clostridium Staphylococcus Lactobacillus | Higher concentration of Lactobacillus spp. in obese microbiota. Increased concentration of Firmicutes and decreased concentration of Bacteroidetes in obese children. |
Tims et al. [61] | Human twins | Concordant and discordant BMI twin pairs | 40 subjects: 20 discordant BMI 20 concordant BMI twin pairs | HITChip phylogenetic microarrays | Bacteroidetes Firmicutes Actinobacteria at phylotype level | MZ twins have more similar GI microbiota compared with unrelated subject. Inverse correlation between Clostridium cluster IV diversity and BMI; positive correllation between Eubacterium ventriosum/Roseburia intestinalis and BMI. No consistent Bacteroidetes/Firmicutes ratio were observed in pair-wise comparison of lower- and higher-BMI siblings. |
Source | Study Subjects | Type of Trial | Probiotic(s) Administered | Placebo Arm | Duration | Major Findings |
---|---|---|---|---|---|---|
Gomes et al. [97] | 43 obese Women (20–59 years); 21 probiotic/22 placebo | Randomized, double-blind, placebo-controlled, two arm, parallel-group | L. acidophilus LA-14, L. casei LC-11, Lactococcuslactis LL-23, B. bifidum BB-06, B. lactis BL-4 (2 × 1010 CFU/day) + dietary intervention | 1 cap/day placebo + dietary prescription | 8 weeks | Lower WC |
Higashikawa et al. (2016) [98] | Overweight adults aged 20–70 years (n = 62); Intervention I (n = 21); Intervention II (n = 21); placebo (n = 20) | Randomized, double-blind, placebo-controlled clinical trial | Intervention I: Living LP28; Intervention II Heat-killed LP28 (Pediococcus pentosaceus) (1011 CFU/day) | 1 cap/day placebo | 12 weeks | <BMI and WC after Intervention II |
Jung et al. (2015) [96] | Obese adults aged 20–65 years (n = 120); intervention (n = 60); placebo (n = 60) | Double-blind, placebo-controlled, randomized clinical trial | L. curvatus HY7601 + L. plantarum KY1032 (2.5 × 109 CFU of probiotics/2 cap/day) + healthy lifestyle habits | 2 cap/day placebo + healthy lifestyle measures | 12 weeks | <Body weight, WC and body fat |
Kadooka et al. (2010) [104] | Adults aged 33-63 years with obese tendencies (n = 87); intervention (n = 43); control group (n = 44) | Multicenter, double-blind, randomized, placebo-controlled intervention trial | Fermented milk containing Lactobacillus gasseri SBT2055 (5 × 1010 CFU/100 g fermented milk). Intake of 200 g/day | 200 g/day of fermented milk without probiotic | 12 weeks | Lower abdominal, subcutaneous fat deposition, body weight and BMI |
Kim et al. (2018) [99] | Obese adults aged 20–75 years (n = 90); low-dose intervention (n = 30); high-dose intervention (n = 30); placebo (n = 30) | Randomized, double-blind, placebo-controlled trial | Low (109 CFU/day) and high (1010 CFU/2 cap/twice a day) dose of Lactobacillus gasseri BNR17 + lifestyle changes | 2 cap/twice a day of placebo + lifestyle changes | 12 weeks | Lower visceral adipose tissue; lower WC in high-dose and low-dose groups |
Luoto et al. (2010) [89] | Mother–child pairs (n = 113); intervention (n = 54); placebo (n = 59) | Randomized, double-blind, prospective follow-up study | Lactobacillus rhamnosus GG (1 × 1010 CFU/day) | 1 cap/day of placebo (microcrystalline cellulose) | Mothers 4 weeks before expected delivery; in infants up to 6 month old | Lower weight gain at 1 year of life and 4 years; no changes in later stages of development |
Minami et al. (2018) [100] | Healthy pre-obese adults aged 20–64 years (n = 80); intervention (n = 40); placebo (n = 40) | Randomized, double-blind, placebo-controlled trial | Bifidobacterium breve B-3 (1010 CFU/2 cap/day) | 2 cap/day of placebo | 12 weeks | <Body fat mass |
Osterberg et al. (2015) [105] | Healthy non-obese young male adults (18–30 years) (n = 20); intervention (n = 9); placebo (n = 11) | Randomized, double-blind placebo-controlled clinical trial | Two vials of VSL#3 (450 billion bacteria per vial in milk shake/once a day) + high fat diet (HFD) | Two vials of placebo in milk shake/once a day + HFD | 4 weeks | Lower weight and fat |
Pedret et al. (2018) [101] | Abdominally obese adults (n = 126); Intervention I (n = 42); Intervention II (n = 44); placebo (n = 40) | Randomized, parallel, double-blind, placebo-controlled trial | Bifidobacterium animalis subsp. Lactis CECT 8145 (Intervention I) or its heat-killed form (Intervention II) (1010 CFU/cap/day) | 1 cap/day of placebo | 12 weeks | Lower BMI, WC and waist circumference/height ratio |
Sánchez et al. (2017) [103] | Obese adults aged 18–55 years (n = 125); intervention (n = 62); placebo (n = 63) | Double-blind, randomized, placebo-controlled trial | L. rhamnosus CGMCC1.3724(1.62 × 108 CFU/2 cap/day) + healthy eating behavior | 250 mg of maltodextrin + 3 mg magnesium stearate + eating advices | 12 weeks | Lower weight |
Sanchis-Chordá et al. (2018) [93] | Obese children (aged 10–15 years) with insulin resistance (n = 48); intervention (n = 23); placebo (n = 25) | Double-blind, randomized, placebo-controlled trial | B. pseudocatenulatum CECT 7765 (109 × 10 CFU/day) + dietary recommendations | Placebo + dietary recommendations | 13 weeks | Lower weight |
Szulinska et al. (2018) [102] | Obese postmenopausal women aged 45–70 years (n = 81); low-dose intervention (n = 27); high-dose intervention (n = 27); placebo (n = 27) | Randomized-double-blind, placebo-controlled clinical trial | Low (2.5 × 109 CFU/day) and high dose (1010 CFU/day/two sachets per day) of probiotic mixture including nine different strains of Lactobacillus and Bifidobacterium | 1 cap/day of placebo | 12 weeks | Lower body weight, BMI and fat mass in low and high-dose group; improved lipid profile in the high-dose group |
Vajro et al. (2011) [90] | Obese children (aged 10–13 years) with hypertransaminasemia and ultrasonographic bright liver (n = 20); intervention (n = 10); placebo (n = 10) | Double-blind, placebo-controlled pilot study | Lactobacillus rhamnosus GG (12 billion CFU/day) | 1 cap/day of placebo | 8 weeks | Lower hypertransaminasemia; lower BMI and visceral fat adding lifestyle interventions |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abenavoli, L.; Scarpellini, E.; Colica, C.; Boccuto, L.; Salehi, B.; Sharifi-Rad, J.; Aiello, V.; Romano, B.; De Lorenzo, A.; Izzo, A.A.; et al. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients 2019, 11, 2690. https://doi.org/10.3390/nu11112690
Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, et al. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients. 2019; 11(11):2690. https://doi.org/10.3390/nu11112690
Chicago/Turabian StyleAbenavoli, Ludovico, Emidio Scarpellini, Carmela Colica, Luigi Boccuto, Bahare Salehi, Javad Sharifi-Rad, Vincenzo Aiello, Barbara Romano, Antonino De Lorenzo, Angelo A. Izzo, and et al. 2019. "Gut Microbiota and Obesity: A Role for Probiotics" Nutrients 11, no. 11: 2690. https://doi.org/10.3390/nu11112690