Impact of Fenugreek on Milk Production in Rodent Models of Lactation Challenge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiment
Housing and Diets
2.2. Experimental Design
2.3. Biological Samples Collection
2.4. Milk Flow Measurement by Water Turnover Method
2.5. Milk Protein, Lactose, and Fatty Acid Analysis
2.6. Dams and Offspring Metabolic Markers and Offspring Glucose Tolerance Test
2.7. Trigonelline Quantification in Experimental Diet, Dams’ Plasma, and Milk
2.8. Statistical Analysis
3. Results
3.1. Dams and Litter Characteristics in the Reference Group NP:8
3.2. Lactation Challenges Impact both Physiological Characteristics of Dam and Litter Compared to the Control Group NP:8
3.3. Correlation between Milk Flow Variables, Pups’ Growth Variables, and Lactating Dams’ Intakes Variables
3.4. Determination of Galactologue Effect of Fenugreek in Two Models of Lactation Challenges
3.5. Fenugreek Enhances Milk Lactose and Trigonelline Content in the Litter Size Increase Challenge
3.6. Effect of Fenugreek on Metabolic Status of Dams and Offspring at Short and Long Term for the Litter Size Increase Challenge
4. Discussion
4.1. Effect of Lactation Challenges on Pup Growth and Milk Production
4.2. Correlation between Milk Flow, Pups’ Growth, and Lactating Dams’ Intakes of Food and Water
4.3. Galactologue Effect of Fenugreek in Two Models of Lactation Challenge
4.4. Effect of Fenugreek on Milk Composition
4.5. Effect of Fenugreek on Dams Metabolism during Lactation and on Short- and Long-Term Offspring Metabolism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Indicators for Assessing Infant and Young Child Feeding Practices: Part 1: Definitions: Conclusions of a Consensus Meeting Held 6–8 November 2007 in Washington, DC, USA; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Rito, A.I.; Buoncristiano, M.; Spinelli, A.; Salanave, B.; Kunešová, M.; Hejgaard, T.; García Solano, M.; Fijałkowska, A.; Sturua, L.; Hyska, J.; et al. Association between Characteristics at Birth, Breastfeeding and Obesity in 22 Countries: The WHO European Childhood Obesity Surveillance Initiative—COSI 2015/2017. Obes. Facts 2019, 12, 226–243. [Google Scholar] [CrossRef]
- Eidelman, A.I.; Schanler, R.J. Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef][Green Version]
- Danforth, K.N.; Tworoger, S.S.; Hecht, J.L.; Rosner, B.A.; Colditz, G.A.; Hankinson, S.E. Breastfeeding and risk of ovarian cancer in two prospective cohorts. Cancer Causes Control 2007, 18, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, E.P.; Lewis, C.E.; Lin, Y.; Sorel, M.; Gross, M.; Sidney, S.; Jacobs, D.R., Jr.; Shikany, J.M.; Quesenberry, C.P., Jr. Lactation Duration and Progression to Diabetes in Women across the Childbearing Years: The 30-Year CARDIA Study. JAMA Intern. Med. 2018, 178, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Bahl, R.; Barros, A.J.; Franca, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef]
- Bonet, M.; Marchand, L.; Kaminski, M.; Fohran, A.; Betoko, A.; Charles, M.A.; Blondel, B. Breastfeeding duration, social and occupational characteristics of mothers in the French ‘EDEN mother-child’ cohort. Matern. Child Health J. 2013, 17, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Salanave, B.d.L.C.; Boudet-Berquier, J.; Castetbon, K. Durée de l’allaitement maternel en France (Épifane 2012–2013). Bull. Epidémiol. Hebd. 2014, 27, 450–457. [Google Scholar] [CrossRef]
- Thulier, D.; Mercer, J. Variables associated with breastfeeding duration. J. Obstet. Gynecol. Neonatal Nurs. 2009, 38, 259–268. [Google Scholar] [CrossRef]
- Gatti, L. Maternal perceptions of insufficient milk supply in breastfeeding. J. Nurs. Scholarsh. 2008, 40, 355–363. [Google Scholar] [CrossRef]
- Murase, M.; Wagner, E.A.; Chantry, C.J.; Dewey, K.G.; Nommsen-Rivers, L.A. The Relation between Breast Milk Sodium to Potassium Ratio and Maternal Report of a Milk Supply Concern. J. Pediatr. 2017, 181, 294–297. [Google Scholar] [CrossRef]
- Javan, R.; Javadi, B.; Feyzabadi, Z. Breastfeeding: A Review of Its Physiology and Galactogogue Plants in View of Traditional Persian Medicine. Breastfeed. Med. 2017, 12, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Forinash, A.B.; Yancey, A.M.; Barnes, K.N.; Myles, T.D. The use of galactogogues in the breastfeeding mother. Ann. Pharmacother. 2012, 46, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Abascal, K.; Yarnell, E. Botanical Galactagogues. Altern. Complement. Ther. 2008, 14, 288–294. [Google Scholar] [CrossRef]
- Bahmani, M.; Shirzad, H.; Mirhosseini, M.; Mesripour, A.; Rafieian-Kopaei, M. A Review on Ethnobotanical and Therapeutic Uses of Fenugreek (Trigonella foenum-graceum L). J. Evid. Based Complement. Altern. Med. 2016, 21, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, H.; Fathalla, S.I.; Ezzat Assayed, M.; Ramadan Masoad, S.; Abdelaleem Nafeaa, A. Physiological Studies on the Effect of Fenugreek on Productive Performance of White New-Zealand Rabbit Does. Food Nutr. Sci. 2016, 7, 1276–1289. [Google Scholar] [CrossRef][Green Version]
- Mahgoub, A.A.S.; Sallam, M.T. Effect of Extract Crushed Fenugreek Seeds as Feed Additive on some Blood Parameters, Milk Yield and Its Composition of Lactating Egyptian Buffaloes. J. Anim. Poult. Sci. 2016, 7, 269–273. [Google Scholar] [CrossRef]
- Alamer, M.A.; Basiouni, G.F. Feeding effect of Fenugreek seed (Trigonella foenum-graecum L.) on lactation performance, some plasma constituent and growth hormone level in goats. Pak. J. Biol. Sci. 2005, 8, 1553–1556. [Google Scholar]
- Al-Sherwany, D.A.O. Feeding effects of fenugreek seeds on intake, milk yield, chemical composition of milk and some biochemical parameters in Hamdani ewes. Al-Anbar J. Vet. Sci. 2015, 8, 49–54. [Google Scholar]
- Eiben, C.; Rashwan, A.; Kustos, K.; Gódor-Surmann, K.; Szendrő, Z. Effect of Anise and Fenugreek supplementation on performance of rabbit does. In Proceedings of the 8th World Rabbit Congress, Puebla, Mexico, 7–10 September 2004. [Google Scholar]
- Al-Shaikh, M.A.; Al-Mufarrej, S.I.; Mogawer, H.H. Effect of Fenugreek Seeds (Trigonella foenumgraecum L.) on Lactational Performance of Dairy Goat. J. Appl. Anim. Res. 1999, 16, 177–183. [Google Scholar] [CrossRef]
- Sevrin, T.; Alexandre-Gouabau, M.C.; Darmaun, D.; Palvadeau, A.; Andre, A.; Nguyen, P.; Ouguerram, K.; Boquien, C.Y. Use of water turnover method to measure mother’s milk flow in a rat model: Application to dams receiving a low protein diet during gestation and lactation. PLoS ONE 2017, 12, e0180550. [Google Scholar] [CrossRef]
- Morag, M.; Popliker, F.; Yagil, R. Effect of litter size on milk yield in the rat. Lab. Anim. 1975, 9, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Rodel, H.G.; Prager, G.; Stefanski, V.; von Holst, D.; Hudson, R. Separating maternal and litter-size effects on early postnatal growth in two species of altricial small mammals. Physiol. Behav. 2008, 93, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Bautista, C.J.; Boeck, L.; Larrea, F.; Nathanielsz, P.W.; Zambrano, E. Effects of a maternal low protein isocaloric diet on milk leptin and progeny serum leptin concentration and appetitive behavior in the first 21 days of neonatal life in the rat. Pediatr. Res. 2008, 63, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Osowska, S.; Duchemann, T.; Walrand, S.; Paillard, A.; Boirie, Y.; Cynober, L.; Moinard, C. Citrulline modulates muscle protein metabolism in old malnourished rats. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E582–E586. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Martin Agnoux, A.; Antignac, J.P.; Boquien, C.Y.; David, A.; Desnots, E.; Ferchaud-Roucher, V.; Darmaun, D.; Parnet, P.; Alexandre-Gouabau, M.C. Perinatal protein restriction affects milk free amino acid and fatty acid profile in lactating rats: Potential role on pup growth and metabolic status. J. Nutr. Biochem. 2015, 26, 784–795. [Google Scholar] [CrossRef]
- Von Dreele, M.M. Age-related changes in body fluid volumes in young spontaneously hypertensive rats. Am. J. Physiol. Ren. Physiol. 1988, 255, F953–F956. [Google Scholar] [CrossRef]
- Kumaresan, P.; Anderson, R.R.; Turner, C.W. Effect of litter size upon milk yield and litter weight gains in rats. Rev. Tuberc. Pneumol. 1966, 30, 41–45. [Google Scholar] [CrossRef]
- Martin Agnoux, A.; Alexandre-Gouabau, M.C.; Le Drean, G.; Antignac, J.P.; Parnet, P. Relative contribution of foetal and post-natal nutritional periods on feeding regulation in adult rats. Acta Physiol. 2014, 210, 188–201. [Google Scholar] [CrossRef]
- Moretto, V.L.; Ballen, M.O.; Gonçalves, T.S.S.; Kawashita, N.H.; Stoppiglia, L.F.; Veloso, R.V.; Latorraca, M.Q.; Martins, M.S.F.; Gomes-da-Silva, M.H.G. Low-Protein Diet during Lactation and Maternal Metabolism in Rats. ISRN Obstet. Gynecol. 2011, 2011, 876502. [Google Scholar] [CrossRef]
- Williamson, D.H. Integration of metabolism in tissues of the lactating rat. FEBS Lett. 1980, 117, K93–K105. [Google Scholar] [CrossRef][Green Version]
- Mehrafarin, A.; Qaderi, A.; Rezazadeh, S.; Naghdi Badi, H.; Noormohammadi, G.; Zand, E. Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (Trigonella foenum-graecum L.). J. Med. Plants 2010, 3, 1–18. [Google Scholar]
- Stein, L.R.; Imai, S.-i. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 2012, 23, 420–428. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Braidy, N.; Poljak, A.; Grant, R.; Jayasena, T.; Mansour, H.; Chan-Ling, T.; Guillemin, G.; Smythe, G.; Sachdev, P. Mapping NAD+ metabolism in the brain of ageing Wistar rats: Potential targets for influencing brain senescence. Biogerontology 2013, 15, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, K.R.; Hartmann, P.E. Milk secretion in the rat: Progressive changes in milk composition during lactation and weaning and the effect of diet. Comp. Biochem. Physiol. Part A Physiol. 1991, 98, 535–542. [Google Scholar] [CrossRef]
- Fiorotto, M.L.; Burrin, D.G.; Perez, M.; Reeds, P.J. Intake and use of milk nutrients by rat pups suckled in small, medium, or large litters. Am. J. Physiol. 1991, 260, R1104–R1113. [Google Scholar] [CrossRef]
- Bleck, G.T.; White, B.R.; Miller, D.J.; Wheeler, M.B. Production of bovine α-lactalbumin in the milk of transgenic pigs1. J. Anim. Sci. 1998, 76, 3072–3078. [Google Scholar] [CrossRef]
- Jones, R.G.; Ilic, V.; Williamson, D.H. Physiological significance of altered insulin metabolism in the conscious rat during lactation. Biochem. J. 1984, 220, 455–460. [Google Scholar] [CrossRef]
- Widström, A.M.; Winberg, J.; Werner, S.; Hamberger, B.; Eneroth, P.; Uvnäs-Moberg, K. Suckling in lactating women stimulates the secretion of insulin and prolactin without concomitant effects on gastrin, growth hormone, calcitonin, vasopressin or catecholamines. Early Hum. Dev. 1984, 10, 115–122. [Google Scholar] [CrossRef]
- Eriksson, M.; Lindén, A.; Uvnäs-Moberg, K. Suckling increases insulin and glucagon levels in peripheral venous blood of lactating dogs. Acta Physiol. Scand. 1987, 131, 391–396. [Google Scholar] [CrossRef]
- Smith, J.L.; Lear, S.R.; Forte, T.M.; Ko, W.; Massimi, M.; Erickson, S.K. Effect of pregnancy and lactation on lipoprotein and cholesterol metabolism in the rat. J. Lipid Res. 1998, 39, 2237–2249. [Google Scholar]
- Scow, R.O.; Chernick, S.S.; Fleck, T.R. Lipoprotein lipase and uptake of triacylglycerol, cholesterol and phosphatidylcholine from chylomicrons by mammary and adipose tissue of lactating rats in vivo. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1977, 487, 297–306. [Google Scholar] [CrossRef]
- Wani, S.A.; Kumar, P. Fenugreek: A review on its nutraceutical properties and utilization in various food products. J. Saudi Soc. Agric. Sci. 2018, 17, 97–106. [Google Scholar] [CrossRef][Green Version]
- Hayashi, T.; Boyko, E.J.; Sato, K.K.; McNeely, M.J.; Leonetti, D.L.; Kahn, S.E.; Fujimoto, W.Y. Patterns of Insulin Concentration During the OGTT Predict the Risk of Type 2 Diabetes in Japanese Americans. Diabetes Care 2013, 36, 1229–1235. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhou, J.; Zhou, S.; Zeng, S. Experimental diabetes treated with trigonelline: Effect on β cell and pancreatic oxidative parameters. Fundam. Clin. Pharmacol. 2013, 27, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Tahiliani, P.; Kar, A. Inhibition of triiodothyronine production by fenugreek seed extract in mice and rats. Pharmacol. Res. 1999, 40, 405–409. [Google Scholar] [CrossRef]
Lactation Challenges | Control | Litter Size Increase | Maternal Protein Restriction | ||
---|---|---|---|---|---|
Experimental Groups | NP:8 | NP:12 | NPF:12 | LP:8 | LPF:8 |
n | 8 | 11 | 10 | 7 | 9 |
Dams (L0–L21) | |||||
Weight loss, g | –6.2 ± 2.4 | –13.5 ± 4.0 | –7.7 ± 2.9 | –8.0 ± 3.7 ** | –7.9 ± 2.2 $$$ |
Food intake, g.d−1 | 43.3 ± 1.5 | 50.7 ± 1.0 *** | 57.4 ± 1.2 $$$ £££ | 37.2 ± 1.3 ** | 37.7 ± 0.7 $$ |
Water intake, g.d−1 | 49.6 ± 1.5 | 58.0 ± 1.4 *** | 58.5 ± 2.0 $$ | 30.3 ± 1.5 *** | 29.1 ± 1.1 $$$ |
Pup growth (L11–L18) | |||||
Litter growth rate, g.d−1 | 22.9 ± 0.7 | 27.6 ± 0.7 *** | 30.1 ± 0.8 $$$ £ | 10.3 ± 0.6 *** | 10.0 ± 0.3 $$$ |
Pups growth rate, g.d−1 | 2.86 ± 0.09 | 2.30 ± 0.06 *** | 2.51 ± 0.06 $$ ▪ | 1.31 ± 0.08 *** | 1.25 ± 0.04 $$$ |
Milk flow (L11–L18) | |||||
Total milk production, g.d−1 | 46.0 ± 1.6 | 54.3 ± 2.8 * | 63.0 ± 3.1 $$$ £ | 25.9 ± 1.3 *** | 26.6 ± 1.2 $$$ |
Pups milk consumption, g.d−1 | 5.74 ± 0.20 | 4.52 ± 0.23 *** | 5.25 ± 0.25 ▪ | 3.24 ± 0.16 *** | 3.32 ± 0.16 $$$ |
Lactation Challenges | Control | Litter Size Increase | Maternal Protein Restriction | ||
---|---|---|---|---|---|
Experimental Groups | NP:8 | NP:12 | NPF:12 | LP:8 | LPF:8 |
n | 7 | 8 | 9 | 7 | 9 |
Macronutrient concentration, g.L−1 | |||||
Protein | 97.1 ± 4.9 | 91.7 ± 1.5 | 98.3 ± 3.3 | 81.5 ± 2.2 ** | 77.4 ± 2.1 $$$ |
Lactose | 30.1 ± 1.9 | 29.4 ± 1.2 | 37.4 ± 0.9 $$ £££ | 27.4 ± 1.3 | 25.3 ± 1.1 |
Fatty acids | 147.1 ± 12.8 | 129.4 ± 6.6 | 137.8 ± 7.2 | 174.3 ± 13.6 | 176.5 ± 9.2 |
Energy, kcal.dL−1 | 183.2 ± 12.0 | 165.1 ± 5.5 | 178.3 ± 6.9 | 200.4 ± 11.7 | 199.9 ± 8.8 |
Macronutrient flow, g.day−1 | |||||
Protein | 4.49 ± 0.32 | 4.87 ± 0.26 | 6.31 ± 0.41 $$ £ | 2.12 ± 0.12 *** | 2.06 ± 0.12 $$$ |
Lactose | 1.38 ± 0.09 | 1.60 ± 0.12 | 2.38 ± 0.10 $$$ £££ | 0.71 ± 0.04 *** | 0.68 ± 0.06 $$$ |
Fatty acids | 6.79 ± 0.66 | 6.81 ± 0.31 | 8.78 ± 0.53 $ £ | 4.48 ± 0.34 * | 4.72 ± 0.42 $ |
Energy flow, kcal.day−1 | 84.6 ± 6.6 | 87.2 ± 4.0 | 113.8 ± 6.2 $$ ££ | 51.6 ± 3.0 *** | ± 4.4 $$$ |
Parameter | Groups | Two-Way ANOVA | |||||
---|---|---|---|---|---|---|---|
NP:8 | NP:12 | NPF:12 | Global Effects | ||||
n | 8 | 11 | 11 | Inter | Group | Day | |
Cholesterol, mg.dL−1 | |||||||
L12 | 101.3 ± 6.0 a,1 | 94.6 ± 3.9 a,1 | 92.2 ± 3.8 a,1 | 0.050 | 0.57 | 0.002 | |
L21 | 105.8 ± 5.6 a,1 | 99.2 ± 4.1 a,1 | 111.3 ± 6.9 a,2 | ||||
Triglycerides, mg.dL−1 | |||||||
L12 | 54.6 ± 7.0 a,1 | 43.5 ± 2.8 a,1 | 52.8 ± 5.2 a,1 | 0.027 | 0.062 | <0.001 | |
L21 | 132.0 ± 16.6 a,2 | 189.9 ± 25.1 ab,2 | 224.3 ± 23.7 b,2 | ||||
Glucose, mg.dL−1 | |||||||
L12 | 125.1 ± 6.4 a,1 | 120.6 ± 3.7 a,1 | 117.4 ± 3.7 a,1 | 0.72 | 0.62 | <0.001 | |
L21 | 148.0 ± 3.1 a,2 | 150.7 ± 6.5 a,2 | 144.7 ± 6.2 a,2 | ||||
Insulin, ng.mL−1 | |||||||
L12 | 0.60 ± 0.09 a,1 | 1.65 ± 0.25 b,1 | 0.95 ± 0.26 a,1 | 0.12 | 0.004 | 0.22 | |
L21 | 0.68 ± 0.06 a,1 | 0.98 ± 0.09 a,2 | 0.94 ± 0.15 a,1 |
Parameter | Groups | Two-way ANOVA | ||||
---|---|---|---|---|---|---|
NP:8 | NP:12 | NPF:12 | Global Effects | |||
PND 20 | Inter | Group | Sex | |||
n for each sex | 8 | 22 | 11 | |||
Cholesterol, mg.dL−1 | ||||||
Male | 143.2 ± 10.1 a,1 | 144.5 ± 3.9 a,1 | 132.8 ± 3.0 a,1 | 0.225 | 0.005 | 0.039 |
Female | 167.5 ± 12.4 a,1 | 151.5 ± 4.1 a,b,1 | 133.5 ± 6.1 b,1 | |||
Triglycerides, mg.dL−1 | ||||||
Male | 260.2 ± 39.2 a,1 | 272.0 ± 21.1 a,1 | 258.8 ± 56.3 a,1 | 0.853 | 0.763 | 0.969 |
Female | 284.5 ± 46.1 a,1 | 267.8 ± 23.3 a,1 | 235.0 ± 35.9 a,1 | |||
Glucose, mg.dL−1 | ||||||
Male | 157.1 ± 7.4 a,1 | 164.4 ± 3.8 a,1 | 164.5 ± 3.5 a,1 | 0.446 | 0.055 | 0.655 |
Female | 152.7 ± 3.7 a,1 | 168 ± 3.0 a,1 | 159.7 ± 3.5 a,1 | |||
Insulin, ng.mL−1 | ||||||
Male | 0.19 ± 0.04 a,1 | 0.35 ± 0.05 a,1 | 0.41 ± 0.09 a,1 | 0.958 | 0.037 | 0.282 |
Female | 0.28 ± 0.04 a,1 | 0.41 ± 0.05 a,1 | 0.46 ± 0.07 a,1 | |||
PND 60 | ||||||
n for each sex | 10 | 22 | 16 | |||
Cholesterol, mg.dL−1 | ||||||
Male | 76.8 ± 2.5 a,1 | 85.0 ± 2.5 a,1 | 81.5 ± 2.1 a,1 | 0.433 | 0.208 | 0.170 |
Female | 84.8 ± 3.1 a,1 | 85.7 ± 2.6 a,1 | 82.3 ± 3.0 a,1 | |||
Triglycerides, mg.dL−1 | ||||||
Male | 135.8 ± 11.7 a,1 | 106.4 ± 7.0 b,1 | 123.2 ± 12.0 ab,1 | 0.390 | 0.095 | <0.001 |
Female | 66.0 ± 3.7 a,2 | 59.5 ± 5.2 a,2 | 64.1 ± 6.3 a,2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevrin, T.; Alexandre-Gouabau, M.-C.; Castellano, B.; Aguesse, A.; Ouguerram, K.; Ngyuen, P.; Darmaun, D.; Boquien, C.-Y. Impact of Fenugreek on Milk Production in Rodent Models of Lactation Challenge. Nutrients 2019, 11, 2571. https://doi.org/10.3390/nu11112571
Sevrin T, Alexandre-Gouabau M-C, Castellano B, Aguesse A, Ouguerram K, Ngyuen P, Darmaun D, Boquien C-Y. Impact of Fenugreek on Milk Production in Rodent Models of Lactation Challenge. Nutrients. 2019; 11(11):2571. https://doi.org/10.3390/nu11112571
Chicago/Turabian StyleSevrin, Thomas, Marie-Cécile Alexandre-Gouabau, Blandine Castellano, Audrey Aguesse, Khadija Ouguerram, Patrick Ngyuen, Dominique Darmaun, and Clair-Yves Boquien. 2019. "Impact of Fenugreek on Milk Production in Rodent Models of Lactation Challenge" Nutrients 11, no. 11: 2571. https://doi.org/10.3390/nu11112571