Dietary Patterns May Be Nonproportional Hazards for the Incidence of Type 2 Diabetes: Evidence from Korean Adult Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Outcome Ascertainment
2.4. Othe Covariates
2.5. Statistical Methods
3. Results
3.1. Classification of Dietary Patterns
3.2. Characteristics of Study Subjects
3.3. Proportionality of Risk Factors
3.4. Stratified Cox Regression with Interactions between Risk Factors
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Report on Diabetes; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Alhazmi, A.; Stojanovski, E.; McEvoy, M.; Garg, M.L. The association between dietary patterns and type 2 diabetes: A systematic review and meta-analysis of cohort studies. J. Hum. Nutr. Diet. 2014, 27, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.R. Regression models and life-tables. J. R Stat. Soc. Series B Stat. Methodol. 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Uno, H.; Claggett, B.; Tian, L.; Inoue, E.; Gallo, P.; Miyata, T.; Schrag, D.; Takeuchi, M.; Uyama, Y.; Zhao, L.; et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 2014, 32, 2380–2385. [Google Scholar] [CrossRef]
- Jannasch, F.; Kröger, J.; Schulze, M.B. Dietary patterns and type 2 diabetes: A systematic literature review and meta-analysis of prospective studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef]
- de Koning, L.; Chiuve, S.E.; Fung, T.T.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Diet-quality scores and the risk of type 2 diabetes in men. Diabetes Care 2011, 34, 1150–1156. [Google Scholar] [CrossRef]
- Otto, M.C.; Padhye, N.S.; Bertoni, A.G.; Jacobs, D.R., Jr.; Mozaffarian, D. Everything in moderation—Dietary diversity and quality, central obesity and risk of diabetes. PLoS ONE 2015, 10, e0141341. [Google Scholar]
- Pan, W.H.; Yeh, W.T.; Weng, L.C. Epidemiology of metabolic syndrome in Asia. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. 1), 37–42. [Google Scholar]
- Qiao, Y.; Tinker, L.; Olendzki, B.C.; Hébert, J.R.; Balasubramanian, R.; Rosal, M.C.; Hingle, M.; Song, Y.; Schneider, K.L.; Liu, S.; et al. Racial/ethnic disparities in association between dietary quality and incident diabetes in postmenopausal women in the United States: The Women’s Health Initiative 1993–2005. Ethn. Health 2014, 19, 328–347. [Google Scholar] [CrossRef]
- Zamora, D.; Gordon-Larsen, P.; He, K.; Jacobs, D.R., Jr.; Shikany, J.M.; Popkin, B.M. Are the 2005 Dietary guidelines for Americans associated with reduced risk of type 2 diabetes and cardiometabolic risk factors? Twenty-year findings from the CARDIA study. Diabetes Care 2011, 34, 1183–1185. [Google Scholar] [CrossRef]
- Korean Diabetes Association. Diabetes Fact Sheet in Korea. 2018. Available online: http://www.diabetes.or.kr/pro/news/admin.php?category=A&code=admin&number=1615&mode=view (accessed on 7 October 2019).
- Lim, J.H.; Lee, Y.S.; Chang, H.C.; Moon, M.K.; Song, Y. Association between dietary patterns and blood lipid profiles in Korean adults with type 2 diabetes. J. Korean Med. Sci. 2011, 26, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Vatcheva, K.P.; Lee, M.; McCormick, J.B.; Rahbar, M.H. The effect of ignoring statistical interactions in regression analyses conducted in epidemiologic studies: An example with survival analysis using Cox proportional hazards regression model. Epidemiology (Sunnyvale Calif.) 2015, 6, 216. [Google Scholar]
- Kim, Y.; Han, B.G.; KoGES Group. Cohort profile: The Korean Genome and Epidemiology Study (KoGES) consortium. Int. J. Epidemiol. 2017, 46, 1350. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Kim, M.A.; Park, K.T.; Choi, D.J.; Han, S.; Jeon, E.S.; Cho, M.C.; Kim, J.J.; Yoo, B.S.; Shin, M.S. Gender difference in the impact of coexisting diabetes mellitus on long-term clinical outcome in people with heart failure: A report from the Korean Heart Failure Registry. Diabetes Med. 2019, 36, 1312–1318. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef]
- Grambsch, P.M.; Therneau, T.M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994, 81, 515–526. [Google Scholar] [CrossRef]
- Stata manuals 13. Stcox PH-Assumption Tests—Tests of Proportional-Hazards Assumption. 2013. Available online: https://www.stata.com/manuals13/ststcoxph-assumptiontests.pdf (accessed on 30 August 2019).
- Kleinbaum, D.; Klein, M. Survival Analysis: A Self-Learning Text (Statistics for Biology and Health); Springer: New York, NY, USA, 2011. [Google Scholar]
- Woo, H.D.; Shin, A.; Kim, J. Dietary patterns of Korean adults and the prevalence of metabolic syndrome: A cross-sectional study. PLoS ONE 2014, 9, e111593. [Google Scholar] [CrossRef]
- Odegaard, A.O.; Koh, W.P.; Butler, L.M.; Duval, S.; Gross, M.D.; Yu, M.C.; Yuan, J.M.; Pereira, M.A. Dietary patterns and incident type 2 diabetes in Chinese men and women: The Singapore Chinese health study. Diabetes Care 2011, 34, 880–885. [Google Scholar] [CrossRef]
- Nanri, A.; Shimazu, T.; Takachi, R.; Ishihara, J.; Mizoue, T.; Noda, M.; Inoue, M.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Dietary patterns and type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr. 2013, 67, 18–24. [Google Scholar] [CrossRef] [PubMed]
- InterAct Consortium. Adherence to predefined dietary patterns and incident type 2 diabetes in European populations: EPIC-InterAct Study. Diabetologia 2014, 57, 321–333. [Google Scholar] [CrossRef] [PubMed]
- von Ruesten, A.; Illner, A.K.; Buijsse, B.; Heidemann, C.; Boeing, H. Adherence to recommendations of the German food pyramid and risk of chronic diseases: Results from the EPIC-Potsdam study. Eur. J. Clin. Nutr. 2010, 64, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, C.; Okolois, M.; Williams, K.; Stern, M.P.; Haffner, S.M.; San Antonio Heart Study. The metabolic syndrome as predictor of type 2 diabetes: The San Antonio heat study. Diabetes Care 2003, 26, 3153–3159. [Google Scholar]
- Patino-Alonso, M.C.; Recio-Rodríguez, J.I.; Belio, J.F.; Colominas-Garrido, R.; Lema-Bartolomé, J.; Arranz, A.G.; Agudo-Conde, C.; Gomez-Marcos, M.A.; García-Ortiz, L.; EVIDENT Group. Factors associated with adherence to the Mediterranean diet in the adult population. J. Acad. Nutr. Diet. 2014, 114, 583–589. [Google Scholar] [CrossRef]
- Fransen, H.P.; Boer, J.M.A.; Beulens, J.W.J.; de Wit, G.A.; Bueno-de-Mesquita, H.B.; Hoekstra, J.; May, A.M.; Peeters, P.H.M. Associations between life factors and an unhealthy diet. Eur. J. Public Health 2017, 27, 274–278. [Google Scholar]
- Montonen, J.; Boeing, H.; Fritsche, A.; Schleicher, E.; Joost, H.G.; Schulze, M.B.; Steffen, A.; Pischon, T. Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur. J. Nutr. 2013, 52, 337–345. [Google Scholar] [CrossRef]
- Ley, S.H.; Sun, Q.; Willett, W.C.; Eliassen, A.H.; Wu, K.; Pan, A.; Grodstein, F.; Hu, F.B. Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women. Am. J. Clin. Nutr. 2014, 99, 352–360. [Google Scholar] [CrossRef]
- Lastra, G.; Syed, S.; Kurukulasuriya, L.R.; Manrique, C.; Sowers, J.R. Type 2 diabetes mellitus and hypertension: An update. Endocrinol. Metab. Clin. N. Am. 2014, 43, 103–122. [Google Scholar] [CrossRef]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Kim, K.N.; Oh, S.Y.; Hong, Y.C. Associations of serum calcium levels and dietary calcium intake with incident type 2 diabetes over 10 years: The Korean Genome and Epidemiology Study (KoGES). Diabetol. Metab. Syndr. 2018, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Oh, B.; Lim, J.E.; Kim, M.K. No Interaction with Alcohol Consumption, but Independent Effect of C12orf51 (HECTD4) on Type 2 Diabetes Mellitus in Korean Adults Aged 40–69 Years: The KoGES_Ansan and Ansung Study. PLoS ONE 2016, 11, e0149321. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; Parmer, M.K. Restricted mean survival time: An alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Med Res. Methodol. 2013, 13, 152. [Google Scholar] [CrossRef] [PubMed]
Food Groups | Food Items | Three Identified Dietary Patterns | ||
---|---|---|---|---|
Bread and Snacks | Meat and Fish | Korean Traditional | ||
Cooked rice | Cooked white rice, and cooked rice with soybeans or various grains | 0.50 | ||
Other grains | Rice cakes, cereals, corn flakes, and cereal powder | 0.49 | ||
Ramen | Ramen | |||
Chinese noodles | Chinese-style noodles with black bean sauce, Chinese-style noodles with vegetables and seafood | 0.30 | ||
Other noodles | Wheat noodles with soup and buckwheat noodle | 0.40 | ||
Dumplings | Dumplings, dumpling soup, and rice-cake soup | 0.40 | ||
Starch, potatoes, and sweet potatoes | Starch jelly, potatoes, and sweet potatoes | 0.38 | ||
Bread, pizza, and hamburgers | Loaf bread, toast, bread with small red beans, sandwich, pizza, hamburgers, and other breads | 0.62 | ||
Snacks and sweets | Cakes, cookies, crackers, snacks, candy, chocolate, jam, honey, butter, and margarine | 0.47 | ||
Eggs | Eggs | 0.42 | ||
Nuts | Peanuts, almonds, and pine nuts | |||
Legumes | Beans, beans cooked with soy sauce, and tofu | 0.49 | ||
Soybean paste | Soybean paste and soup with soybean paste | 0.57 | ||
Kimchi | Cabbage kimchi, radish kimchi, radish kimchi with water, and green onion kimchi | 0.69 | ||
Yellow-green vegetables | Spinach, green pepper, zucchini, cucumber, broccoli, cabbage, lettuce, leeks, pepper leaves, perilla leaves, carrot, and carrot juice | 0.50 | 0.48 | |
Other vegetables | Radish, onions, white root (e.g., deoduck, doraji), bean sprouts, bracken, sweet potato stalk, and stem of taro | 0.32 | 0.54 | |
Mushrooms | Several types of mushrooms | 0.37 | 0.37 | |
Pickles | Korean vegetable pickles (garlic, garlic flower stalk, and radish) | 0.45 | ||
Red meat | Pork belly, roasted pork, braised pork, steak, roasted beef, beef soup, dog meat, and red meat byproduct | 0.81 | ||
White meat | Fried chicken and chicken soup | 0.68 | ||
Processed meat | Ham and sausages | 0.61 | ||
Lean fish | Raw fish, hair tail, eel, yellow croaker, sea bream, flat fish, Alaskan pollack, and dried anchovies | 0.72 | ||
Fatty fish | Mackerel, Pacific saury, and Spanish mackerel | 0.57 | ||
Processed fish | Canned tuna, fish paste, and crab-flavored paste | 0.53 | ||
Salt-fermented fish | Salt-fermented fish | 0.35 | ||
Other seafood | Squid, octopus, clams, whelk, oyster, crab, and shrimp | 0.52 | 0.33 | |
Seaweed | Laver, kelp, and sea mustard | 0.33 | 0.35 | |
Milk and yogurt | Milk and yogurt | 0.34 | ||
Other dairy products | Cheese and ice cream | 0.42 | ||
Fruits | Strawberries, melon, muskmelon, watermelon, peaches, plums, bananas, persimmons, tangerines, pears, apples, oranges, grapes, tomatoes, cherry tomatoes, and several types of fruit juices | 0.51 | ||
Tea | Green tea | 0.30 | ||
Coffee and other drinks | Soybean, coffee, coffee with sugar, coffee with cream, carbonated drinks, and other drinks | 0.34 | ||
Variance of intake explained (%) | 10.4 | 10.3 | 9.1 |
Variables | Bread and Snacks | p-Value a | Meat and Fish | p-Value a | Korean Traditional | p-Value a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | ||||
Age (%) | <0.001 | 0.197 | <0.001 | ||||||||||||
40–49 years | 29.0 | 50.3 | 67.0 | 69.9 | 53.3 | 51.4 | 56.1 | 53.0 | 61.0 | 53.1 | 52.4 | 45.9 | |||
50–59 years | 30.4 | 25.4 | 21.4 | 21.0 | 25.0 | 23.8 | 23.4 | 26.5 | 20.8 | 24.2 | 26.0 | 28.4 | |||
≥60 years | 40.6 | 24.3 | 11.7 | 9.1 | 21.8 | 24.8 | 20.5 | 20.6 | 18.2 | 22.7 | 21.6 | 25.7 | |||
Marital status (%) | <0.001 | 0.066 | 0.087 | ||||||||||||
Lives with a spouse | 82.1 | 86.3 | 90.2 | 91.6 | 86.2 | 86.9 | 86.3 | 89.9 | 86.2 | 85.9 | 89.3 | 88.7 | |||
Single | 17.9 | 13.7 | 9.8 | 8.4 | 13.8 | 13.1 | 13.7 | 10.1 | 13.8 | 14.1 | 10.7 | 11.3 | |||
Household income b (%) | <0.001 | 0.010 | <0.001 | ||||||||||||
High income | 38.0 | 59.1 | 76.9 | 80.5 | 60.2 | 62.7 | 67.7 | 61.3 | 68.9 | 62.2 | 64.6 | 55.5 | |||
Low income | 62.0 | 40.9 | 23.1 | 19.5 | 39.8 | 37.3 | 32.3 | 38.7 | 31.1 | 37.8 | 35.4 | 44.5 | |||
Education (%) | <0.001 | 0.002 | <0.001 | ||||||||||||
Below high school graduate | 88.4 | 71.2 | 52.4 | 43.5 | 68.2 | 64.5 | 59.4 | 66.3 | 54.6 | 68.1 | 65.1 | 71.2 | |||
Above high school graduate | 11.6 | 28.8 | 47.6 | 56.5 | 31.9 | 35.6 | 40.6 | 33.7 | 45.4 | 31.9 | 34.9 | 28.8 | |||
Physical activity c (%) | <0.001 | <0.001 | <0.001 | ||||||||||||
<30 min/day | 45.5 | 70.8 | 77.2 | 75.6 | 62.5 | 70.2 | 76.4 | 58.4 | 73.9 | 71.1 | 65.3 | 55.3 | |||
≥30 min/day | 54.5 | 29.2 | 22.8 | 24.4 | 37.6 | 29.8 | 23.6 | 41.7 | 26.1 | 28.9 | 34.8 | 44.7 | |||
Drinking (%) | <0.001 | 0.336 | 0.029 | ||||||||||||
Nondrinker | 78.4 | 72.8 | 68.6 | 67.3 | 69.5 | 72.5 | 71.8 | 73.5 | 68.3 | 74.4 | 72.9 | 72.3 | |||
Drinker | 21.6 | 27.2 | 31.4 | 32.7 | 30.5 | 27.5 | 28.3 | 26.5 | 31.7 | 25.6 | 27.1 | 27.7 | |||
Family history of type 2 diabetes (%) | <0.001 | 0.025 | 0.581 | ||||||||||||
No | 92.4 | 87.6 | 86.9 | 84.8 | 88.5 | 89.0 | 85.1 | 89.5 | 87.7 | 87.2 | 88.0 | 89.4 | |||
Yes | 7.6 | 12.4 | 13.2 | 15.2 | 11.5 | 11.0 | 14.9 | 10.6 | 12.3 | 12.8 | 12.0 | 10.6 | |||
Metabolic syndrome d (%) | <0.001 | 0.052 | <0.001 | ||||||||||||
<3 factors satisfied | 69.3 | 78.8 | 86.0 | 86.2 | 77.8 | 81.9 | 81.5 | 77.9 | 82.7 | 82.3 | 81.2 | 72.0 | |||
≥3 factors satisfied | 30.7 | 21.2 | 14.0 | 13.8 | 22.2 | 18.1 | 18.5 | 22.1 | 17.3 | 17.7 | 18.8 | 28.0 | |||
BMI (kg/m2, %) | 0.028 | 0.681 | 0.004 | ||||||||||||
Normal (BMI < 23) | 32.4 | 32.5 | 34.6 | 33.3 | 32.5 | 34.2 | 33.5 | 32.6 | 34.4 | 35.4 | 32.2 | 30.2 | |||
Overweight (23 ≤ BMI < 25) | 24.5 | 24.7 | 29.5 | 28.1 | 28.6 | 27.2 | 25.6 | 25.5 | 28.5 | 27.1 | 27.0 | 23.4 | |||
Obese (BMI ≥ 25) | 43.1 | 42.8 | 35.9 | 38.6 | 39.0 | 38.6 | 40.9 | 41.9 | 37.1 | 37.5 | 40.7 | 46.4 | |||
Energy intake (kcal/day) | 1846.7 | 1626.3 | 1848.2 | 2267.5 | <0.001 | 1764.1 | 1615.9 | 1769.0 | 2361.9 | <0.001 | 1906.2 | 1647.2 | 1840.4 | 2215.1 | <0.001 |
Carbohydrate intake (g/day) | 355.7 | 297.9 | 320.3 | 378.4 | <0.001 | 322.8 | 292.0 | 311.1 | 417.1 | <0.001 | 331.9 | 298.4 | 331.1 | 398.4 | <0.001 |
Protein intake (g/day) | 55.7 | 52.7 | 64.7 | 83.5 | <0.001 | 55.2 | 52.9 | 60.9 | 83.1 | <0.001 | 65.2 | 53.7 | 61.6 | 76.0 | <0.001 |
Fat intake (g/day) | 20.8 | 22.6 | 32.3 | 45.2 | <0.001 | 24.9 | 23.7 | 29.3 | 40.2 | <0.001 | 33.8 | 24.3 | 27.8 | 33.9 | <0.001 |
Variables | Bread and Snacks | Meat and Fish | Korean Traditional | |||
---|---|---|---|---|---|---|
HR | 95% CI | HR | 95% CI | HR | 95% CI | |
Age | ||||||
40–49 years | Ref a | Ref | Ref | |||
50–59 years | 1.43 | (1.10–1.86) | 1.42 | (1.09–1.85) | 1.43 | (1.10–1.87) |
≥60 years | 1.34 | (0.96–1.88) | 1.33 | (0.95–1.85) | 1.35 | (0.96–1.88) |
Marital status | ||||||
Lives with spouse | Ref | Ref | Ref | |||
Single | 0.94 | (0.70–1.25) | 0.95 | (0.71–1.26) | 0.94 | (0.71–1.26) |
Household income b | ||||||
High income | Ref | Ref | Ref | |||
Low income | 0.81 | (0.62–1.06) | 0.80 | (0.61–1.04) | 0.79 | (0.61–1.03) |
Education | ||||||
Below high school graduate | Ref | Ref | Ref | |||
Above high school graduate | 1.06 | (0.82–1.37) | 1.09 | (0.85–1.41) | 1.08 | (0.84–1.39) |
Physical activity c | ||||||
<30 min/day | Ref | Ref | Ref | |||
≥30 min/day | 0.90 | (0.73–1.12) | 0.91 | (0.74–1.13) | 0.91 | (0.73–1.12) |
Drinking | ||||||
Nondrinker | Ref | Ref | Ref | |||
Drinker | 1.12 | (0.89–1.42) | 1.14 | (0.90–1.44) | 1.13 | (0.89–1.43) |
Family history of type 2 diabetes | ||||||
No | Ref | Ref | Ref | |||
Yes | 1.61 | (1.26–2.05) | 1.63 | (1.27–2.08) | 1.62 | (1.27–2.07) |
Metabolic syndrome d | ||||||
<3 factors satisfied | Ref | Ref | Ref | |||
≥3 factors satisfied | 2.60 | (2.04–3.31) | 2.55 | (2.00–3.24) | 2.58 | (2.02–3.28) |
BMI (kg/m2) | ||||||
Normal (BMI < 23) | Ref | Ref | Ref | |||
Overweight (23 ≤ BMI < 25) | 1.18 | (0.86–1.62) | 1.20 | (0.87–1.65) | 1.18 | (0.86–1.62) |
Obese (BMI ≥ 25) | 1.55 | (1.16–2.06) | 1.56 | (1.17–2.09) | 1.54 | (1.15–2.05) |
Energy intake (100 kcal/day) | 0.99 | (0.97–1.02) | 0.99 | (0.97–1.01) | 1.00 | (0.98–1.02) |
Quartiles of dietary pattern | ||||||
Quartile 1 | Ref | Ref | Ref | |||
Quartile 2 | 0.97 | (0.72–1.32) | 1.34 | (0.99–1.82) | 0.81 | (0.59–1.12) |
Quartile 3 | 1.08 | (0.79–1.47) | 1.31 | (0.94–1.84) | 1.00 | (0.73–1.33) |
Quartile 4 | 1.18 | (0.84–1.66) | 1.72 | (1.28–2.32) | 0.83 | (0.60–1.15) |
Variables | Bread and Snacks | Meat and Fish | Korean Traditional |
---|---|---|---|
p-Value | p-Value | p-Value | |
Age | |||
40–49 years | Ref b | Ref | Ref |
50–59 years | 0.780 | 0.807 | 0.988 |
≥60 years | 0.745 | 0.696 | 0.516 |
Marital status | |||
Lives with spouse | Ref | Ref | Ref |
Single | 0.132 | 0.126 | 0.183 |
Household income c | |||
High income | Ref | Ref | Ref |
Low income | 0.107 | 0.150 | 0.214 |
Education | |||
Below high school graduate | Ref | Ref | Ref |
Above high school graduate | 0.657 | 0.414 | 0.261 |
Physical activity d | |||
<30 min/day | Ref | Ref | Ref |
≥30 min/day | 0.882 | 0.633 | 0.777 |
Drinking | |||
Nondrinker | Ref | Ref | Ref |
Drinker | 0.672 | 0.639 | 0.702 |
Family history of type 2 diabetes | |||
No | Ref | Ref | Ref |
Yes | 0.302 | 0.320 | 0.350 |
Metabolic syndrome e | |||
<3 factors satisfied | Ref | Ref | Ref |
≥3 factors satisfied | 0.037 | 0.043 | 0.049 |
BMI (kg/m2) | |||
Normal (BMI < 23) | Ref | Ref | Ref |
Overweight (23 ≤ BMI < 25) | 0.379 | 0.294 | 0.318 |
Obese (BMI ≥ 25) | 0.203 | 0.199 | 0.286 |
Energy intake (100 kcal/day) | 0.103 | 0.817 | 0.088 |
Quartiles of dietary pattern | |||
Quartile 1 | Ref | Ref | Ref |
Quartile 2 | 0.311 | 0.232 | 0.529 |
Quartile 3 | 0.859 | 0.034 | 0.002 |
Quartile 4 | 0.050 | 0.010 | 0.005 |
Global test | 0.158 | 0.077 | 0.017 |
Variables | Meat and Fish | |
---|---|---|
HR | 95% CI | |
Age | ||
40–49 years | Ref a | |
50–59 years | 1.12 | (0.57–2.21) |
≥60 years | 0.95 | (0.39–2.36) |
Marital status | ||
Lives with spouse | Ref | |
Single | 0.86 | (0.39–1.89) |
Household income b | ||
High income | Ref | |
Low income | 1.11 | (0.55–2.25) |
Education | ||
Below high school graduate | Ref | |
Above high school graduate | 1.07 | (0.58–1.98) |
Physical activity c | ||
<30 min/day | Ref | |
≥30 min/day | 1.47 | (0.85–2.54) |
Drinking | ||
Nondrinker | Ref | |
Drinker | 0.79 | (0.42–1.48) |
Family history of type 2 diabetes | ||
No | Ref | |
Yes | 1.27 | (0.65–2.48) |
BMI (kg/m2) | ||
Normal (BMI < 23) | Ref | |
Overweight (23 ≤ BMI < 25) | 0.86 | (0.41–1.81) |
Obese (BMI ≥ 25) | 1.27 | (0.66–2.45) |
Energy intake (100 kcal/day) | 0.96 | (0.92–1.00) |
Age ≥ 60 years | ||
Interaction with MS | 0.60 | (0.30–1.19) |
Interaction with Q2 | 1.92 | (0.73–5.03) |
Interaction with Q3 | 2.60 | (0.87–7.80) |
Interaction with Q4 | 2.86 | (1.12–7.33) |
Obese (BMI ≥ 25) | ||
Interaction with MS | 1.82 | (1.01–3.26) |
Interaction with Q2 | 1.36 | (0.62–2.98) |
Interaction with Q3 | 0.77 | (0.34–1.75) |
Interaction with Q4 | 0.92 | (0.45–1.90) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, S.; Kim, M.S.; Kwock, C.K. Dietary Patterns May Be Nonproportional Hazards for the Incidence of Type 2 Diabetes: Evidence from Korean Adult Females. Nutrients 2019, 11, 2522. https://doi.org/10.3390/nu11102522
Chung S, Kim MS, Kwock CK. Dietary Patterns May Be Nonproportional Hazards for the Incidence of Type 2 Diabetes: Evidence from Korean Adult Females. Nutrients. 2019; 11(10):2522. https://doi.org/10.3390/nu11102522
Chicago/Turabian StyleChung, Sangwon, Myung Sunny Kim, and Chang Keun Kwock. 2019. "Dietary Patterns May Be Nonproportional Hazards for the Incidence of Type 2 Diabetes: Evidence from Korean Adult Females" Nutrients 11, no. 10: 2522. https://doi.org/10.3390/nu11102522
APA StyleChung, S., Kim, M. S., & Kwock, C. K. (2019). Dietary Patterns May Be Nonproportional Hazards for the Incidence of Type 2 Diabetes: Evidence from Korean Adult Females. Nutrients, 11(10), 2522. https://doi.org/10.3390/nu11102522