Effects of L-Theanine Administration on Stress-Related Symptoms and Cognitive Functions in Healthy Adults: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. L-theanine Administration
2.3. Clinical Assessments (Primary Outcome)
2.4. Laboratory Tests (Secondary Outcome)
2.5. Statistical Analyses
3. Results
3.1. Participants
3.2. Symptom Scores
3.3. Cognitive Function Scores
3.4. Biochemical Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vuong, Q.V. Epidemiological evidence linking tea consumption to human health: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 523–536. [Google Scholar] [CrossRef]
- Saeed, M.; Naveed, M.; Arif, M.; Kakar, M.U.; Manzoor, R.; El-Hack, M.E.A.; Alagawany, M.; Tiwari, R.; Khandia, R.; Munjal, A.; et al. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans—A comprehensive review. Biomed. Pharmacother. 2017, 95, 1260–1275. [Google Scholar] [CrossRef]
- Sharma, E.; Joshi, R.; Gulati, A. l-theanine: An astounding sui generis integrant in tea. Food Chem. 2018, 242, 601–610. [Google Scholar] [CrossRef]
- Kakuda, T. Neuroprotective effects of theanine and its preventive effects on cognitive dysfunction. Pharmacol. Res. 2011, 64, 162–168. [Google Scholar] [CrossRef]
- Sebih, F.; Rousset, M.; Bellahouel, S.; Rolland, M.; de Ferreira, M.C.J.; Guiramand, J.; Cohen-Solal, C.; Barbanel, G.; Cens, T.; Abouazza, M.; et al. Characterization of l-theanine excitatory actions on hippocampal neurons: Toward the generation of novel N-Methyl-d-aspartate receptor modulators based on its backbone. ACS Chem. Neurosci. 2017, 8, 1724–1734. [Google Scholar] [CrossRef]
- Wakabayashi, C.; Numakawa, T.; Ninomiya, M.; Chiba, S.; Kunugi, H. Behavioral and molecular evidence for psychotropic effects in l-theanine. Psychopharmacology 2012, 219, 1099–1109. [Google Scholar] [CrossRef]
- Cooper, R. Green tea and theanine: Health benefits. Int. J. Food Sci. Nutr. 2012, 63 (Suppl. 1), 90–97. [Google Scholar] [CrossRef]
- Mancini, E.; Beglinger, C.; Drewe, J.; Zanchi, D.; Lang, U.E.; Borgwardt, S. Green tea effects on cognition, mood and human brain function: A systematic review. Phytomedicine 2017, 34, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Camfield, D.A.; Stough, C.; Farrimond, J.; Scholey, A.B. Acute effects of tea constituents l-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: A systematic review and meta-analysis. Nutr. Rev. 2014, 72, 507–522. [Google Scholar] [CrossRef]
- Einother, S.J.; Martens, V.E. Acute effects of tea consumption on attention and mood. Am. J. Clin. Nutr. 2013, 98, 1700S–1708S. [Google Scholar] [CrossRef] [Green Version]
- Nathan, P.J.; Lu, K.; Gray, M.; Oliver, C. The neuropharmacology of l-theanine(N-ethyl-l-glutamine): A possible neuroprotective and cognitive enhancing agent. J. Herb. Pharmacother. 2006, 6, 21–30. [Google Scholar] [CrossRef]
- Kimura, R.; Murata, T. Influence of alkylamides of glutamic acid and related compounds on the central nervous system. I. Central depressant effect of theanine. Chem. Pharm. Bull. 1971, 19, 1257–1261. [Google Scholar] [CrossRef]
- Terashima, T.; Takido, J.; Yokogoshi, H. Time-dependent changes of amino acids in the serum, liver, brain and urine of rats administered with theanine. Biosci. Biotechnol. Biochem. 1999, 63, 615–618. [Google Scholar] [CrossRef]
- Yokogoshi, H.; Terashima, T. Effect of theanine, r-glutamylethylamide, on brain monoamines, striatal dopamine release and some kinds of behavior in rats. Nutrition 2000, 16, 776–777. [Google Scholar] [CrossRef]
- Yokogoshi, H.; Mochizuki, M.; Saitoh, K. Theanine-induced reduction of brain serotonin concentration in rats. Biosci. Biotechnol. Biochem. 1998, 62, 816–817. [Google Scholar] [CrossRef]
- Yokogoshi, H.; Kobayashi, M.; Mochizuki, M.; Terashima, T. Effect of theanine, r-glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochem. Res. 1998, 23, 667–673. [Google Scholar] [CrossRef]
- Kimura, R.; Murata, T. Effect of theanine on norepinephrine and serotonin levels in rat brain. Chem. Pharm. Bull. 1986, 34, 3053–3057. [Google Scholar] [CrossRef]
- Yamada, T.; Terashima, T.; Okubo, T.; Juneja, L.R.; Yokogoshi, H. Effects of theanine, r-glutamylethylamide, on neurotransmitter release and its relationship with glutamic acid neurotransmission. Nutr. Neurosci. 2005, 8, 219–226. [Google Scholar] [CrossRef]
- Yamada, T.; Terashima, T.; Kawano, S.; Furuno, R.; Okubo, T.; Juneja, L.R.; Yokogoshi, H. Theanine, γ-glutamylethylamide, a unique amino acid in tea leaves, modulates neurotransmitter concentrations in the brain striatum interstitium in conscious rats. Amino Acids 2009, 36, 21–27. [Google Scholar] [CrossRef]
- Tamano, H.; Fukura, K.; Suzuki, M.; Sakamoto, K.; Yokogoshi, H.; Takeda, A. Preventive effect of theanine intake on stress-induced impairments of hippocamapal long-term potentiation and recognition memory. Brain Res. Bull. 2013, 95, 1–6. [Google Scholar] [CrossRef]
- Takeda, A.; Tamano, H.; Suzuki, M.; Sakamoto, K.; Oku, N.; Yokogoshi, H. Unique induction of CA1 LTP components after intake of theanine, an amino acid in tea leaves and its effect on stress response. Cell. Mol. Neurobiol. 2012, 32, 41–48. [Google Scholar] [CrossRef]
- Unno, K.; Iguchi, K.; Tanida, N.; Fujitani, K.; Takamori, N.; Yamamoto, H.; Ishii, N.; Nagano, H.; Nagashima, T.; Hara, A.; et al. Ingestion of theanine, an amino acid in tea, suppresses psychosocial stress in mice. Exp. Physiol. 2013, 98, 290–303. [Google Scholar] [CrossRef]
- Tian, X.; Sun, L.; Gou, L.; Ling, X.; Feng, Y.; Wang, L.; Yin, X.; Liu, Y. Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res. 2013, 1503, 24–32. [Google Scholar] [CrossRef]
- Yin, C.; Gou, L.; Liu, Y.; Yin, X.; Zhang, L.; Jia, G.; Zhuang, X. Antidepressant-like effects of l-theanine in the forced swim and tail suspension tests in mice. Phytother. Res. 2011, 25, 1636–1639. [Google Scholar] [CrossRef]
- Unno, K.; Fujitani, K.; Takamori, N.; Takabayashi, F.; Maeda, K.; Miyazaki, H.; Tanida, N.; Iguchi, K.; Shimoi, K.; Hoshino, M. Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic. Res. 2011, 45, 966–974. [Google Scholar] [CrossRef]
- Takarada, T.; Nakamichi, N.; Kakuda, T.; Nakazato, R.; Kokubo, H.; Ikeno, S.; Nakamura, S.; Hinoi, E.; Yoneda, Y. Daily oral intake of theanine prevents the decline of 5-bromo-2′-deoxyuridine incorporation in hippocampal dentate gyrus with concomitant alleviation of behavioral abnormalities in adult mice with severe traumatic stress. J. Pharmacol. Sci. 2015, 127, 292–297. [Google Scholar] [CrossRef]
- Ogawa, S.; Ota, M.; Ogura, J.; Kato, K.; Kunugi, H. Effects of l-theanine on anxiety-like behavior, cerebrospinal fluid amino acid profile, and hippocampal activity in Wistar Kyoto rats. Psychopharmacology 2017. [Google Scholar] [CrossRef]
- Gomez-Ramirez, M.; Kelly, S.P.; Montesi, J.L.; Foxe, J.J. The effects of l-theanine on alpha-band oscillatory brain activity during a visuo-spatial attention task. Brain Topogr. 2009, 22, 44–51. [Google Scholar] [CrossRef]
- Nobre, A.C.; Rao, A.; Owen, G.N. l-theanine, a natural constituent in tea, and its effect on mental state. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. 1), 167–168. [Google Scholar]
- Gomez-Ramirez, M.; Higgins, B.A.; Rycroft, J.A.; Owen, G.N.; Mahoney, J.; Shpaner, M.; Foxe, J.J. The deployment of intersensory selective attention: A high-density electrical mapping study of the effects of theanine. Clin. Neuropharmacol. 2007, 30, 25–38. [Google Scholar] [CrossRef]
- Turkozu, D.; Sanlier, N. l-theanine, unique amino acid of tea, and its metabolism, health effects, and safety. Crit. Rev. Food Sci. Nutr. 2017, 57, 1681–1687. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.P.; Ozeki, M.; Juneja, L.R. In search of a safe natural sleep aid. J. Am. Coll. Nutr. 2015, 34, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Ozeki, M.; Juneja, L.R.; Ohira, H. l-theanine reduces psychological and physiological stress responses. Biol. Psychol. 2007, 74, 39–45. [Google Scholar] [CrossRef] [PubMed]
- White, D.J.; de Klerk, S.; Woods, W.; Gondalia, S.; Noonan, C.; Scholey, A.B. Anti-stress, behavioural and magnetoencephalography effects of an l-theanine-based nutrient drink: A randomised, double-blind, placebo-controlled, crossover trial. Nutrients 2016, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Unno, K.; Tanida, N.; Ishii, N.; Yamamoto, H.; Iguchi, K.; Hoshino, M.; Takeda, A.; Ozawa, H.; Ohkubo, T.; Juneja, L.R.; et al. Anti-stress effect of theanine on students during pharmacy practice: Positive correlation among salivary α-amylase activity, trait anxiety and subjective stress. Pharmacol. Biochem. Behav. 2013, 111, 128–135. [Google Scholar] [CrossRef]
- Foxe, J.J.; Morie, K.P.; Laud, P.J.; Rowson, M.J.; de Bruin, E.A.; Kelly, S.P. Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology 2012, 62, 2320–2327. [Google Scholar] [CrossRef] [PubMed]
- Kahathuduwa, C.N.; Dassanayake, T.L.; Amarakoon, A.M.T.; Weerasinghe, V.S. Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr. Neurosci. 2017, 20, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kahathuduwa, C.N.; Dhanasekara, C.S.; Chin, S.H.; Davis, T.; Weerasinghe, V.S.; Dassanayake, T.L.; Binks, M. l-theanine and caffeine improve target-specific attention to visual stimuli by decreasing mind wandering: A human functional magnetic resonance imaging study. Nutr. Res. 2018, 49, 67–78. [Google Scholar] [CrossRef]
- Lardner, A.L. Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders. Nutr. Neurosci. 2014, 17, 145–155. [Google Scholar] [CrossRef]
- Hidese, S.; Ota, M.; Wakabayashi, C.; Noda, T.; Ozawa, H.; Okubo, T.; Kunugi, H. Effects of chronic l-theanine administration in patients with major depressive disorder: An open-label study. Acta Neuropsychiatr. 2017, 29, 72–79. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. 20), 22–33. [Google Scholar]
- Otsubo, T.; Tanaka, K.; Koda, R.; Shinoda, J.; Sano, N.; Tanaka, S.; Aoyama, H.; Mimura, M.; Kamijima, K. Reliability and validity of Japanese version of the Mini-International Neuropsychiatric Interview. Psychiatry Clin. Neurosci. 2005, 59, 517–526. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual Mental Disorders 5th Edition Text Revision; American Psychiatric Publication: Arlington, VA, USA, 2013. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Hopewell, S.; Clarke, M.; Moher, D.; Wager, E.; Middleton, P.; Altman, D.G.; Schulz, K.F.; Group, C. CONSORT for reporting randomised trials in journal and conference abstracts. Lancet 2008, 371, 281–283. [Google Scholar] [CrossRef]
- Ota, M.; Wakabayashi, C.; Matsuo, J.; Kinoshita, Y.; Hori, H.; Hattori, K.; Sasayama, D.; Teraishi, T.; Obu, S.; Ozawa, H.; et al. Effect of l-theanine on sensorimotor gating in healthy human subjects. Psychiatry Clin. Neurosci. 2014, 68, 337–343. [Google Scholar] [CrossRef]
- De Mejia, E.G.; Ramirez-Mares, M.V.; Puangpraphant, S. Bioactive components of tea: Cancer, inflammation and behavior. Brain Behav. Immun. 2009, 23, 721–731. [Google Scholar] [CrossRef]
- Van der Pijl, P.C.; Chen, L.; Mulder, T.P.J. Human disposition of l-theanine in tea or aqueous solution. J. Funct. Foods 2010, 2, 239–244. [Google Scholar] [CrossRef]
- Zung, W.W.; Richards, C.B.; Short, M.J. Self-rating depression scale in an outpatient clinic: Further validation of the SDS. Arch. Gen. Psychiatry 1965, 13, 508–515. [Google Scholar] [CrossRef]
- Sakamoto, S.; Kijima, N.; Tomoda, A.; Kambara, M. Factor structures of the Zung Self-Rating Depression Scale (SDS) for undergraduates. J. Clin. Psychol. 1998, 54, 477–487. [Google Scholar] [CrossRef]
- Spielberg, C.D. STAI Manual; Consulting Psychologists Press: Palo Alto, CA, USA, 1970. [Google Scholar]
- Suzuki, T.; Tsukamoto, K.; Abe, K. Characteristics factor structures of the Japanese version of the State-Trait Anxiety Inventory: Coexistence of positive-negative and state-trait factor structures. J. Personal. Assess. 2000, 74, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Doi, Y.; Minowa, M.; Uchiyama, M.; Okawa, M.; Kim, K.; Shibui, K.; Kamei, Y. Psychometric assessment of subjective sleep quality using the Japanese version of the Pittsburgh Sleep Quality Index (PSQI-J) in psychiatric disordered and control subjects. Psychiatry Res. 2000, 97, 165–172. [Google Scholar] [CrossRef]
- Bowie, C.R.; Harvey, P.D. Administration and interpretation of the Trail Making Test. Nat. Protoc. 2006, 1, 2277–2281. [Google Scholar] [CrossRef] [PubMed]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Kaneda, Y.; Sumiyoshi, T.; Keefe, R.; Ishimoto, Y.; Numata, S.; Ohmori, T. Brief assessment of cognition in schizophrenia: Validation of the Japanese version. Psychiatry Clin. Neurosci. 2007, 61, 602–609. [Google Scholar] [CrossRef]
- Keefe, R.S.; Goldberg, T.E.; Harvey, P.D.; Gold, J.M.; Poe, M.P.; Coughenour, L. The Brief Assessment of Cognition in Schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr. Res. 2004, 68, 283–297. [Google Scholar] [CrossRef]
- Gardener, M.C.; Gillman, M.P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 2001, 27, 2545–2558. [Google Scholar] [CrossRef]
Variables | Mean ± Standard Deviation | Range |
---|---|---|
Age (years) | 48.3 ± 11.9 | 20–69 |
Sex, female: n (%) | 21 (70) | |
Education (years) | 14.5 ± 2.0 | 10–18 |
Height (cm) | 161 ± 8.0 | 148–180 |
Weight at baseline (kg) | 58.6 ± 12.7 | 44–102 |
Body mass index at baseline (kg/m2) | 22.5 ± 3.9 | 17.1–31.5 |
Drinking alcohol habit: n (%) | 20 (66.7) | |
Smoking habit: n (%) | 8 (26.7) |
Symptoms | Pretreatment | Posttreatment | Wilcoxon Signed-Rank Test | Pretreatment | Posttreatment | Wilcoxon Signed-Rank Test | Score Changes | Mann-Whitney U Test | |
---|---|---|---|---|---|---|---|---|---|
L-theanine | Placebo | L-theanine | Placebo | ||||||
Self-rating Depression Scale | 45.8 ± 7.38 | 43.2 ± 7.47 | W = 83.5, p = 0.019, r = −0.43 | 45.8 ± 7.41 | 45.7 ± 6.77 | W = 216.0, p = 0.77, r = −0.06 | −2.53 ± 5.38 | −0.07 ± 6.60 | U = 333.5, p = 0.084, r = −0.22 |
State-Trait Anxiety Inventory-state | 48.6 ± 9.32 | 46.1 ± 9.51 | W = 158.5, p = 0.20, r = −0.23 | 50.6 ± 9.86 | 49.9 ± 11.2 | W = 181.5, p = 0.44, r = −0.14 | −2.47 ± 9.26 | −0.67 ± 8.75 | U = 435.0, p = 0.82, r = −0.03 |
State-Trait Anxiety Inventory-trait | 51.9 ± 9.66 | 48.5 ± 10.4 | W = 74.0, p = 0.006, r = −0.51 | 51.4 ± 10.3 | 52.1 ± 11.2 | W = 184.0, p = 0.90, r = 0.02 | −3.37 ± 8.13 | 0.77 ± 7.52 | U = 348.0, p = 0.13, r = −0.20 |
Pittsburgh Sleep Quality Index | 9.67 ± 2.71 | 8.3 ±2.45 | W = 78.5, p = 0.013, r = −0.46 | 9.63 ± 2.24 | 9.60 ± 2.84 | W = 132.0, p = 0.85, r = 0.03 | −1.37 ± 2.81 | −0.03 ± 2.08 | U = 330.0, p = 0.073, r = −0.23 |
C1 (sleep quality) | 1.77 ± 0.73 | 1.50 ± 0.73 | W = 10.0, p = 0.052, r = −0.36 | 1.73 ± 0.69 | 1.63 ± 0.56 | W = 30.0, p = 0.44, r = −0.14 | −0.27 ± 0.74 | −0.10 ± 0.71 | U = 403.0, p = 0.42, r = −0.11 |
C2 (sleep latency) | 1.67 ± 1.12 | 1.23 ± 1.01 | W = 34.0, p = 0.036, r = −0.38 | 1.63 ± 0.93 | 1.63 ± 0.93 | W = 27.5, p = 1.00, r = 0.00 | −0.43 ± 1.04 | 0.00 ± 0.59 | U = 330.0, p = 0.0499, r = −0.25 |
C3 (sleep duration) | 3.00 ± 0.00 | 3.00 ± 0.00 | W = 0.0, p = 1.00, r = not applicable | 3.00 ± 0.00 | 3.00 ± 0.00 | W = 0.0, p = 1.00, r = not applicable | 0.00 ± 0.00 | 0.00 ± 0.00 | U = 450.0, p = 1.00, r = 0.00 |
C4 (habitual sleep efficiency) | 0.50 ± 0.94 | 0.50 ± 0.86 | W = 30.0, p = 0.93, r = −0.02 | 0.63 ± 0.96 | 0.53 ± 0.90 | W = 22.0, p = 0.57, r = −0.11 | 0.00 ± 0.98 | −0.10 ± 0.92 | U = 435.0, p = 0.79, r = 0.03 |
C5 (sleep disturbances) | 1.27 ± 0.45 | 1.10 ± 0.40 | W = 10.0, p = 0.096, r = −0.31 | 1.17 ± 0.59 | 1.27 ± 0.64 | W = 20.0, p = 0.26, r = 0.21 | −0.17 ± 0.53 | 0.10 ± 0.48 | U = 345.5, p = 0.046, r = −0.26 |
C6 (use of sleeping medication) | 0.27 ± 0.78 | 0.13 ± 0.57 | W = 0.0, p = 0.18, r = −0.25 | 0.13 ± 0.57 | 0.27 ± 0.78 | W = 3.0, p = 0.18, r = 0.25 | −0.13 ± 0.57 | 0.13 ± 0.57 | U = 392.0, p = 0.047, r = −0.26 |
C7 (daytime dysfunction) | 1.20 ± 1.00 | 0.83 ± 0.79 | W = 32.0, p = 0.022, r = −0.42 | 1.33 ± 0.84 | 1.27 ± 0.91 | W = 115.0, p = 0.67, r = −0.08 | −0.37 ± 0.81 | −0.07 ± 0.87 | U = 374.0, p = 0.23, r = −0.15 |
Cognitive functions | Pretreatmnent | Posttreatment | Wilcoxon Signed-Rank Test | Pretreatment | Postreatment | Wilcoxon Signed-Rank Test | Score Changes | Mann-Whitney U Test | |
---|---|---|---|---|---|---|---|---|---|
L-theanine | Placebo | L-theanine | Placebo | ||||||
Trail Making Test A (sec) | 27.4 ± 9.78 | 25.9 ± 10.2 | W = 170.5, p = 0.31, r = −0.19 | 29.1 ± 10.7 | 25.9 ± 10.3 | W = 123.5, p = 0.042, r = −0.37 | −1.57 ± 9.68 | −3.27 ± 7.48 | U = 410.0, p = 0.55, r = 0.08 |
Trail Making Test B (sec) | 62.4 ± 22.0 | 59.6 ± 24.8 | W = 136.5, p = 0.13, r = −0.28 | 63.9 ± 22.9 | 58.6 ± 20.4 | W = 121.5, p = 0.038, r = −0.38 | −2.83 ± 18.5 | −5.23 ± 14.9 | U = 428.0, p = 0.75, r = 0.04 |
Stroop test response latency (msec) | 1176 ± 219 | 1159 ± 228 | W = 149.0, p = 0.50, r = −0.12 | 1188 ± 259 | 1140 ± 217 | W = 154.5, p = 0.27, r = −0.20 | −16.7 ± 158 | −47.9 ± 183 | U = 422.5, p = 0.68, r = 0.05 |
Stroop test error rate (%) | 1.04 ± 1.62 | 1.81 ± 2.37 | W = 130.0, p = 0.15, r = 0.26 | 0.83 ± 1.51 | 1.32 ± 2.35 | W = 74.0, p = 0.42, r = 0.15 | 0.76 ± 2.41 | 0.49 ± 2.10 | U = 426.0, p = 0.71, r = 0.05 |
Brief Assessment of Cognition in Schizophrenia | |||||||||
verbal memory | 52.2 ± 7.68 | 52.5 ± 7.74 | W = 183.0, p = 0.85, r = 0.04 | 52.7 ± 9.05 | 51.5 ± 9.69 | W = 182.0, p = 0.63, r = −0.09 | 0.30 ± 8.57 | −1.20 ± 9.53 | U = 414.5, p = 0.60, r = 0.07 |
working memory | 20.9 ± 4.14 | 21.5 ± 4.43 | W = 194.5, p = 0.39, r = 0.16 | 21.5 ± 4.91 | 21.4 ± 4.83 | W = 158.5, p = 0.91, r = −0.02 | 0.57 ± 3.87 | −0.03 ± 3.31 | U = 397.0, p = 0.43, r = 0.10 |
motor speed | 83.7 ± 12.6 | 84.0 ± 12.5 | W = 193.5, p = 0.65, r = 0.08 | 83.2 ± 13.0 | 83.6 ± 13.3 | W = 204.5, p = 0.71, r = 0.07 | 0.37 ± 7.80 | 0.43 ± 7.94 | U = 439.5, p = 0.88, r = −0.02 |
verbal fluency | 50.3 ± 13.0 | 54.9 ± 10.4 | W = 364.5, p = 0.001, r = 0.58 | 52.3 ± 9.80 | 54.7 ± 12.2 | W = 299.5, p = 0.076, r = 0.33 | 4.57 ± 7.13 | 2.33 ± 7.26 | U = 336.5, p = 0.22, r = 0.20 |
category fluency | 21.9 ± 5.87 | 23.1 ± 5.30 | W = 271.5, p = 0.12, r = 0.29 | 22.4 ± 4.48 | 23.3 ± 5.49 | W = 244.0, p = 0.35, r = 0.17 | 1.20 ± 4.23 | 0.90 ± 5.91 | U = 442.5, p = 0.91, r = 0.02 |
letter fluency | 28.4 ± 8.43 | 31.7 ± 6.94 | W = 348.5, p = 0.001, r = 0.61 | 29.9 ± 7.28 | 31.4 ± 9.68 | W = 283.5, p = 0.29, r = 0.19 | 3.37 ± 4.63 | 1.43 ± 5.83 | U = 344.0, p = 0.12, r = 0.20 |
attention | 64.4 ± 11.6 | 62.9 ± 11.7 | W = 139.0, p = 0.53, r = −0.12 | 62.6 ± 11.3 | 62.9 ± 10.1 | W = 204.0, p = 0.47, r = 0.13 | −1.47 ± 7.37 | 0.33 ± 4.97 | U = 308.5, p = 0.30, r = −0.13 |
executive function | 17.4 ± 2.71 | 18.5 ± 1.72 | W = 208.5, p = 0.031, r = 0.40 | 18.2 ± 1.77 | 18.5 ± 1.63 | W = 205.0, p = 0.24, r = 0.21 | 1.10 ± 2.52 | 0.33 ± 1.81 | U = 397.0, p = 0.43, r = 0.10 |
L-theanine | Placebo | Mann-Whitney U Test | |
---|---|---|---|
Verbal memory | 0.30 ± 8.57 | −1.20 ± 9.53 | U = 414.5, p = 0.60, r = 0.07 |
Upper half | −3.13 ± 9.36 | −3.07 ± 10.0 | U = 108.0, p = 0.85, r = −0.04 |
Lower half | 3.73 ± 6.27 | 0.67 ± 8.93 | U = 95.0, p = 0.47, r = 0.13 |
Working memory | 0.57 ± 3.87 | −0.03 ± 3.31 | U = 397.0, p = 0.43, r = 0.10 |
Upper half | 0.47 ± 3.50 | −0.80 ± 3.38 | U = 80.0, p = 0.17, r = 0.25 |
Lower half | 0.67 ± 4.34 | 0.73 ± 3.15 | U = 111.0, p = 0.95, r = −0.01 |
Motor speed | 0.37 ± 7.80 | 0.43 ± 7.94 | U = 439.5, p = 0.88, r = −0.02 |
Upper half | 0.67 ± 7.10 | 0.27 ± 6.24 | U = 104.0, p = 0.72, r = 0.07 |
Lower half | 0.07 ± 8.69 | 0.60 ± 9.58 | U = 112.0, p = 0.98, r = 0.00 |
Verbal fluency | 4.57 ± 7.13 | 2.33 ± 7.26 | U = 336.5, p = 0.22, r = 0.20 |
Upper half | 1.20 ± 6.30 | 4.53 ± 7.36 | U = 81.5, p = 0.20, r = −0.24 |
Lower half | 7.93 ± 6.42 | 0.13 ± 6.69 | U = 37.5, p = 0.002, r = 0.57 |
category fluency | 2.65 ± 4.18 | 1.13 ± 4.17 | U = 101.5, p = 0.32, r = 0.18 |
letter fluency | 6.00 ± 3.41 | −0.07 ± 5.31 | U = 44.0, p = 0.002, r = 0.56 |
Attention | −1.47 ± 7.37 | 0.33 ± 4.97 | U = 308.5, p = 0.30, r = −0.13 |
Upper half | −3.67 ± 9.57 | −1.20 ± 3.95 | U = 100.0, p = 0.60, r = −0.10 |
Lower half | 0.73 ± 3.24 | 1.87 ± 5.53 | U = 80.5, p = 0.18, r = −0.24 |
Executive function | 1.10 ± 2.52 | 0.33 ± 1.81 | U = 397.0, p = 0.43, r = 0.10 |
Upper half | −0.07 ± 1.49 | 0.40 ± 1.55 | U = 88.5, p = 0.30, r = −0.19 |
Lower half | 2.27 ± 2.84 | 0.27 ± 2.09 | U = 68.0, p = 0.062, r = 0.34 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidese, S.; Ogawa, S.; Ota, M.; Ishida, I.; Yasukawa, Z.; Ozeki, M.; Kunugi, H. Effects of L-Theanine Administration on Stress-Related Symptoms and Cognitive Functions in Healthy Adults: A Randomized Controlled Trial. Nutrients 2019, 11, 2362. https://doi.org/10.3390/nu11102362
Hidese S, Ogawa S, Ota M, Ishida I, Yasukawa Z, Ozeki M, Kunugi H. Effects of L-Theanine Administration on Stress-Related Symptoms and Cognitive Functions in Healthy Adults: A Randomized Controlled Trial. Nutrients. 2019; 11(10):2362. https://doi.org/10.3390/nu11102362
Chicago/Turabian StyleHidese, Shinsuke, Shintaro Ogawa, Miho Ota, Ikki Ishida, Zenta Yasukawa, Makoto Ozeki, and Hiroshi Kunugi. 2019. "Effects of L-Theanine Administration on Stress-Related Symptoms and Cognitive Functions in Healthy Adults: A Randomized Controlled Trial" Nutrients 11, no. 10: 2362. https://doi.org/10.3390/nu11102362