Effects of Leucine-Enriched Whey Protein Supplementation on Physical Function in Post-Hospitalized Older Adults Participating in 12-Weeks of Resistance Training Program: A Randomized Controlled Trial
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Randomization
2.4. Supplementation and Blinding
2.5. Design of the Resistance Training Program
2.6. Outcome Measures
2.7. Primary Outcome: Physical Function
2.8. Secondary Outcomes
2.8.1. Nutritional Assessment
2.8.2. Body Composition
2.8.3. Biochemical Parameters
2.9. Statistical Analysis
3. Results
3.1. Effects of the Intervention on Primary Outcomes: Physical Function
3.2. Effects of the Intervention on Secondary Outcomes
4. Discussion
Limitations and Strength
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Schaap, L.A.; van Schoor, N.M.; Lips, P.; Visser, M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: The Longitudinal Aging Study Amsterdam. J. Gerontol. 2018, 73, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Liperoti, R.; Fusco, D.; Mastropaolo, S.; Quattrociocchi, D.; Proia, A.; Tosato, M.; Bernabei, R.; Onder, G. Sarcopenia and mortality among older nursing home residents. J. Am. Med. Dir. Assoc. 2012, 13, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 2012, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Witard, O.C.; McGlory, C.; Hamilton, D.L.; Phillips, S.M. Growing older with health and vitality: A nexus of physical activity, exercise and nutrition. Biogerontology 2016, 17, 529–546. [Google Scholar] [CrossRef]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. 2011, 8, 68. [Google Scholar] [CrossRef]
- Hung, Y.; Wijnhoven, H.A.H.; Visser, M.; Verbeke, W. Appetite and Protein Intake Strata of Older Adults in the European Union: Socio-Demographic and Health Characteristics, Diet-Related and Physical Activity Behaviours. Nutrients 2019, 11, 777. [Google Scholar] [CrossRef]
- Lonnie, M.; Hooker, E.; Brunstrom, J.M.; Corfe, B.M.; Green, M.A.; Watson, A.W.; Williams, E.A.; Stevenson, E.J.; Penson, S.; Johnstone, A.M. Protein for Life: Review of Optimal Protein Intake, Sustainable Dietary Sources and the Effect on Appetite in Ageing Adults. Nutrients 2018, 10, 360. [Google Scholar] [CrossRef]
- Pennings, B.; Boirie, Y.; Senden, J.M.; Gijsen, A.P.; Kuipers, H.; van Loon, L.J. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 2011, 93, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, G. Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets. Br. J. Nutr. 2012, 108 (Suppl. 2), S333–S336. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, S.; Burd, N.A.; van Loon, L.J. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Pennings, B.; Groen, B.; de Lange, A.; Gijsen, A.P.; Zorenc, A.H.; Senden, J.M.; van Loon, L.J. Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E992–E999. [Google Scholar] [CrossRef] [PubMed]
- Luiking, Y.C.; Deutz, N.E.; Memelink, R.G.; Verlaan, S.; Wolfe, R.R. Postprandial muscle protein synthesis is higher after a high whey protein, leucine-enriched supplement than after a dairy-like product in healthy older people: A randomized controlled trial. Nutr. J. 2014, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Reidy, P.T.; Rasmussen, B.B. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism. J. Nutr. 2016, 146, 155–183. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.D.; Tsauo, J.Y.; Wu, Y.T.; Cheng, C.P.; Chen, H.C.; Huang, Y.C.; Chen, H.C.; Liou, T.H. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 1078–1109. [Google Scholar] [CrossRef]
- Thomas, D.K.; Quinn, M.A.; Saunders, D.H.; Greig, C.A. Protein Supplementation Does Not Significantly Augment the Effects of Resistance Exercise Training in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2016, 17, 959.e1–959.e9. [Google Scholar] [CrossRef]
- Krumholz, H.M. Post-hospital syndrome--an acquired, transient condition of generalized risk. N. Engl. J. Med. 2013, 368, 100–102. [Google Scholar] [CrossRef]
- Deer, R.R.; Goodlett, S.M.; Fisher, S.R.; Baillargeon, J.; Dickinson, J.M.; Raji, M.; Volpi, E. A Randomized Controlled Pilot Trial of Interventions to Improve Functional Recovery After Hospitalization in Older Adults: Feasibility and Adherence. J. Gerontol. 2018, 73, 187–193. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF): A practical tool for identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef]
- Soares Menezes, K.V.R.; Auger, C.; de Souza Menezes, W.R.; Guerra, R.O. Instruments to evaluate mobility capacity of older adults during hospitalization: A systematic review. Arch. Gerontol. Geriatr. 2017, 72, 67–79. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Martínez de la Iglesia, J.; Dueñas Herrero, R.; Onís Vilches, M.C.; Aguado Taberné, C.; Albert Colomer, C.; Luque Luque, R. Cross-cultural adaptation and validation of Pfeiffer’s test (Short Portable Mental Status Questionnaire [SPMSQ]) to screen cognitive impairment in general population aged 65 or older. Med. Clín. 2001, 117, 129–134. [Google Scholar] [CrossRef]
- Brzycki, M. Strength testing: Predicting a one-rep max from reps-to-fatigue. J. Phys. Educ. Recreat. Danc. 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef]
- Guigoz, Y. The Mini Nutritional Assessment (MNA) review of the literature: What does it tell us? J. Nutr. Health Aging. 2006, 10, 466–485. [Google Scholar]
- Chumlea, W.C.; Roche, A.F.; Steinbaugh, M.L. Estimating stature from knee height for persons 60 to 90 years of age. J. Am. Geriatr. Soc. 1985, 33, 116–120. [Google Scholar] [CrossRef]
- Leenders, M.; Verdijk, L.B.; van der Hoeven, L.; van Kranenburg, J.; Nilwik, R.; van Loon, L.J. Elderly men and women benefit equally from prolonged resistance-type exercise training. J. Gerontol. 2013, 68, 769–779. [Google Scholar] [CrossRef]
- Law, T.D.; Clark, L.A.; Clark, B.C. Resistance Exercise to Prevent and Manage Sarcopenia and Dynapenia. Annu. Rev. Gerontol. Geriatr. 2016, 36, 205–228. [Google Scholar] [CrossRef]
- Liao, C.D.; Lee, P.H.; Hsiao, D.J.; Huang, S.W.; Tsauo, J.Y.; Chen, H.C.; Liou, T.H. Effects of Protein Supplementation Combined with Exercise Intervention on Frailty Indices, Body Composition, and Physical Function in Frail Older Adults. Nutrients 2018, 10, 1916. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Ashurst, I.; Ballesteros, M.D.; Bear, D.E.; Cruz-Jentoft, A.J.; Genton, L.; Landi, F.; Laviano, A.; Norman, K.; Prado, C.M. The Underappreciated Role of Low Muscle Mass in the Management of Malnutrition. J. Am. Med. Dir. Assoc. 2019, 20, 22–27. [Google Scholar] [CrossRef]
- Koopman, R.; van Loon, L.J. Aging, exercise, and muscle protein metabolism. J. Appl. Physiol. 2009, 106, 2040–2048. [Google Scholar] [CrossRef]
- Pennings, B.; Koopman, R.; Beelen, M.; Senden, J.M.; Saris, W.H.; van Loon, L.J. Exercising before protein intake allows for greater use of dietary protein-derived amino acids for de novo muscle protein synthesis in both young and elderly men. Am. J. Clin. Nutr. 2011, 93, 322–331. [Google Scholar] [CrossRef]
- Tieland, M.; van de Rest, O.; Dirks, M.L.; van der Zwaluw, N.; Mensink, M.; van Loon, L.J.; de Groot, L.C. Protein supplementation improves physical performance in frail elderly people: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2012, 13, 720–726. [Google Scholar] [CrossRef]
- Mori, H.; Tokuda, Y. Effect of whey protein supplementation after resistance exercise on the muscle mass and physical function of healthy older women: A randomized controlled trial. Geriatr. Gerontol. Int. 2018, 18, 1398–1404. [Google Scholar] [CrossRef]
- Verdijk, L.B.; Jonkers, R.A.; Gleeson, B.G.; Beelen, M.; Meijer, K.; Savelberg, H.H.; Wodzig, W.K.; Dendale, P.; van Loon, L.J. Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am. J. Clin. Nutr. 2009, 89, 608–616. [Google Scholar] [CrossRef]
- Verhoeven, S.; Vanschoonbeek, K.; Verdijk, L.B.; Koopman, R.; Wodzig, W.K.; Dendale, P.; van Loon, L.J. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am. J. Clin. Nutr. 2009, 89, 1468–1475. [Google Scholar] [CrossRef]
- Slivka, D.; Raue, U.; Hollon, C.; Minchev, K.; Trappe, S. Single muscle fiber adaptations to resistance training in old (>80 yr) men: Evidence for limited skeletal muscle plasticity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R273–R280. [Google Scholar] [CrossRef]
- Cartee, G.D.; Hepple, R.T.; Bamman, M.M.; Zierath, J.R. Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metab. 2016, 23, 1034–1047. [Google Scholar] [CrossRef]
- Atherton, P.J.; Kumar, V.; Selby, A.L.; Rankin, D.; Hildebrandt, W.; Phillips, B.E.; Williams, J.P.; Hiscock, N.; Smith, K. Enriching a protein drink with leucine augments muscle protein synthesis after resistance exercise in young and older men. Clin. Nutr. 2017, 36, 888–895. [Google Scholar] [CrossRef]
- Englund, D.A.; Kirn, D.R.; Koochek, A.; Zhu, H.; Travison, T.G.; Reid, K.F.; von Berens, Å.; Melin, M.; Cederholm, T.; Gustafsson, T.; et al. Nutritional Supplementation with Physical Activity Improves Muscle Composition in Mobility-Limited Older Adults, The VIVE2 Study: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Gerontol. 2017, 73, 95–101. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Bukhari, S.S.I.; Phillips, B.E.; Limb, M.C.; Cegielski, J.; Brook, M.S.; Rankin, D.; Mitchell, W.K.; Kobayashi, H.; Williams, J.P.; et al. Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women. Clin. Nutr. 2018, 37, 2011–2021. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Hou, L.; Lei, Y.; Li, X.; Huo, C.; Jia, X.; Yang, J.; Xu, R.; Wang, X. Effect of Protein Supplementation Combined with Resistance Training on Muscle Mass, Strength and Function in the Elderly: A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2019, 23, 451–458. [Google Scholar] [CrossRef]
- Wall, B.T.; Gorissen, S.H.; Pennings, B.; Koopman, R.; Groen, B.B.; Verdijk, L.B.; van Loon, L.J. Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion. PLoS ONE 2015, 10, e0140903. [Google Scholar] [CrossRef]
- Macnaughton, L.S.; Wardle, S.L.; Witard, O.C.; McGlory, C.; Hamilton, D.L.; Jeromson, S.; Lawrence, C.E.; Wallis, G.A.; Tipton, K.D. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol. Rep. 2016, 4, e12893. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Park, Y.; Choi, J.E.; Hwang, H.S. Protein supplementation improves muscle mass and physical performance in undernourished prefrail and frail elderly subjects: A randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2018, 108, 1026–1033. [Google Scholar] [CrossRef]
- Stokes, T.; Hector, A.J.; Morton, R.W.; McGlory, C.; Phillips, S.M. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients 2018, 10, 180. [Google Scholar] [CrossRef]
- Campbell, W.W.; Leidy, H.J. Dietary protein and resistance training effects on muscle and body composition in older persons. J. Am. Coll. Nutr. 2007, 26, 696S–703S. [Google Scholar] [CrossRef]
- Peterson, M.D.; Sen, A.; Gordon, P.M. Influence of resistance exercise on lean body mass in aging adults: A meta-analysis. Med. Sci. Sports Exerc. 2011, 43, 249–258. [Google Scholar] [CrossRef]
Nutritional Composition | Protein Supplement |
---|---|
Β-lactoglobulin (g/bottle) | 20 |
L-Leucine (g/bottle) | 3 |
Sodium saccharin (g/bottle) | 0.050 |
Sucralose (g/bottle) | 0.030 |
Lemon flavor 654500 (g/bottle) | 0.250 |
Placebo supplement | |
Maltodextrin (g/bottle) | 23 |
Hydroxyethylcellulose (g/bottle) | 0.200 |
Lemon flavor 654500 (g/bottle) | 0.250 |
N | Placebo Group | N | Protein Group | p | |
---|---|---|---|---|---|
Age (years) | 13 | 81.7 (6.45) | 15 | 82.9 (5.59) | 0.607 |
Women (N, %) | 13 | 7 (53.8) | 15 | 7 (46.7) | 0.717 |
Body mass (kg) | 13 | 75.9 (17.95) | 15 | 68.0 (11.43) | 0.188 |
BMI (Kg/m2) | 13 | 30.8 (6.53) | 15 | 27.4 (3.50) | 0.110 |
Physical Function | |||||
Handgrip (kg/body mass) | 13 | 0.3 (0.09) | 15 | 0.4 (0.09) | 0.063 |
SFT chair stand test 30sec | 13 | 10.6 (4.17) | 15 | 12.3 (2.97) | 0.229 |
SFT arm curl test 30sec | 13 | 13.5 (5.22) | 15 | 16.3 (3.92) | 0.137 |
SFT 6MWT (m) | 13 | 314.8 (139.36) | 15 | 411.5 (80.40) | 0.040 |
SPPB total punctuation | 13 | 8.7 (2.36) | 15 | 10.1 (1.58) | 0.089 |
SPPB 5Squat | 13 | 14.7 (6.85) | 15 | 12.2 (2.86) | 0.232 |
Body composition | |||||
Waist to hip ratio | 13 | 1.00 (0.07) | 15 | 0.98 (0.09) | 0.459 |
Lean mass arms (kg) | 13 | 2.3 (0.67) | 15 | 2.3 (0.44) | 0.897 |
Lean mass legs (kg) | 13 | 6.8 (1.70) | 15 | 6.4 (1.08) | 0.441 |
Lean mass trunk (kg) | 13 | 23.0 (4.83) | 15 | 21.5 (3.89) | 0.380 |
Total lean mass (kg) | 13 | 45.2 (9.85) | 15 | 42.3 (6.63) | 0.391 |
Fat mass arms (%) | 13 | 2.6 (0.96) | 15 | 2.4 (0.77) | 0.545 |
Fat mass legs (%) | 13 | 5.8 (1.85) | 15 | 5.4 (1.84) | 0.603 |
Fat mass trunk (%) | 13 | 17.1 (3.87) | 15 | 14.9 (3.03) | 0.124 |
Total fat mass (%) | 13 | 35.4 (8.05) | 15 | 32.1 (6.84) | 0.259 |
Nutritional Status | |||||
MNA score | 13 | 23.1 (3.82) | 15 | 24.5 (2.11) | 0.273 |
Normal nutritional status (N, %) | 13 | 4 (30.8) | 15 | 11 (73.3) | 0.064 |
At risk of malnutrition (N, %) | 13 | 8 (61.5) | 15 | 4 (26.7) | |
Malnourished (N, %) | 13 | 1 (7.7) | 15 | 0 (0) | |
Biomarkers | |||||
Creatinine (mg/dL) | 10 | 1.1 (0.48) | 15 | 0.9 (0.35) | 0.401 |
Albumin (g/dL) | 13 | 4.0 (0.39) | 15 | 4.0 (0.31) | 0.994 |
Prealbumin (mg/dL) | 12 | 22.2 (6.63) | 14 | 23.3 (4.31) | 0.613 |
Placebo-Group | Protein-Group | Differences between Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Pre | Post | p | N | Pre | Post | p | Δ Placebo | Δ Protein | p | |
Primary outcome | |||||||||||
Physical function | |||||||||||
Handgrip (kg/body mass) | 13 | 0.3 (0.09) | 0.3 (0.09) | 0.775 | 15 | 0.4 (0.09) | 0.4 (0.09) | 0.651 | 0.0 (0.03) | -0.0 (0.06) | 0.971 |
SFT chair stand test 30sec | 13 | 10.6 (4.17) | 13.5 (4.59) | 0.003 | 15 | 12.3 (2.97) | 14.4 (3.22) | <0.001 | 2.8 (2.79) | 2.1 (1.53) | 0.480 |
SFT arm curl test 30sec | 13 | 13.5 (5.22) | 21.9 (4.66) | <0.001 | 15 | 16.3 (3.92) | 23.5 (4.53) | <0.001 | 8.4 (5.74) | 7.2 (4.86) | 0.724 |
SFT 6min WT (m) | 13 | 314.8 (139.36) | 375.0 (128.39) | 0.002 | 15 | 411.5 (80.4) | 455.1 (81.77) | 0.005 | 60.2 (53.67) | 43.6 (51.2) | 0.959 |
SPPB total score | 13 | 8.7 (2.36) | 10.3 (1.89) | 0.001 | 15 | 10.1 (1.58) | 11.3 (0.96) | 0.002 | 1.6 (1.39) | 1.2 (1.21) | 0.634 |
SPPB 5Squat | 13 | 14.7 (6.85) | 10.6 (3.67) | 0.005 | 15 | 12.2 (2.86) | 10.0 (2.81) | 0.004 | −4.1 (4.32) | –2.2 (2.4) | 0.491 |
Secondary outcomes | |||||||||||
Body composition | |||||||||||
Body mass (kg) | 13 | 75.9 (17.95) | 75.6 (18.31) | 0.621 | 15 | 68.0 (11.43) | 68.3 11.07) | 0.500 | −0.3 (2.24) | 0.3 (1.60) | 0.471 |
BMI (kg/m2) | 13 | 30.8 (6.54) | 30.7 (6.64) | 0.575 | 15 | 27.4 (3.5) | 27.5 (3.37) | 0.453 | −0.3 (2.24) | 0.3 (1.60) | 0.493 |
Waist to hip ratio | 13 | 1.00 (0.07) | 1.00 (0.08) | 0.818 | 15 | 0.98 (0.09) | 0.96 (0.08) | 0.255 | −0.0 (0.06) | −0.0 (0.05) | 0.400 |
Lean mass arms (kg) | 13 | 2.3 (0.67) | 2.3 (0.41) | 0.937 | 15 | 2.3 (0.44) | 2.2 (0.41) | 0.049 | 0.0 (0.36) | −0.1 (0.24) | 0.088 |
Lean mass legs (kg) | 13 | 6.8 (1.7) | 6.9 (1.45) | 0.630 | 15 | 6.4 (1.08) | 6.5 (1.04) | 0.260 | 0.1 (0.64) | 0.1 (0.34) | 0.756 |
Lean mass trunk (kg) | 13 | 23.0 (4.83) | 22.6 (4.47) | 0.212 | 15 | 21.5 (3.88) | 21.7 (3.61) | 0.198 | −0.4 (1.21) | 0.2 (0.67) | 0.128 |
Total lean mass (kg) | 13 | 45.2 (9.85) | 44.7 (8.54) | 0.545 | 15 | 42.3 (6.63) | 42.5 (6.61) | 0.458 | −0.4 (2.52) | 0.2 (1.02) | 0.611 |
Fat mass arms (%) | 13 | 2.6 (0.96) | 2.6 (0.85) | 0.808 | 15 | 2.4 (0.77) | 2.3 (0.92) | 0.291 | −0.0 (0.56) | −0.1 (0.41) | 0.575 |
Fat mass legs (%) | 13 | 5.8 (1.85) | 5.9 (2.07) | 0.165 | 15 | 5.4 (1.84) | 5.5 (1.69) | 0.506 | 0.2 (0.45) | 0.1 (0.46) | 0.549 |
Fat mass trunk (%) | 13 | 17.1 (3.86) | 16.7 (3.31) | 0.448 | 15 | 14.9 (3.03) | 15.7 (2.61) | 0.061 | −0.4 (1.86) | 0.7 (1.31) | 0.297 |
Total fat mass (%) | 13 | 35.4 (8.05) | 35.2 (7.53) | 0.728 | 15 | 32.1 (6.84) | 32.7 (6.64) | 0.092 | −0.2 (1.91) | 0.6 (1.31) | 0.357 |
Nutritional status | |||||||||||
MNA score | 13 | 23.1 (3.8) | 25.3 (2.2) | 0.010 | 15 | 24.5 (2.1) | 26.2 (1.6) | 0.019 | 2.2 (2.6) | 1.7 (2.5) | 0.512 |
Normal nutritional status (N. %) | 13 | 4(30.8) | 9(69.3) | 0.123 | 15 | 11(73.3) | 14(93.4) | 0.533 | |||
At risk of malnutrition (N. %) | 13 | 8(61.6) | 4(30.8) | 15 | 4(26.7) | 1(6.7) | |||||
Malnourished (N. %) | 13 | 1(7.7) | 0 | 15 | 0 | 0 | |||||
Biomarkers | |||||||||||
Creatinine (mg/dL) | 10 | 1.1 (0.48) | 1.1 (0.37) | 0.664 | 15 | 0.9 (0.35) | 0.9 (0.32) | 0.595 | 0.0 (0.21) | 0.0 (0.14) | 0.438 |
Albumin (g/dL) | 13 | 3.9 (0.39) | 4.1 (0.31) | 0.189 | 15 | 3.9 (0.31) | 4.0 (0.26) | 0.499 | 0.1 (0.22) | 0.0 (0.15) | 0.331 |
Prealbumin (mg/dL) | 12 | 22.2 (6.63) | 20.5 (4.48) | 0.221 | 14 | 23.3 (4.31) | 21.3 (4.17) | 0.019 | −1.6 (4.36) | −1.9 (2.77) | 0.916 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amasene, M.; Besga, A.; Echeverria, I.; Urquiza, M.; Ruiz, J.R.; Rodriguez-Larrad, A.; Aldamiz, M.; Anaut, P.; Irazusta, J.; Labayen, I. Effects of Leucine-Enriched Whey Protein Supplementation on Physical Function in Post-Hospitalized Older Adults Participating in 12-Weeks of Resistance Training Program: A Randomized Controlled Trial. Nutrients 2019, 11, 2337. https://doi.org/10.3390/nu11102337
Amasene M, Besga A, Echeverria I, Urquiza M, Ruiz JR, Rodriguez-Larrad A, Aldamiz M, Anaut P, Irazusta J, Labayen I. Effects of Leucine-Enriched Whey Protein Supplementation on Physical Function in Post-Hospitalized Older Adults Participating in 12-Weeks of Resistance Training Program: A Randomized Controlled Trial. Nutrients. 2019; 11(10):2337. https://doi.org/10.3390/nu11102337
Chicago/Turabian StyleAmasene, Maria, Ariadna Besga, Iñaki Echeverria, Miriam Urquiza, Jonatan R. Ruiz, Ana Rodriguez-Larrad, Mikel Aldamiz, Pilar Anaut, Jon Irazusta, and Idoia Labayen. 2019. "Effects of Leucine-Enriched Whey Protein Supplementation on Physical Function in Post-Hospitalized Older Adults Participating in 12-Weeks of Resistance Training Program: A Randomized Controlled Trial" Nutrients 11, no. 10: 2337. https://doi.org/10.3390/nu11102337
APA StyleAmasene, M., Besga, A., Echeverria, I., Urquiza, M., Ruiz, J. R., Rodriguez-Larrad, A., Aldamiz, M., Anaut, P., Irazusta, J., & Labayen, I. (2019). Effects of Leucine-Enriched Whey Protein Supplementation on Physical Function in Post-Hospitalized Older Adults Participating in 12-Weeks of Resistance Training Program: A Randomized Controlled Trial. Nutrients, 11(10), 2337. https://doi.org/10.3390/nu11102337