Variation in the Protein Composition of Human Milk during Extended Lactation: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Pathophysiology
3.1. Tight Junction Regulation
3.2. Milk Protein Composition
3.3. Suckling Patterns
4. Variation in the Protein Content of Milk: A Comparative Perspective
5. Epidemiological Evidence
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Valentine, C.J.; Morrow, G.; Reisinger, A.; Dingess, K.A.; Morrow, A.L.; Rogers, L.K. Lactational stage of pasteurized human donor milk contributes to nutrient limitations for infants. Nutrients 2017, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, P.E.; Kulski, J.K. Changes in the composition of the mammary secretion of women after abrupt termination of breast feeding. J. Physiol. 1978, 275, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Neville, M.C.; Allen, J.C.; Archer, P.C.; Casey, C.E.; Seacat, J.; Keller, R.P.; Lutes, V.; Rasbach, J.; Neifert, M. Studies in human lactation: Milk volume and nutrient composition during weaning and lactogenesis. Am. J. Clin. Nutr. 1991, 54, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Perrin, M.T.; Fogleman, A.D.; Newburg, D.S.; Allen, J.C. A longitudinal study of human milk composition in the second year postpartum: Implications for human milk banking. Matern. Child. Nutr. 2017, 13, e12239. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B.; Erdmann, P.; Thakkar, S.K.; Sauser, J.; Destaillats, F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: A developmental perspective. J. Nutr. Biochem. 2017, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Kreissl, A.; Zwiauer, V.; Repa, A.; Binder, C.; Thanhaeuser, M.; Jilma, B.; Berger, A.; Haiden, N. Human Milk Analyser shows that the lactation period affects protein levels in preterm breastmilk. Acta. Paediatr. 2016, 105, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Czosnykowska-Lukacka, M. Donor human milk after two years of lactation—Could it improve the macronutrients composition for preterm infants? In Proceedings of the 4th International Congress European Milk Bank Association (EMBA), Glasgow, UK, 5–6 October 2017. [Google Scholar]
- Delgado, C. Lactancia materna por dos o más años y su influencia en el crecimiento y desarrollo infantil: Una revisión sistemática. Cad. Saúde Pública 2013, 29, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Dettwyler, K.A. Breastfeeding and weaning in Mali: Cultural context and hard data. Soc. Sci. Med. 1987, 24, 633–644. [Google Scholar] [CrossRef]
- Jelliffe, D.B.; Jelliffe, E.F. The volume and composition of human milk in poorly nourished communities. A review. Am. J. Clin. Nutr. 1978, 31, 492–515. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.A.; Neville, M.C. Tight junction regulation in the mammary gland. J. Mammary Gland Biol. Neoplasia 1998, 3, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Tsugami, Y.; Matsunaga, K.; Suzuki, T.; Nishimura, T.; Kobayashi, K. Phytoestrogens Weaken the Blood-Milk Barrier in Lactating Mammary Epithelial Cells by Affecting Tight Junctions and Cell Viability. J. Agric. Food. Chem. 2017, 65, 11118–11124. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Tsugami, Y.; Matsunaga, K.; Oyama, S.; Kuki, C.; Kumura, H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrentwith β-casein expression in mammary epithelial cells. Biochim. Biophys. Acta 2016, 1863, 2006–2016. [Google Scholar] [CrossRef] [PubMed]
- Widdows, S.T.; Lowenfeld, M.F.; Bond, M.; Shiskin, C.; Taylor, E.I. A study of the antenatal secretion of the human mammary gland and a comparison between this and the secretion obtained directly after birth. Biochem. J. 1935, 29, 1145–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linzell, J.L.; Peaker, M. Intracellular concentrations of sodium, potassium and chloride in the lactating mammary gland and their relation to the secretory mechanism. J. Physiol. 1971, 216, 683–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garza, C.; Johnson, C.A.; Smith, E.O.; Nichols, B.L. Changes in the nutrient composition of human milk during gradual weaning. Am. J. Clin. Nutr. 1983, 37, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelwgen, K. Effect of Milking Frequency on Mammary Functioning and Shape of the Lactation Curve. J. Dairy Sci. 2001, 84, E204–E211. [Google Scholar] [CrossRef]
- Dallas, D.C.; Murray, N.M.; Gan, J. Proteolytic systems in milk: Perspectives on the evolutionary function within the mammary gland and the infant. J. Mammary Gland Biol. Neoplasia 2015, 20, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Prosser, C.G.; Saint, L.; Hartmann, P.E. Mammary gland function during gradual weaning and early gestation in women. Aust. J. Exp. Biol. Med. Sci. 1984, 62, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Finley, D.A.; Lönnerdal, B. Breast milk volume and composition during late lactation (7–20 months). J. Pediatr. Gastroenterol. Nutr. 1984, 3, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Lascelles, A.K.; Lee, C.S. Involution of the mammary gland. In Lactation, a Comprehensive Treatise; Larson, B.L., Ed.; Academic Press: New York, NY, USA, 1978; Volume 4, pp. 157–158. [Google Scholar]
- Pagan, J.D.; Hintz, H.F. Composition of milk from pony mares fed various levels of digestible energy. Cornell Vet. 1986, 76, 139–148. [Google Scholar] [PubMed]
- Jenness, R. Biosynthesis and composition of milk. J. Investig. Dermatol. 1974, 63, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Konner, M. Hunter-gatherer infancy and childhood: The Kung and others. In Hunter-Gatherer Childhoods: Evolutionary, Developmental and Cultural Perpectives; Hewlett, B.S., Lamb, M.E., Eds.; New Brunswick Transaction Publishers: London, UK, 2005; pp. 19–64. [Google Scholar]
- Barry, H.I.; Paxton, L. Infancy and early childhood: Cross-cultural codes 2. Ethnology 1971, 10, 466–508. [Google Scholar]
- Severn Nelson, E.A.; Schiefenhoevel, W.; Haimerl, F. Child care practices in nonindustrial societies. Pediatrics 2000, 105, 75–79. [Google Scholar] [CrossRef]
- Tacail, T.; Thivichon-Prince, B.; Martin, J.E.; Charles, C.; Viriot, L.; Balter, V. Assessing human weaning practices with calcium isotopes in tooth enamel. Proc. Natl. Acad. Sci. USA 2017, 114, 6268–6273. [Google Scholar] [CrossRef] [PubMed]
- Alston-Mills, B.; Iverson, S.; Thompson, M. A comparison of the composition of milks from Meishan and crossbred pigs. Livestock Prod. Sci. 2000, 63, 85–91. [Google Scholar] [CrossRef]
- Capuco, A.V.; Akers, R.M. The origin and evolution of lactation. J. Biol. 2009, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, J.S. Adaptive features of mammalian reproduction. Evolution 1977, 31, 370–386. [Google Scholar] [CrossRef] [PubMed]
- Hahn, W.H.; Jeong, T.; Park, S.; Song, S.; Kang, N.M. Content fat and calorie of humanmilk is affected by interactions between maternal age and body mass index. J. Matern.-Fetal Neonatal Med. 2018, 31, 1385–1388. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhang, Y.; Ning, Y.; You, L.; Ma, D.; Zheng, Y.; Yang, X.; Li, W.; Wang, J.; Wang, P. Breast milk macronutrient composition and the associated factors in urban Chinese mothers. Chin. Med. J. 2014, 127, 1721–1725. [Google Scholar] [PubMed]
- Rah, J.H.; Christian, P.; Shamim, A.A.; Arju, U.T.; Labrique, A.B.; Rashid, M. Pregnancy and lactation hinder growth and nutritional status of adolescent girls in ruralBangladesh. J. Nutr. 2008, 138, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Hinde, K. Richer milk for sons but more milk for daughters: Sex-biased investment during lactation varies with maternal life history in rhesus macaques. Am. J. Hum. Biol. 2009, 21, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Langer, P. Lactation, weaning period, food quality, and digestive tractdifferentiations in eutheria. Evolution 2003, 57, 1196–1215. [Google Scholar] [CrossRef] [PubMed]
- Buss, D.H. Gross composition and variation of the components of baboon milk during normal lactation. J. Nutr. 1968, 96, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Trott, J.F.; Simpson, K.J.; Moyle, R.L.; Hearn, C.M.; Shaw, G.; Nicholas, K.R.; Renfree, M.B. Maternal regulation of milk composition, milk production, and pouch young development during lactation in the tammar wallaby (Macropus eugenii). Biol. Reprod. 2003, 68, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Beijers, R.J.; Graaf, F.V.; Schaafsma, A.; Siemensma, A.D. Composition of premature breast-milk during lactation: Constant digestible protein content (as in full term milk). Early Hum. Dev. 1992, 29, 351–356. [Google Scholar] [CrossRef]
- Ota, K.; Kimura, M.; Suzuki, J. Lactation in the Japanese monkey (Macaca fuscata): Yield and composition of milk and nipple preference of the young. Primates 1991, 32, 35–48. [Google Scholar] [CrossRef]
- Roberts, S.B.; Cole, T.J.; Coward, W.A. Lactational performance in relation to energy intake in the baboon. Am. J. Clin. Nutr. 1985, 41, 1270–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, V.I.P.; Bracamonte, G.M.P.; Bustamante, L.A.L.; Medina, V.R.M.; Rincón, A.M.S. Milk composition and its relationship with weaning weight in Charolais cattle. Bras. J. Anim. Sci. 2015, 44, 207–212. [Google Scholar]
- Nicholas, K.R.; Hartmann, P.E. Milk secretion in the rat: Progressive changes inmilk composition during lactation and weaning and the effect of diet. Comp. Biochem. Physiol. A Comp. Physiol. 1991, 98, 535–542. [Google Scholar] [CrossRef]
- Piliena, K.; Jonkus, D. Goat Milk Composition Variability after Kid Weaning. Agric. Sci. 2013, 1, 63–67. [Google Scholar]
- Boyce, C.; Watson, M.; Lazidis, G.; Reeve, S.; Dods, K.; Simmer, K.; McLeod, G. Preterm human milk composition: A systematic literature review. Br. J. Nutr. 2016, 116, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 30, 216. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, K.Y.; Rechtman, D.J.; Lee, M.L.; Montoya, A.; Medo, E.T. Macronutrient analysis of a nationwide sample of donor breast milk. J. Am. Diet. Assoc. 2009, 109, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Solien de Gonzales, N.L. Breastfeeding, weaning and acculturation. J. Pediatr. 1963, 62, 577–581. [Google Scholar] [CrossRef]
- Michaelsen, K.F.; Skafte, L.; Badsberg, J.H.; Jørgensen, M. Variation in macronutrients in human bank milk: Influencing factors and implications for human milk banking. J. Pediatr. Gastroenterol. Nutr. 1990, 11, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Gao, M.; Burgher, A.; Zhou, T.H.; Pramuk, K. A nine-country study of the protein content and amino acid composition of mature human milk. Adv. Food Nutr. Res. 2016, 60, 31042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Search terms used to identify studies on milk protein content |
1. human milk AND protein AND content |
2. lactation AND protein AND content |
3. breastfeeding AND protein AND content |
4. human milk AND macronutrients |
5. lactation AND macronutrients |
6. breastfeeding AND macronutrients |
Search terms used to identify factors associated with milk protein content |
(1) AND weaning |
(2) AND weaning |
(3) AND weaning |
(5) AND extended |
(6) AND extended |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verd, S.; Ginovart, G.; Calvo, J.; Ponce-Taylor, J.; Gaya, A. Variation in the Protein Composition of Human Milk during Extended Lactation: A Narrative Review. Nutrients 2018, 10, 1124. https://doi.org/10.3390/nu10081124
Verd S, Ginovart G, Calvo J, Ponce-Taylor J, Gaya A. Variation in the Protein Composition of Human Milk during Extended Lactation: A Narrative Review. Nutrients. 2018; 10(8):1124. https://doi.org/10.3390/nu10081124
Chicago/Turabian StyleVerd, Sergio, Gemma Ginovart, Javier Calvo, Jaume Ponce-Taylor, and Antoni Gaya. 2018. "Variation in the Protein Composition of Human Milk during Extended Lactation: A Narrative Review" Nutrients 10, no. 8: 1124. https://doi.org/10.3390/nu10081124
APA StyleVerd, S., Ginovart, G., Calvo, J., Ponce-Taylor, J., & Gaya, A. (2018). Variation in the Protein Composition of Human Milk during Extended Lactation: A Narrative Review. Nutrients, 10(8), 1124. https://doi.org/10.3390/nu10081124