Modulation of Free Amino Acid Profile in Healthy Humans Administered with Mastiha Terpenes. An Open-Label Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Gas Chromatography-Mass Spectrometry Analysis
2.3. Quantification of Uric Acid in Serum
2.4. Total Serum Oxidisability Assay
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakaya, M.; Xiao, Y.; Zhou, X.; Chang, J.H.; Chang, M.; Cheng, X.; Blonska, M.; Lin, X.; Sun, S.C. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 2014, 40, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Tai, E.S.; Tan, M.L.S.; Stevens, R.D.; Low, Y.L.; Muehlbauer, M.J.; Goh, D.L.M.; Ilkayeva, O.R.; Wenner, B.R.; Bain, J.R.; Lee, J.J.; et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010, 53, 757–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.H.; Crosslin, D.R.; Haynes, C.S.; Nelson, S.; Turer, C.B.; Stevens, R.D.; Muehlbauer, M.J.; Wenner, B.R.; Bain, J.R.; Laferrère, B.; et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2012, 55, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurtz, P.; Soininen, P.; Kangas, A.J.; Ronnemaa, T.; Lehtimaki, T.; Kahonen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013, 36, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Cynober, L.A. Plasma amino acid levels with a note on membrane transport: Characteristics, regulation, and metabolic significance. Nutrition 2002, 18, 761–766. [Google Scholar] [CrossRef]
- Lima, P.S.; Lucchese, A.M.; Araújo-Filho, H.G.; Menezes, P.P.; Araújo, A.A.; Quintans-Júnior, L.J.; Quintans, J.S. Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approaches. Carbohydr. Polym. 2016, 151, 965–987. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Aguilar, S.; Ruiz-Posadas, L.D.M.; Cadena-Iñiguez, J.; Soto-Hernández, M.; Santiago-Osorio, E.; Aguiñiga-Sánchez, I.; Rivera-Martínez, A.R.; Aguirre-Medina, J.F. Sechium edule (Jacq.) Swartz, a new cultivar with antiproliferative potential in a human cervical cancer HeLa cell line. Nutrients 2017, 9, 798. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monroy, M.B.; Jacobo-Herrera, N.J.; Zentella-Dehesa, A.; Hernández-Téllez, B.; Martínez-Vázquez, M. Masticadienonic and 3α-OH masticadienoic acids induce apoptosis and inhibit cell proliferation and tumor growth in prostate cancer xenografts in vivo. Molecules 2017, 22, 1479. [Google Scholar] [CrossRef] [PubMed]
- Paraschos, S.; Magiatis, P.; Mitakou, S.; Petraki, K.; Kalliaropoulos, A.; Maragkoudakis, P.; Mentis, A.; Sgouras, D.; Skaltsounis, A.L. In vitro and in vivo activities of Chios mastic gum extracts and constituents against Helicobacter pylori. Antimicrob. Agents Chemother. 2007, 51, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Assimopoulou, A.N.; Papageorgiou, V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. Chia. Biomed. Chromatogr. 2005, 19, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Kaliora, A.C.; Mylona, A.; Chiou, A.; Petsios, D.G.; Andrikopoulos, N.K. Detection and Identification of Simple Phenolics in Pistacia lentiscus Resin. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 289–300. [Google Scholar] [CrossRef]
- Papada, E.; Gioxari, A.; Brieudes, V.; Amerikanou, C.; Halabalaki, M.; Skaltsounis, A.L.; Smyrnioudis, I.; Kaliora, A.C. Bioavailability of Terpenes and Postprandial Effect on Human Antioxidant Potential. An Open-Label Study in Healthy Subjects. Mol. Nutr. Food Res. 2018, 62, 3. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, N.; Dickman, M.B.; Becker, D.F. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic. Biol. Med. 2008, 44, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guevara-Cruz, M.; Vargas-Morales, J.M.; Méndez-García, A.L.; López-Barradas, A.M.; Granados-Portillo, O.; Ordaz-Nava, G.; Rocha-Viggiano, A.K.; Gutierrez-Leyte, C.A.; Medina-Cerda, E.; Rosado, J.L.; et al. Amino acid profiles of young adults differ by sex, body mass index and insulin resistance. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Pietzner, M.; Kaul, A.; Henning, A.K.; Kastenmüller, G.; Artati, A.; Lerch, M.M.; Adamski, J.; Nauck, M.; Friedrich, N. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals. BMC Med. 2017, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Pasalic, D.; Marinkovic, N.; Feher-Turkovic, L. Uric acid as one of the important factors in multifactorial disorders—Facts and controversies. Biochem. Med. 2012, 22, 63–75. [Google Scholar] [CrossRef]
- Mahbub, M.H.; Yamaguchi, N.; Takahashi, H.; Hase, R.; Ishimaru, Y.; Sunagawa, H.; Amano, H.; Kobayashi-Miura, M.; Kanda, H.; Fujita, Y.; et al. Association of plasma free amino acids with hyperuricemia in relation to diabetes mellitus, dyslipidemia, hypertension and metabolic syndrome. Sci. Rep. 2017, 17616. [Google Scholar] [CrossRef] [PubMed]
- Fläring, U.B.; Hebert, C.; Wernerman, J.; Hammarqvist, F.; Rooyackers, O.E. Circulating and muscle glutathione turnover in human endotoxaemia. Clin. Sci. 2009, 117, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.A.; Pappan, K.; Thompson, P.A.; Want, E.J.; Siskos, A.P.; Keun, H.C.; Wulff, J.; Hu, C.; Lang, J.E.; Chow, H.H. Plasma metabolomic profiles of breast cancer patients after short-term limonene intervention. Cancer Prev. Res. 2015, 8, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Schmedes, M.; Balderas, C.; Aadland, E.K.; Jacques, H.; Lavigne, C.; Graff, I.E.; Eng, Ø.; Holthe, A.; Mellgren, G.; Young, J.F.; et al. The effect of lean-seafood and non-seafood diets on fasting and postprandial serum metabolites and lipid species: Results from a randomized crossover intervention study in healthy adults. Nutrients 2018, 10, 598. [Google Scholar] [CrossRef] [PubMed]
- Vuorinen, A.; Seibert, J.; Papageorgiou, V.P.; Rollinger, J.M.; Odermatt, A.; Schuster, D.; Assimopoulou, A.N. Pistacia lentiscus oleoresin: Virtual screening and identification of masticadienonic and isomasticadienonic acids as inhibitors of 11β-hydroxysteroid dehydrogenase 1. Planta Med. 2015, 81, 525–532. [Google Scholar] [CrossRef] [PubMed]
Anthropometrics | |
---|---|
BMI (kg/m2) | 24.8 ± 0.7 |
Body fat (%) | 17.7 ± 1.5 |
Total Body Water (%) | 57.8 ± 1.2 |
Muscle mass (kg) | 61.5 ± 1.0 |
Bone mass (kg) | 3.2 ± 0.1 |
Biochemical profile | |
Glucose (mg/dL) | 94.4 ± 2.9 |
Urea (mg/dL) | 36.4 ± 1.8 |
Creatinine (mg/dL) | 1.0 ± 0.0 |
Total Cholesterol (mg/dl) | 184.8 ± 9.4 |
Triglycerides (mg/dL) | 93.2 ± 14.6 |
High-Density Lipoprotein (mg/dL) | 52.3 ± 3.2 |
Low-Density Lipoprotein (mg/dL) | 113.9 ± 8.0 |
Total Cholesterol/High-Density Lipoprotein ratio | 3.7 ± 0.3 |
Amino Acid | C0 | C1/2 | C1 | C2 | C4 | C6 | P |
---|---|---|---|---|---|---|---|
Alanine | 283.5 ± 79.4 | 271.1 ± 83.6 | 266.9 ± 75.8 | 271.2 ± 62.0 | 253.4 ± 64.3 | 248.4 ± 69.6 | NS |
Glycine | 205.9 ± 24.0 | 206.6 ± 26.9 | 205.0 ± 29.3 | 212.6 ± 30.1 | 213.7 ± 34.1 | 198.2 ± 56.0 | NS |
α-Aminobutyric acid | 25.2 ± 7.7 | 25.4 ± 7.6 | 25.9 ± 8.1 | 26.7 ± 8.0 | 25.6 ± 8.2 | 26.4 ± 8.0 | NS |
Valine | 409.3 ± 65.7 1 | 389.6 ± 57.2 | 379.5 ± 59.1 | 380.9 ± 42.9 | 354.8 ± 55.1 1 | 344.3 ± 55.8 | 1p = 0.014 |
β-Aminobutyric acid | 99.46 ± 3.2 | 98.9 ± 3.1 | 98.4 ± 2.7 | 97.7 ± 2.2 | 98.8 ± 2.5 | 99.0 ± 3.6 | NS |
Leucine | 148.7 ± 26.9 | 140.8 ± 17.9 | 135.0 ± 15.3 | 136.6 ± 12.7 | 140.6 ± 13.4 | 141.9 ± 16.8 | NS |
Allo-isoleucine | 63.6 ± 15.9 | 59.1 ± 11.6 | 55.3 ± 8.9 | 56.0 ± 7.0 | 55.2 ± 8.4 | 53.9 ± 9.7 | NS |
Isoleucine | 74.2 ± 18.2 | 69.0 ± 13.3 | 64.4 ± 10.4 | 65.6 ± 8.4 | 64.6 ± 9.6 | 63.2 ± 11.1 | NS |
Threonine | 124.4 ± 24.1 | 130.4 ± 26.7 | 126.9 ± 34.3 | 122.3 ± 30.4 | 124.8 ± 20.6 | 117.0 ± 25.5 | NS |
Serine | 111.8 ± 20.8 | 113.7 ± 22.0 | 115.8 ± 26.2 | 110.1 ± 17.4 | 112.6 ± 18.4 | 106.9 ± 33.5 | NS |
Proline | 238.9 ± 115.6 2 | 238.1 ± 102.8 | 233.4 ± 113.4 3 | 229.3 ± 99.1 4 | 218.0 ± 109.5 3 | 194.9 ± 102.7 2,4 | 2p = 0.0283; 3 p = 0.036; 4 p = 0.040 |
Asparagine | 47.7 ± 12.4 | 48.8 ± 12.4 | 48.2 ± 11.8 | 47.6 ± 10.4 | 50.2 ± 12.1 | 48.0 ± 10.9 | NS |
Aspartic acid | 14.3 ± 7.4 | 13.7 ± 6.4 | 13.4 ± 7.5 | 14.3 ± 8.5 | 14.4 ± 9.2 | 14.3 ± 6.5 | NS |
Methionine | 23.3 ± 7.6 | 23.7 ± 6.1 | 22.6 ± 5.2 | 22.7 ± 4.3 | 23.9 ± 4.7 | 21.7 ± 5.4 | NS |
Hydroxyproline | 16.7 ± 3.9 | 17.5 ± 4.1 | 17.2 ± 4.6 | 16.5 ± 3.3 | 16.2 ± 3.2 | 15.5 ± 2.6 | NS |
Glutamic acid | 26.9 ± 21.6 | 23.3 ± 15.6 | 23.1 ± 21.9 | 12.2 ± 9.1 | 13.3 ± 10.9 | 9.1 ± 6.8 | NS |
Phenylalanine | 66.2 ± 11.7 | 65.4 ± 8.4 | 62.4 ± 10.6 | 62.0 ± 7.5 | 67.2 ± 14.7 | 63.4 ± 8.1 | NS |
Glutamine | 352.8±96.0 | 351.5 ± 81.2 | 356.1 ± 86.1 | 373.0 ± 118.6 | 326.4 ± 94.9 | 334.0 ± 114.2 | NS |
Ornithine | 54.2 ± 12.0 5 | 50.9 ± 10.4 | 49.8 ± 11.1 | 45.8 ± 9.6 5 | 47.9 ± 10.9 | 47.1 ± 8.8 | 5p = 0.043 |
Lysine | 169.6 ± 48.5 | 164.6 ± 42.0 | 166.3 ± 52.8 | 160.6 ± 57.2 | 173.9 ± 44.4 | 172.7 ± 40.0 | NS |
Histidine | 77.9 ± 18.1 | 76.6 ± 21.9 | 80.3 ± 22.2 | 77.6 ± 26.2 | 78.8 ± 22.3 | 76.1 ± 18.9 | NS |
Tyrosine | 61.5 ± 21.7 | 60.7 ± 18.3 | 55.5 ± 16.7 | 52.2 ± 14.1 | 52.4 ± 12.2 | 48.2 ± 9.7 | NS |
Tryptophane | 67.6 ± 13.5 | 67.3 ± 11.1 | 64.2 ± 15.1 | 60.9 ± 12.2 | 61.4 ± 12.1 | 59.5 ± 11.4 | NS |
Cysteine | 30.0 ± 3.4 | 31.1 ± 2.8 | 31.7 ± 2.9 | 32.1 ± 5.6 | 30.1 ± 1.6 | 30.4 ± 3.4 | NS |
Time Points (h) | C (mg/dL) |
---|---|
T0 | 3.6 ± 0.9 |
T1/2 | 3.4 ± 0.8 |
T1 | 3.7 ± 1.1 |
T2 | 4.3 ± 2.1 |
T4 | 3.6 ± 0.7 |
T6 | 3.5 ± 0.8 |
T24 | 3.5 ± 0.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papada, E.; Torović, L.; Amerikanou, C.; Kalogeropoulos, N.; Smyrnioudis, I.; Kaliora, A.C. Modulation of Free Amino Acid Profile in Healthy Humans Administered with Mastiha Terpenes. An Open-Label Trial. Nutrients 2018, 10, 715. https://doi.org/10.3390/nu10060715
Papada E, Torović L, Amerikanou C, Kalogeropoulos N, Smyrnioudis I, Kaliora AC. Modulation of Free Amino Acid Profile in Healthy Humans Administered with Mastiha Terpenes. An Open-Label Trial. Nutrients. 2018; 10(6):715. https://doi.org/10.3390/nu10060715
Chicago/Turabian StylePapada, Efstathia, Ljilja Torović, Charalampia Amerikanou, Nikolaos Kalogeropoulos, Ilias Smyrnioudis, and Andriana C. Kaliora. 2018. "Modulation of Free Amino Acid Profile in Healthy Humans Administered with Mastiha Terpenes. An Open-Label Trial" Nutrients 10, no. 6: 715. https://doi.org/10.3390/nu10060715
APA StylePapada, E., Torović, L., Amerikanou, C., Kalogeropoulos, N., Smyrnioudis, I., & Kaliora, A. C. (2018). Modulation of Free Amino Acid Profile in Healthy Humans Administered with Mastiha Terpenes. An Open-Label Trial. Nutrients, 10(6), 715. https://doi.org/10.3390/nu10060715