The Macular Carotenoids are Associated with Cognitive Function in Preadolescent Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Macular Pigment Optical Density (MPOD)
2.2.2. Cognitive Testing
2.3. Statistical Analyses
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Ozawa, Y.; Sasaki, M.; Takahashi, N.; Kamoshita, M.; Miyake, S.; Tsubota, K. Neuroprotective Effects of Lutein in the Retina. Curr. Pharm. Des. 2012, 18, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B. Lutein’s Influence on Neural Processing Speed. In Proceedings of the 114th Abbott Nutrition Research Conference, Cognition and Nutrition, Columbus, OH, USA, 8–9 April 2013; pp. 1–6. [Google Scholar]
- Jia, Y.P.; Sun, L.; Yu, H.S.; Liang, L.P.; Li, W.; Ding, H.; Song, X.B.; Zhang, L.J. The pharmacological effects of lutein and zeaxanthin on visual disorders and cognition diseases. Molecules 2017, 22, 610. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.M.; Khan, N.A.; Walk, A.M.; Raine, L.B.; Moulton, C.; Cohen, N.J.; Kramer, A.F.; Hammond, B.R.; Renzi-Hammond, L.; Hillman, C.H. Macular pigment optical density is positively associated with academic performance among preadolescent children. Nutr. Neurosci. 2017, 8305, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Walk, A.M.; Khan, N.A.; Barnett, S.M.; Raine, L.B.; Kramer, A.F.; Cohen, N.J.; Moulton, C.J.; Renzi-Hammond, L.M.; Hammond, B.R.; Hillman, C.H. From neuro-pigments to neural efficiency: The relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood. Int. J. Psychophysiol. 2017, 118, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hassevoort, K.M.; Khazoum, S.E.; Walker, J.A.; Barnett, S.M.; Raine, L.B.; Hammond, B.R.; Renzi-Hammond, L.M.; Kramer, A.F.; Khan, N.A.; Hillman, C.H.; et al. Macular Carotenoids, Aerobic Fitness, and Central Adiposity Are Associated Differentially with Hippocampal-Dependent Relational Memory in Preadolescent Children. J. Pediatr. 2017, 183, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B.R. The Dietary Carotenoids Lutein and Zeaxanthin in Pre-and-Postnatal Development. Funct. Food Rev. 2012, 4, 130–137. [Google Scholar] [CrossRef]
- Vishwanathan, R.; Kuchan, M.J.; Sen, S.; Johnson, E.J. Lutein and preterm infants with decreased concentrations of brain carotenoids. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J.; Vishwanathan, R.; Johnson, M.A.; Hausman, D.B.; Davey, A.; Scott, T.M.; Green, R.C.; Miller, L.S.; Gearing, M.; Woodard, J.; et al. Relationship between serum and brain carotenoids, α-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia centenarian study. J. Aging Res. 2013, 2013, 951786. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B.R. Possible role for dietary lutein and zeaxanthin in visual development. Nutr. Rev. 2008, 66, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr. Rev. 2014, 72, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Holt, E.M.; Steffen, L.M.; Moran, A.; Basu, S.; Steinberger, J.; Ross, J.A.; Hong, C.P.; Sinaiko, A.R. Fruit and Vegetable Consumption and Its Relation to Markers of Inflammation and Oxidative Stress in Adolescents. J. Am. Diet. Assoc. 2009, 109, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J.; Maras, J.E.; Rasmussen, H.M.; Tucker, K.L. Intake of Lutein and Zeaxanthin Differ with Age, Sex, and Ethnicity. J. Am. Diet. Assoc. 2010, 110, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Sies, H. Effects of carotenoids and retinoids on gap junctional communication. BioFactors 2001, 15, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B.R.; Wooten, B.R. CFF thresholds: Relation to macular pigment optical density. Ophthalmic Physiol. Opt. 2005, 25, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Renzi, L.M.; Hammond, B.R. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthalmic Physiol. Opt. 2010, 30, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Bovier, E.R.; Renzi, L.M.; Hammond, B.R. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on neural processing speed and efficiency. PLoS ONE 2014, 9, e108178. [Google Scholar] [CrossRef] [PubMed]
- Bovier, E.R.; Hammond, B.R. A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects. Arch. Biochem. Biophys. 2015, 572, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.; McDonald, K.; Caldarella, S.; Chung, H.-Y.; Troen, A.; Snodderly, D. Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr. Neurosci. 2008, 11, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Feeney, J.; Finucane, C.; Savva, G.M.; Cronin, H.; Beatty, S.; Nolan, J.M.; Kenny, R.A. Low macular pigment optical density is associated with lower cognitive performance in a large, population-based sample of older adults. Neurobiol. Aging 2013, 34, 2449–2456. [Google Scholar] [CrossRef] [PubMed]
- Walk, A.M.; Edwards, C.G.; Baumgartner, N.W.; Curran, M.R.; Covello, A.R.; Reeser, G.E.; Hammond, B.R.; Renzi, L.M.; Khan, N.A. The Role of Retinal Carotenoids and Age on Neuroelectric Indices of Attentional Control among early to middle-aged adults. Front. Aging Neurosci. 2017, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B.R.; Stephen Miller, L.; Bello, M.O.; Lindbergh, C.A.; Mewborn, C.; Renzi-Hammond, L.M. Effects of lutein/zeaxanthin supplementation on the cognitive function of community dwelling older adults: A randomized, double-masked, placebo-controlled trial. Front. Aging Neurosci. 2017, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Coen, R.F.; Akuffo, K.O.; Beatty, S.; Dennison, J.; Moran, R.; Stack, J.; Howard, A.N.; Mulcahy, R.; Nolan, J.M. Cognitive function and its relationship with macular pigment optical density and serum concentrations of its constituent carotenoids. J. Alzheimer’s Dis. 2015, 48, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Lindbergh, C.A.; Mewborn, C.M.; Hammond, B.R.; Renzi-Hammond, L.M.; Curran-Celentano, J.M.; Miller, L.S. Relationship of lutein and zeaxanthin levels to neurocognitive functioning: An fMRI study of older adults. J. Int. Neuropsychol. Soc. 2016, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, C.L.; Sheppard, K.W. Synergistic effects of human milk nutrients in the support of infant recognition memory: An observational study. Nutrients 2015, 7, 9079–9095. [Google Scholar] [CrossRef] [PubMed]
- Renzi, L.M.; Dengler, M.J.; Puente, A.; Miller, L.S.; Hammond, B.R. Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol. Aging 2014, 35, 1695–1699. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, R.W.; McGrew, K.S.; Mather, N. Woodcock-Johnson III Tests of Cognitive Abilities; Riverside: Rolling Meadows, IL, USA, 2001. [Google Scholar]
- Wooten, B.R.; Hammond, B.R.; Land, R.I.; Snodderly, D.M. A practical method for measuring macular pigment optical density. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2481–2489. [Google Scholar]
- McCorkle, S.; Raine, L.; Hammond, B.; Renzi-Hammond, L.; Hillman, C.; Khan, N. Reliability of heterochromatic flicker photometry in measuring macular pigment optical density among preadolescent children. Foods 2015, 4, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Mather, N.; Woodcock, R.W. Examiner’s Manual: Woodcock-Johnson III Tests of Cognitive Abilities; Riverside: Rolling Meadows, IL, USA, 2001. [Google Scholar]
- Rose, S.; Feldman, J.; Jankowski, J.; Van Rossem, R. Basic information processing abilities at 11years account for deficits in IQ associated with preterm birth. Intelligence 2011, 39, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Feldman, J.; Jankowski, J. Implications of infant cognition for executive functions at age 11. Psychol. Sci. 2012, 23, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, R.; Neuringer, M.; Snodderly, D.M.; Schalch, W.; Johnson, E.J. Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates. Nutr. Neurosci. 2013, 16, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Mishkin, M.; Weiskrantz, L. Effects of cortical lesions in monkeys on critical flicker frequency. J. Comp. Physiol. Psychol. 1959, 52, 660. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.J.; Rossen, L.M.; Harris, D.M.; Ogden, C.L. Fruit and Vegetable Consumption of U.S. Youth, 2009–2010; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2014.
- Produce for Better Health Foundation. State of the Plate, 2015 Study on America’s Consumption of Fruit and Vegetables. 2015. Available online: http://www.pbhfoundation.org (accessed on 5 December 2017).
N (%) | |
---|---|
Age (years) | |
7 | 16 (31.4) |
8 | 5 (9.8) |
9 | 9 (17.6) |
10 | 6 (11.8) |
11 | 8 (15.7) |
12 | 6 (11.8) |
13 | 1 (2.0) |
Sex | |
Male | 26 (51.0) |
Female | 25 (49.0) |
Race | |
White (Non-Hispanic) | 39 (76.5) |
Hispanic | 1 (2.0) |
>1 Race Listed | 11 (21.6) |
Parent Highest Education | |
High School or less | 3 (5.9) |
College Degree (AS, BS, BA) | 18 (35.3) |
Graduate Degree | 28 (54.9) |
Mean | SD | Range | N | |
---|---|---|---|---|
MPOD | 0.476 | 0.167 | 0.190–0.820 | 51 |
Cognitive Measures (All Standard Scores) | ||||
WJ-III Composite Scores | ||||
Brief Intellectual Ability (BIA) | 110.10 | 13.012 | 81–137 | 49 |
Verbal Ability | 112.41 | 12.420 | 89–144 | 51 |
Cognitive Efficiency | 104.02 | 15.909 | 65–132 | 51 |
Processing Speed | 100.10 | 17.258 | 75–151 | 51 |
Executive Processes | 107.69 | 10.453 | 76–131 | 49 |
Select WJ-III Subtests | ||||
Visual-Auditory Learning | 100.84 | 13.249 | 75–132 | 51 |
Spatial Relations | 108.48 | 13.526 | 72–132 | 50 |
BIA | Verbal Ability | Cognitive Efficiency | Processing Speed | Executive Processes | |
---|---|---|---|---|---|
MPOD | 0.268 * (N = 49) | 0.159 (N = 51) | 0.206 † (N = 51) | 0.099 (N = 51) | 0.288 * (N = 49) |
Spatial Relations | Visual-Auditory Learning | |
---|---|---|
MPOD | 0.299 * (N = 50) | 0.236 † (N = 51) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saint, S.E.; Renzi-Hammond, L.M.; Khan, N.A.; Hillman, C.H.; Frick, J.E.; Hammond, B.R. The Macular Carotenoids are Associated with Cognitive Function in Preadolescent Children. Nutrients 2018, 10, 193. https://doi.org/10.3390/nu10020193
Saint SE, Renzi-Hammond LM, Khan NA, Hillman CH, Frick JE, Hammond BR. The Macular Carotenoids are Associated with Cognitive Function in Preadolescent Children. Nutrients. 2018; 10(2):193. https://doi.org/10.3390/nu10020193
Chicago/Turabian StyleSaint, Sarah E., Lisa M. Renzi-Hammond, Naiman A. Khan, Charles H. Hillman, Janet E. Frick, and Billy R. Hammond. 2018. "The Macular Carotenoids are Associated with Cognitive Function in Preadolescent Children" Nutrients 10, no. 2: 193. https://doi.org/10.3390/nu10020193
APA StyleSaint, S. E., Renzi-Hammond, L. M., Khan, N. A., Hillman, C. H., Frick, J. E., & Hammond, B. R. (2018). The Macular Carotenoids are Associated with Cognitive Function in Preadolescent Children. Nutrients, 10(2), 193. https://doi.org/10.3390/nu10020193