Three-Year Chronic Consumption of Low-Carbohydrate Diet Impairs Exercise Performance and Has a Small Unfavorable Effect on Lipid Profile in Middle-Aged Men
Abstract
:1. Introduction
2. Material and methods
2.1. Participants
2.2. Experimental Design
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Participants
4.2. Composition of the Used Diet and Ketogenesis
4.3. Exercise Capacity and Fat Metabolism
4.4. Plasma Lipid Profile
4.5. Carbohydrate Metabolism, Insulin Sensitivity and Glucose Tolerance
4.6. Circulatory System
4.7. LCD Impact on Body Mass
4.8. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kwaśniewski, J.; Chyliński, M. Homo Optimus; WGP: Warsaw, Poland, 2000. [Google Scholar]
- USDA, USDHHS. 2015–2020 Dietary Guidelines for Americans, 8th ed.; U.S. Government Printing Office, 2015. Available online: https://www.cnpp.usda.gov/2015-2020-dietary-guidelines-amaricans (accessed on 30 November 2018).
- Frigolet, M.; Ramos Barragán, V.; Tamez, G.M. Low-carbohydrate diets: A matter of love or hate. Ann. Nutr. Metab. 2011, 58, 320–334. [Google Scholar] [CrossRef] [PubMed]
- Lara-Castro, C.; Garvey, W. Diet, insulin resistance, and obesity: Zoning in on data for Atkins dieters living in South Beach. J. Clin. Endocrinol. MeTable 2004, 89, 4197–4205. [Google Scholar] [CrossRef] [PubMed]
- Westman, E.; Feinman, R.; Mavropoulos, J.; Vernon, M.; Volek, J.; Wortman, J.; Yancy, W.S.; Phinney, S.D. Low-carbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 2007, 86, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoli, A. Ketogenic diet for obesity: Friend or foe? Int. J. Environ. Res. Public Health. 2014, 11, 2092–2107. [Google Scholar] [CrossRef] [PubMed]
- Grieb, P.; Kłapcińska, B.; Smol, E.; Pilis, T.; Pilis, W.; Sadowska-Krępa, E.; Sobczak, A.; Bartoszewicz, Z.; Nauman, J.; Stańczak, K.; et al. Long-term consumption of a carbohydrate-restricted diet does not induce deleterious metabolic effects. Nutr. Res. 2008, 28, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Atkins, R.C. Dr. Atkins’ New Diet Revolution, 3rd ed.; Vermillion: London, UK, 2003. [Google Scholar]
- Feinman, R.D.; Volek, J.S. Low carbohydrate diets improve atherogenic dyslipidemia even in the absence of weight loss. Nutr. Metab. (Lond.) 2006, 3, 24. [Google Scholar] [CrossRef]
- Nordmann, A.J.; Nordmann, A.; Briel, M.; Keller, U.; Yancy, W.S., Jr.; Brehm, B.J.; Bucher, H.C. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: A meta-analysis of randomized controlled trials. Arch. Intern. Med. 2006, 166, 285–293. [Google Scholar] [CrossRef]
- Wood, R.J.; Volek, J.S.; Davis, S.R.; Dell’Ova, C.; Luz Fernandez, M. Effects of a carbohydrate-restricted diet on emerging plasma markers for cardiovascular disease. Nutr. Metab. (Lond.) 2006, 3, 19. [Google Scholar] [CrossRef]
- Hall, K.; Chen, K.; Guo, J.; Lam, Y.; Leibel, R.; Mayer, L.; Reitman, M.L.; Rosenbaum, M.; Smith, S.R.; Walsh, B.T.; et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 2016, 104, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Stimson, R.; Johnstone, A.; Homer, N.; Wake, D.; Morton, N.; Andrew, R.; Lobley, G.E.; Walker, B.R. Dietary macronutrient content alters cortisol metabolism independently of body weight changes in obese men. J. Clin. Endocrinol. MeTable 2007, 92, 4480–4484. [Google Scholar] [CrossRef]
- Soenen, S.; Bonomi, A.; Lemmens, S.; Scholte, J.; Thijssen, M.; van Berkum, F.; Westerterp-Plantenga, M.S. Relatively high-protein or ‘low-carb’ energy-restricted diets for body weight loss and body weight maintenance? Physiol. Behav. 2012, 107, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Urbain, P.; Strom, L.; Morawski, L.; Wehrle, A.; Deibert, P.; Bertz, H. Impact of a 6-week non-energy-restricted ketogenic diet on physical fitness, body composition and biochemical parameters in healthy adults. Nutr. Metab. (Lond.) 2017, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, A.; Horgan, G.; Murison, S.; Bremner, D.; Lobley, G. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am. J. Clin. Nutr. 2008, 87, 44–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumithran, P.; Prendergast, L.; Delbridge, E.; Purcell, K.; Shulkes, A.; Kriketos, A.; Proietto, J. Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur. J. Clin. Nutr. 2013, 67, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Dashti, H.M.; AL-Zaid, N.S.; Mathew, T.C.; Al-Mousawi, M.; Talib, H.; Asfar, S.K.; Behbahani, A.I. Long-term effects of ketogenic diet in obese subjects with high cholesterol level. Mol. Cell. Biochem. 2006, 286, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.V.; Joensson, E. Low-carbohydrate diet in 2 type diabetes. Stable improvement of body weight and glycemic control Turing 22 months follow-up. Nutr. Metab. (Lond.) 2006, 3, 22. [Google Scholar] [CrossRef]
- Burke, L.; Ross, M.; Garvican-Lewis, L.; Welvaert, M.; Heikura, I.; Forbes, S.; Mirtschin, J.G.; Cato, L.E.; Strobel, N.; Sharma, A.P.; et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 2017, 595, 2785–2807. [Google Scholar] [CrossRef]
- Cipryan, L.; Plews, D.J.; Ferretti, A.; Maffetone, P.B.; Laursen, P.B. Effects of a 4-Week Very Low-Carbohydrate Diet on High-Intensity Interval Training Responses. J. Sports Sci. Med. 2018, 17, 259–268. [Google Scholar]
- Leckey, J.J.; Hoffman, N.J.; Parr, E.B.; Devlin, B.L.; Trewin, A.J.; Stepto, N.K.; Morton, J.P.; Burke, L.M. High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans. FASEB J. 2018, 32, 2979–2991. [Google Scholar] [CrossRef] [Green Version]
- Burke, L. Re-examining high-fat diets for sports performance: Did we call the ‘nail in the coffin’ too soon? Sports Med. 2015, 45 (Suppl. 1), 33–49. [Google Scholar] [CrossRef]
- Havemann, L.; West, S.; Goedecke, J.; Macdonald, I.; St Clair Gibson, A.; Noakes, T.; Lambert, E.V. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J. Appl. Physiol. 2006, 100, 194–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preperative ultracentrifuge. Clin. Chem. 1972, 18, 499–505. [Google Scholar] [PubMed]
- Wallace, T.M.; Matthews, D.R. The Assessment of insulin resistance in Man. Diabed. Med. 2002, 19, 527–534. [Google Scholar] [CrossRef]
- National Research Council Recommended Dietary Allowances. Subcommittee on the Tenth Edition of the RDAs Food and Nutrition Board, Commission on Life Sciences, 10th ed.; National Academy Press: Washington, DC, USA, 1989. [Google Scholar]
- Harvey, C.J.D.C.; Schofield, G.M.; Williden, M. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: A narrative review. Peer. J. 2018, 6, e4488. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.J.; LeBlanc, P.J. Metabolic aspects of low-carbohydrate diets and exercise. Nutr. MeTable 2004, 1, 7. [Google Scholar]
- Veech, R.L. The therapeutic implications of ketone bodies: The effect of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fatty Acids. 2004, 70, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.W.; Lin, S.Y.; Kuo, C.C.; Huang, C.C. Serum uric acid and progression of kidney disease: A longitudinal analysis mini-review. PLoS ONE 2017, 12, e0170393. [Google Scholar] [CrossRef] [PubMed]
- Langfort, J.; Pilis, W.; Zarzeczny, R.; Kociuba-Uściłko, H.; Nazar, K. Effect of low carbohydrate diet on anaerobic power. J. Physiol. Pharmacol. 1996, 3, 22–26. [Google Scholar]
- Zinker, B.A.; Britz, K.; Brooks, G.A. Effect of a 36-hour fast on human endurance and substrate utilization. J. Appl. Physiol. 1990, 69, 1849–1855. [Google Scholar] [CrossRef]
- Vinay, P.; Cardoso, M.; Tejedor, A.; Prud Homme, M.; Leville, M.; Vinet, B.; Courteau, M.; Gougoux, A.; Rengel, M.; Lapierre, L. Acetate metabolism during hemodialysis: Metabolic considerations. Am. J. Nephrol. 1987, 7, 337–354. [Google Scholar] [CrossRef]
- Lavoie, J.M.; Fillion, Y.; Couturier, K.; Corriveau, P. Evidence that the decrease liver glycogen is associated with the exercise-induced uncrease in IGFBP-1. J. Appl. Physiol. 2002, 93, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Kashiwaya, Y.; Keon, C.A.; Tsuchiga, N.; King, M.T.; Rada, G.K.; Chance, B.; Clarck, K. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 1995, 9, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.A.; Felippe, L.C.; Silva, R.L.S.; Bertuzzi, R.; De Oliveira, F.R.; Pires, F.O.; Lima-Silva, A.E. Effect of pre-exercise carbohydrate availability on fat oxidation and energy expenditure after a high-intensity exercise. Braz. J. Med. Biol. Res. 2018, 51, e6964. [Google Scholar] [CrossRef] [PubMed]
- Langfort, J.; Zarzeczny, R.; Pilis, W.; Nazar, K.; Kaciuba-Uścitko, H. The effect of a low-carbohydrate diet on performance, hormonal and metabolic responses to a 30-s bout of supramaximal exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.A.; Leckey, J.J. Carbohydrate dependence Turing prolonged, intense endurance exercise. Sports Med. 2015, 45, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Iwayama, K.; Kawabuchi, R.; Park, I.; Kurihara, R.; Kobayashi, M.; Hibi, M.; Oishi, S.; Yasunaga, K.; Ogata, H.; Nabekura, Y.; et al. Transient energy induced by exercise increases 24-h FAT oxidation in Young trained men. J. Appl. Physiol. 2014, 118, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Iwayama, K.; Kawabuchi, R.; Nabekura, Y.; Kurihara, R.; Park, I.; Kobayashi, M.; Ogata, H.; Kayaba, M.; Omi, N.; Satoh, M.; et al. Exercise before breakfast increases 24-h fat oxidation in female subjects. PLoS ONE 2017, 12, e0180472. [Google Scholar] [CrossRef] [PubMed]
- Langfort, J.; Ploug, T.; Ihlemann, J.; Holm, C.; Galbo, H. Stimulation of hormone—Sensitive lipase activity by contractions in rat skeletal muscle. Biochem. J. 2000, 351, 207–214. [Google Scholar] [CrossRef]
- Storlien, L.H.; Jenkins, A.B.; Chisholm, D.J.; Pascoe, W.S.; Khouri, S.; Kraegen, E.W. Influence of dietary fat composition on development of insulin resistance in rats: relationship to muscle triglyceride and ω-3 fatty acids in muscle phospholipid. Diabetes 1990, 40, 280–289. [Google Scholar] [CrossRef]
- Yoshida, T.; Takanishi, T.; Nakai, S.; Yorimoto, A.; Morimoto, T. The critical level of water deficit causing a decrease in human exercise performance: A practical field study. Eur. J. Appl. Physiol. 2002, 87, 529–534. [Google Scholar] [CrossRef]
- Horowitz, J.F.; Klein, S. Lipid metabolism during endurance exercise. Am. J. Clin. Nutr. 2000, 72, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Helge, J.W.; Watt, P.W.; Richter, E.A.; Rennie, M.J.; Kiens, B. Fat utilization during exercise: Adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. J. Physiol. 2001, 537, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Noakes, M.; Foster, P.R.; Keogh, J.B.; James, A.P.; Mamo, J.C.; Clifton, P.M. Comparision of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr. Metab. (Lond.) 2006, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Volek, J.S.; Forsythe, C.E. The case for not restricting saturated fat on a low carbohydrate diet. Nutr. Metab. (Lond.) 2005, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL, cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Natarajan, S.; Glick, H.; Criqui, M.; Horowitz, D.; Lipsitz, S.R.; Kinosian, B. Cholesterol measures to identify and treat individuals at risk for coronary heart disease. Am. J. Prev. Med. 2003, 25, 50–57. [Google Scholar] [CrossRef]
- Volek, J.S.; Feinman, R.D. Carbohydrate restriction improves the features of metabolic syndrome. Metabolic syndrome may be defined by the response to carbohydrate restriction. Nutr. Metab. (Lond.) 2005, 2, 31. [Google Scholar] [CrossRef]
- Freedman, M.R.; King, J.; Kennedy, E. Popular diets: A scientific review. Obes. Res. 2001, 9, 1–40. [Google Scholar] [CrossRef]
- Forsythe, C.E.; Phinney, S.D.; Fernandez, M.L.; Quann, E.E.; Wood, R.J.; Bibus, D.M.; Kraemer, W.J.; Feinman, R.D.; Volek, J.S. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids 2008, 43, 65–77. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Bell, D.S. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am. J. Cardiol. 2007, 100, 899–904. [Google Scholar] [CrossRef]
- Wei-Chuan, T.; Yi-Heng, L.; Chih-Chan, L.; Ting-Hsing, C.; Jyh-Hong, C. Effects of oxidative stress on endothelial function after a high-fat meal. Clin. Sci. 2004, 106, 315–319. [Google Scholar]
- Ceriello, A.; Taboga, C.; Tonutti, L.; Quagliaro, L.; Piconi, L.; Bais, B.; Da Ros, R.; Motz, E. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation. Circulation 2002, 106, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Tyldum, G.A.; Schjerve, I.E.; Tjønna, A.E.; Kirkeby-Garstad, I.; Stølen, T.O.; Richardson, R.S.; Wisløff, U. Endothelial dysfunction induced by post-prandial lipemia: Complete protection afforded by high-intensity aerobic interval exercise. J. Am. Coll. Cardiol. 2009, 53, 200–206. [Google Scholar] [CrossRef]
- Volek, J.S.; Phinney, S.D.; Forsythe, C.E.; Quann, E.E.; Wood, R.J.; Puglisi, M.J.; Kraemer, W.J.; Bibus, D.M.; Fernandez, M.L.; Feinman, R.D. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 2009, 44, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Accurso, A.; Berstein, R.K.; Dsahlqvist, A.; Draznin, B.; Feinman, R.D.; Fine, E.J.; Gleed, A.; Jacobs, D.B.; Larson, G.; Lusting, R.H.; et al. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: Time for acritical appraisal. Nutr. MeTable 2008, 5, 9. [Google Scholar] [CrossRef]
- Peters, S.J.; Harris, R.A.; Wu, P.; Pehleman, T.L.; Heigenhauser, G.J.F.; Spriet, L.L. Human skeletal muscle PHD kinase activity and isoform expression during a 3-day high-fat/low/carbohydrate diet. Am. J. Physiol. 2001, 281, 1151–1158. [Google Scholar]
- Carey, A.L.; Staudacher, H.M.; Cummings, N.K.; Stepto, N.K.; Nikolopoulos, V.; Burke, L.M.; Hawley, J.A. Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. J. Appl. Physiol. 2001, 91, 115–122. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, T.; Reaven, G.; Abbasi, F.; Lamendola, C.; Saad, M.; Waters, D.; Simon, J.; Krauss, R.M. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 2005, 96, 399–404. [Google Scholar] [CrossRef]
- Rewers, M.; Zaccaro, D.; D’Agostino, R.; Haffner, S.; Saad, M.F.; Selby, J.V.; Bergman, R.; Savage, P. Insulin sensitivity, insulinemia, and coronary artery disease. The insulin resistance atherosclerosis study. Diabetes Care 2004, 27, 181–187. [Google Scholar] [CrossRef]
- Hanley, A.J.G.; Williams, K.; Stern, M.P.; Haffner, S.M. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease. The San Antonio Heart Study. Diabetes Care 2002, 25, 1177–1184. [Google Scholar] [CrossRef]
- Helge, J.W. Long-term fat diet adaptation effects on performance, training capacity and fat utilization. Med. Sci. Sports Exerc. 2002, 34, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.C.; Nuttall, F.Q. Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition. Nutr. MeTable 2006, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.C.; Hoover, H.; Nuttall, F.Q. Further decrease in glycated hemoglobin following ingestion of a LoBAG 30 diet for 10 weeks compared to 5 weeks in people with untreated type 2 diabetes. Nutr. MeTable 2010, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Schweim, K.; Hoover, H.; Gannon, M.C. Effect of the LoBAG 30 diet on blood glucose control in people with type 2 diabetes. Br. J. Nutr. 2008, 99, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Almokayyad, R.M.; Gannon, M.C. Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes. Metabolism 2015, 64, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Sargrad, K.; Homko, C.; Mozzoli, M.; Stein, T.P. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann. Intern. Med. 2005, 142, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Jelleyman, C.; Yates, T.; O’Donovan, G.; Gray, L.; King, J.A.; Khunti, K.; Davies, M.J. The effects of high-intensity interval training on glucose regulation and insulin resistance: A meta-analysis. Obes. Rev. 2015, 16, 942–961. [Google Scholar] [CrossRef] [Green Version]
- Vessby, B.; Uusitupa, M.; Hermansen, K.; Riccardi, G.; Rivellese, A.A.; Tapsell, L.C.; Nälsén, C.; Berglund, L.; Louheranta, A.; Rasmussen, B.M.; et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU study. Diabetologia 2001, 44, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Riccardi, G.; Giacco, R.; Rivellese, A. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 2004, 23, 447–456. [Google Scholar] [CrossRef]
- Numao, S.; Kawano, H.; Endo, N.; Yamada, Y.; Konishi, M.; Takahashi, M.; Sakamoto, S. Short-term low carbohydrate/high-fat diet intake increases postprandial plasma glucose and glucagon-like peptide-1 levels during an oral glucose tolerance test in healthy men. Eur. J. Clin. Nutr. 2012, 66, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Durrer, C.; Mah, D.; Simtchouk, S.; Robinson, E.; Little, J.P. Reduction of AMPK activity and altered MAPKs signalling in peripheral blood mononuclear cells in response to acute glucose ingestion following a short-term high fat diet in young healthy men. Metabolism 2014, 63, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Konz, E.C.; Jenkins, D.J. Health advantages and disadvantages of weight-reducing diets: A computer analysis an critical review. J. Am. Coll. Nutr. 2000, 19, 578–590. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Rubini, A.; Volek, J.S.; Grimaldi, K.A. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 2013, 67, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Ballard, K.D.; Silvestre, R.; Judelson, D.A.; Quann, E.E.; Forsythe, C.E.; Fernandez, M.L.; Kraemer, W.J. Effects of dietary carbohydrate restriction versus low fat diet on flow-mediated dilation. Metabolism 2009, 58, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Natale, F.; Torino, A.; Capasso, R.; D’Aniello, A.; Pironti, E.; Santoro, E.; Calabrò, R.; Verrotti, A. The impact of the ketogenic diet on arterial morphology and endothelial function in children and young adults with epilepsy: A case-control study. Seizure 2014, 23, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.R.; Wilson, P.W. Free fatty acids and atherosclerosis—Guilty or innocent? J. Clin. Endocrinol. MeTable 2006, 91, 2506–2508. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; De Angelis, L.; Nappo, F.; Manzella, D.; Siniscalchi, M.; Paolisso, G.; Giugliano, D. Elevated fatty acid concentrations prolong cardiac repolarization in healthy subjects. Am. J. Clin. Nutr. 2001, 73, 27–30. [Google Scholar] [CrossRef]
- Langfort, J.; Pilis, W.; Zarzeczny, R.; Nazar, K.; Kaciuba-Uściłko, H. Effect of low carbohydrate ketogenic diet on metabolic and hormonal responses to graded exercise in men. J. Physiol. Pharmacol. 1996, 47, 361–371. [Google Scholar]
- Langfort, J.; Zarzeczny, R.; Nazar, K.; Kaciuba-Uściłko, H. The effect of low-carbohydrate diet on the pattern of hormonal changes during incremental, graded exercise in young men. Int. J. Sport. Nutr. Exerc. MeTable 2001, 11, 248–257. [Google Scholar] [CrossRef]
- Lima-Silva, A.E.; Bertuzzi, R.C.; Pires, F.O.; Fronchetti, L.; Gevaerd, M.S.; De-Oliveira, F.R. A low carbohydrate diet affects autonomic modulation during heavy but not moderate exercise. Eur. J. Appl. Physiol. 2010, 108, 1133–1140. [Google Scholar] [CrossRef]
- Roy, B.D.; Green, H.J.; Burnett, M. Prolonged exercise following diuretic-induced hypohydration: Effects on cardiovascular and thermal strain. Can. J. Physiol. Pharmacol. 2000, 78, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Buono, M.J.; Wall, A.J. Effects of hypohydration on core temperature during exercise in temperate and hot environments. Eur. J. Physiol. 2000, 440, 476–480. [Google Scholar] [CrossRef]
- Samaha, F.F.; Iqbal, N.; Seshadri, P.; Chicano, K.L.; Daily, D.A.; McGrory, J.; Williams, T.; Williams, M.; Gracely, E.J.; Stern, L. A low-carbohydrate as compared with a low-fat diet in severe obesity. N. Engl. J. Med. 2003, 348, 2074–2081. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Sharman, M.J.; Gómez, A.L.; Judelson, D.A.; Rubin, M.R.; Watson, G.; Sokmen, B.; Silvestre, R.; French, D.; Kraemer, W. Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women. Nutr. MeTable 2004, 1, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyson, P.; Beatty, S.; Matthews, D. A low-carbohydrate diet is more effective in reducing body weight than healthy eating in both diabetic and non-diabetic subjects. Diabet. Med. 2007, 24, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Meckling, K.A.; O’Sullivan, C.; Saari, D. Comparison of a low-fat diet to a low-carbohydrate diet on weight loss, body composition, and risk factors for diabetes and cardiovascular disease in free-living, overweight men and women. J. Clin. Endocrinol. MeTable 2004, 89, 2717–2723. [Google Scholar] [CrossRef] [PubMed]
- Cornier, M.A.; Donahoo, W.T.; Pereira, R.; Gurevich, I.; Westergren, R.; Enerback, S.; Eckel, P.J.; Goalstone, M.L.; Hill, J.O.; Eckel, R.H.; et al. Insulin sensitivity determines the effectiveness of dietary macronutrient composition on weight loss in obese women. Obes. Res. 2005, 13, 703–709. [Google Scholar] [CrossRef]
Values | MDs, n = 12 | LCDs, n = 12 | Significance (p) |
---|---|---|---|
Age [years] | 50.75 ± 6.81 | 50.17 ± 8.81 | NS |
Body height [cm] | 172.83 ± 4.6 | 170.58 ± 5.38 | NS |
Body mass [kg] | 69.98 ± 5.28 | 70.19 ± 11.49 | NS |
Body fat [%] | 18.74 ± 3.58 | 20.13 ± 5.82 | NS |
Body fat [kg] | 13.19 ± 2.99 | 14.70 ± 6.58 | NS |
Fat free mass [kg] | 56.79 ± 4.17 | 55.46 ± 5.27 | NS |
Body water [kg] | 41.85 ± 2.87 | 40.62 ± 3.85 | NS |
BMI [km/m2] | 23.38 ± 2.11 | 24.00 ± 2.37 | NS |
Values | MDs, n = 12 | LCDs, n = 12 | Significance (p) |
---|---|---|---|
Energetic value [kcal/day] | 1870.86 ± 233.39 | 2075.14 ± 416.20 | NS |
Protein [g/day] | 64.76 ± 12.46 | 62.54 ± 16.17 | NS |
Protein [%] | 14.29 ± 3.35 | 12.29 ± 2.13 | NS |
Protein [g/kg] | 0.93 ± 0.18 | 0.89 ± 0.15 | NS |
Fat [g/day] | 76.83 ± 21.62 | 150.16 ± 32.57 | p < 0.001 |
Fat [%] | 36.83 ± 8.01 | 65.21 ± 8.93 | p < 0.001 |
Fat [g/kg] | 1.10 ± 0.21 | 2.14 ± 0.20 | p < 0.001 |
Carbohydrates [g/day] | 228.98 ± 47.11 | 117.51 ± 50.86 | p < 0.001 |
Carbohydrates [%] | 48.88 ± 8.71 | 22.50 ± 7.92 | p < 0.001 |
Carbohydrates [g/kg] | 3.28 ± 0.49 | 1.66 ± 0.26 | p < 0.001 |
Values | Rest | Maximal Exercise Bout | Norms at Rest | ANOVA Results | ||
---|---|---|---|---|---|---|
MDs | LCDs | MDs | LCDs | |||
FFA (mmol/L) | 0.676 ±0.207 | 0.764 ±0.187 xx | 0.675 ±0.185 | 0.995 ±0.231 ++ | 0.1–0.5 | x: F = 3.45, p < 0.05 +: F = 3.72, p < 0.05 |
β-HB (mmol/L) | 0.10 ±0.10 | 0.51 ±0.22 xx | 0.11 ±0.05 | 0.50 ±0.26 xx | <0.120 | x: F = 20.4, p < 0.001 |
Glucose (mg/dL) | 89.9 5 ± 7.45 | 99.11 ±12.41 | 94.68 ±13.51 | 109.98 ±11.02 | 70–105 | NS |
UA (mmol/L) | 5.34 ±1.50 | 5.85 ±2.08 | 5.30 ±1.69 | 6.11 ±2.07 | <7.00 | NS |
Insulin (mU/L) | 6.65 ±2.80 | 6.78 ±2.97 | 6.11 ±2.72 | 6.06 ±2.81 | 2.6–24.9 | NS |
Lactate (mmol/L) | 1.79 ±0.31 | 1.43 ±0.17 | 6.46 ±1.71 ++ | 5.31 ±1.83 ++ | <2.00 | +: F = 104.60, p < 0.001 |
Values | Rest | Maximal Exercise Bout | Norms at Rest | ANOVA Results | ||
---|---|---|---|---|---|---|
MDs | LCDs | MDs | LCDs | |||
TC (mg/dL) | 197.74 ±24.48 | 252.82 ±34.36 x | 211.99 ±27.15 | 276.93 ±45.35 x+ | 130–200 | x: F = 21.8, p < 0.001 +: F = 17.8, p < 0.001 |
HDL-C (mg/dL) | 57.45 ±18.16 | 65.94 ±16.71 x | 60.79 ±16.13 | 73.13 ±19.13 ++ | 35–70 | x: F = 8.95, p < 0.01 +: F = 16.9, p < 0.001 |
LDL-C (mg/dL) | 136.24 ±25.42 | 172.78 ±42.15 | 122.39 ±34.55 | 189.45 ±41.17 xx | <135 | x: F = 20.4, p < 0.001 |
TG (mg/dL) | 93.80 ±34.18 | 89.74 ±19.43 | 97.57 ±33.14 | 90.90 ±17.43 | <150 | NS |
R1 = TC/HDL-C | 3.45 ±0.84 | 4.05 ±1.10 | 3.64 ±0.70 | 3.98 ±1.02 | < 4.0 | NS |
R2 = LDL-C/HDL-C | 2.58 ±0.83 | 2.82 ±1.15 | 2.19 ±0.93 | 2.77 ±0.97 | <4.5 | NS |
R3 = TG/HDL-C | 1.85 ±1.12 | 1.50 ±0.65 | 1.73 ±0.83 | 1.35 ±0.49 | ≤3.5 | NS |
HOMA IR mU/mmol | 1.47 ±0.64 | 1.47 ±0.82 | 1.43 ±0.61 | 1.64 ±0.83 | ≤2.5 | NS |
Values | Rest | Maximal Exercise Bout | ANOVA Results | ||
---|---|---|---|---|---|
MDs | LCDs | MDs | LCDs | ||
HR (bpm) | 72.00 ± 7.56 | 85.92 ± 15.12 x | 161.33 ± 15.39 + | 161.25 ± 17.57 + | x: F = 9.597, p = 0.005 +: F = 498.8, p < 0.001 |
SBP (mmHg) | 127.50 ± 10.34 | 129.58 ± 18.52 | 171.67 ± 22.90 + | 171.67 ± 20.71 + | +: F = 142.01, p < 0.001 |
DBP (mmHg) | 85.42 ± 8.91 | 83.33 ± 9.61 | 89.58 ± 10.10 | 87.08 ± 11.96 | NS |
MAP (mmHg) | 99.44 ± 8.49 | 101.25 ± 14.85 | 116.93 ± 13.36 + | 115.29 ± 13.66 + | +: F = 46.16, p < 0.001 |
PP (mmHg) | 42.08 ± 8.65 | 46.25 ± 12.99 | 82.08 ± 16.98 + | 84.33 ± 15.86 + | +: F = 148.16, p < 0.001 |
RPP (bpm x mmHg) | 9.22 ± 1.63 | 11.17 ± 2.76 | 27.84 ± 5.32 + | 27.49 ± 2.61 + | +: F = 412.71, p < 0.001 |
Variables | Group | Rest | Workload [W] | |||||
---|---|---|---|---|---|---|---|---|
30 | 60 | 90 | 120 | Max | ANOVA Results | |||
HR [bpm] RER | MDs | 72.0 7.56 | 95.00 | 108.08 | 123.75 | 137.00 | 161.33 | x: F = 9.6, p < 0.01 |
±9.89 + | ±11.94 + | ±14.70 + | ± 16.70 + | ±15.39 + | ||||
LCDs | 85.9 ±15.12 x | 107.25 | 121.58 | 138.42 | 153.17 | 161.25 | +: F = 216.1, p < 0.001 | |
±12.56 +x | ±13.19 +x | ±15.49 +x | ±18.77 + | ±17.57 + | ||||
VO2 [ml/min] | MDs | 357.83 ±76.82 | 898.33 | 1198.83 | 1565.67 | 1955.92 | 2547.92 | x: F = 13.57, p < 0.01 |
±35.53 + | ±106.11 + | ±83.95 + | ± 89.96 + | ±446.49+ | ||||
LCDs | 399.42 ±87.47 | 961.92 | 1306.75 | 1724.75 | 2130.42 | 2429.92 | +: F = 781.18, p < 0.001 | |
±102.57 + | ±115.49 + | ±152.33 +x | ±188.74 +x | ±541.97 + | ||||
RER | MDs | 0.82 ±0.08 | 0.86 | 0.93 | 1.01 | 1.06 | 1.16 | x: F = 15.75, p < 0.001 |
±0.08 | ±0.08 + | ± 0.07 + | ±0.06 + | ±0.09 + | ||||
LCDs | 0.75 ±0.04 x | 0.78 | 0.85 | 0.90 | 0.94 | 1.01 | +: F = 69.77, p < 0.01 | |
±0.05 | ±0.05 + | ±0.05 +x | ±0.07 +x | ±0.11 +x |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilis, K.; Pilis, A.; Stec, K.; Pilis, W.; Langfort, J.; Letkiewicz, S.; Michalski, C.; Czuba, M.; Zych, M.; Chalimoniuk, M. Three-Year Chronic Consumption of Low-Carbohydrate Diet Impairs Exercise Performance and Has a Small Unfavorable Effect on Lipid Profile in Middle-Aged Men. Nutrients 2018, 10, 1914. https://doi.org/10.3390/nu10121914
Pilis K, Pilis A, Stec K, Pilis W, Langfort J, Letkiewicz S, Michalski C, Czuba M, Zych M, Chalimoniuk M. Three-Year Chronic Consumption of Low-Carbohydrate Diet Impairs Exercise Performance and Has a Small Unfavorable Effect on Lipid Profile in Middle-Aged Men. Nutrients. 2018; 10(12):1914. https://doi.org/10.3390/nu10121914
Chicago/Turabian StylePilis, Karol, Anna Pilis, Krzysztof Stec, Wiesław Pilis, Józef Langfort, Sławomir Letkiewicz, Cezary Michalski, Miłosz Czuba, Michał Zych, and Małgorzata Chalimoniuk. 2018. "Three-Year Chronic Consumption of Low-Carbohydrate Diet Impairs Exercise Performance and Has a Small Unfavorable Effect on Lipid Profile in Middle-Aged Men" Nutrients 10, no. 12: 1914. https://doi.org/10.3390/nu10121914
APA StylePilis, K., Pilis, A., Stec, K., Pilis, W., Langfort, J., Letkiewicz, S., Michalski, C., Czuba, M., Zych, M., & Chalimoniuk, M. (2018). Three-Year Chronic Consumption of Low-Carbohydrate Diet Impairs Exercise Performance and Has a Small Unfavorable Effect on Lipid Profile in Middle-Aged Men. Nutrients, 10(12), 1914. https://doi.org/10.3390/nu10121914