Micronutrient Status in Sri Lanka: A Review
Abstract
:1. Introduction
2. Prevalence of MND in Sri Lanka
2.1. ID and ID Anemia
2.2. Iodine Deficiency
2.3. Other Mineral Deficiencies
2.4. Vitamin Deficiencies
2.5. Coexistence of Multiple MND
3. Factors Associated with MND
3.1. Demographic and Socioeconomic Factors
3.2. Nutritional Status and Anthropometric Factors
3.3. Dietary Factors
3.4. Anemia
3.5. Other Factors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shergill-Bonner, R. Micronutrients. Paediatr. Child Health 2017, 27, 357–362. [Google Scholar] [CrossRef]
- Hans, K.B.; Jana, T. Micronutrients in the life cycle: Requirements and sufficient supply. NFS J. 2018. [Google Scholar] [CrossRef]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Muthayya, S.; Rah, J.H.; Sugimoto, J.D.; Roos, F.F.; Kraemer, K.; Black, R.E. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 2013, 8, e67860. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Lopez, A.D.; Rodgers, A.; Vander, H.S.; Murray, C.J. Selected major risk factors and global and regional burden of disease. Lancet. 2002, 360, 1347–1360. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Charlson, F.J. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Weerahewa, J.; Gedara, P.; Wijetunga, C. Nutrition Transition in Sri Lanka: A Diagnosis. Ann. Nutr. Food Sci. 2018, 2, 1020. [Google Scholar]
- Weerahewa, J.; Wijetunga, C.S.; Babu, S.; Atapattu, N. Food Policies and Nutrition Transition in Sri Lanka: Historical Trends, Political Regimes, and Options for Interventions; IFPRI Discussion Paper 1727; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2018; Available online: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/132683 (accessed on 19 June 2018).
- Wickramasinghe, V.P.; Lanerolle, P.; Arambepola, C.; Thoradeniya, T.; Mendis, D.; Dinesha, T. Association of iron and vitamin A status with birth weight and anaemia among 6 month old infants in an urban population of Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2017, 45, 113–120. [Google Scholar] [CrossRef]
- Marasinghe, E.; Chackrewarthy, S.; Abeysena, C.; Rajindrajith, S. Micronutrient status and its relationship with nutritional status in preschool children in urban Sri Lanka. Asia Pac. J. Clin. Nutr. 2015, 24, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, M.; Liyanage, C. Coexisting micronutrient deficiencies among Sri Lankan pre-school children: A community-based study. Matern. Child Nutr. 2012, 8, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, M.; Liyanage, C.; Wickremasinghe, R.; Hilmers, D.C.; Abrams, S.A. Prevalence and severity of micronutrient deficiency: A cross-sectional study among adolescents in Sri Lanka. Asia Pac. J. Clin. Nutr. 2006, 15, 56–63. [Google Scholar] [PubMed]
- De Lanerolle-Dias, M.; de Silva, A.; Lanerolle, P.; Arambepola, C.; Atukorala, S. Micronutrient status of female adolescent school dropouts. Ceylon Med. J. 2012, 57, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Thoradeniya, T.; Wickremasinghe, R.; Ramanayake, R.; Atukorala, S. Low folic acid status and its association with anaemia in urban adolescent girls and women of childbearing age in Sri Lanka. Br. J. Nutr. 2006, 95, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senadheera, D.; Goonewardene, M.; Mampitiya, I. Anaemia and iron deficiency in pregnant women attending an antenatal clinic in a Teaching Hospital in Southern Sri Lanka. Ceylon Med. J. 2017, 62, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Jayatissa, R.; Fernando, D.N.; De Silva, H. National Nutrition and Micronutrient Survey of Pregnant Women in Sri Lanka 2015; Medical Research Institute in collaboration with UNICEF and World Food Programme: Colombo, Sri Lanka, 2017. [Google Scholar]
- Jayatissa, R.; Gunathilaka, M.M.; Herath, P.; Fernando, D.N. National Nutrition and Micronutrient Survey, Part II. Iron, Zinc, Calcium Deficiency among Children Aged 6–59 Months; Ministry of Health and UNICEF Sri Lanka: Colombo, Sri LankaC, 2014.
- Jayatissa, R.; Gunathilaka, M.M. Vitamin A Nutrition Status in Sri Lanka 2006; Department of Nutrition, Medical Research Institute, Ministry of Healthcare and Nutrition in collaboration with UNICEF: Colombo, Sri Lanka, 2006. [Google Scholar]
- Jayatissa, R.; Fernando, D.N.; Herath, H. Iodine Deficiency Status in Sri Lanka; Fourth National Survey; Medical Research Institute in collaboration with UNICEF, World Food Programme, Ministry of Health, Nutrition and Indigenous Medicine: Colombo, Sri Lanka, 2016. [Google Scholar]
- Jayatissa, R.; Gunathilaka, M.M. Third National Survey on Iodine Deficiency Status in Sri Lanka 2010; Medical Research Institute in collaboration with UNICEF: Colombo, Sri Lanka, 2012. [Google Scholar]
- Jayatissa, R.; Gunathilaka, M.M. Iodine Nutrition Status in Sri Lanka 2005; Department of Nutrition, Department of Healthcare and Nutrition, Medical Research Institute and UNICEF: Colombo, Sri Lanka, 2006. [Google Scholar]
- Jayatissa, R.; Gunathilaka, M.M.; Fernando, D.N. Iodine nutrition status among school children after salt iodization. Ceylon Med. J. 2005, 50, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.; Allen, S.; Rodrigo, R.; Perera, L.; Shao, W.; Li, C.; Wang, D.; Olivieri, N.; Weatherall, D.J.; Premawardhena, A. Iron status and anaemia in Sri Lankan secondary school children: A cross-sectional survey. PLoS ONE 2017, 12, e0188110. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017, 31, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Percy, L.; Mansour, D.; Fraser, I. Iron deficiency and iron deficiency anaemia in women. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 40, 55–67. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Nutrition Targets 2015: Anemia Policy Brief; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Camaschella, C. Iron deficiency: New insights into diagnosis and treatment. ASH Educ. Progr. Book 2015, 2015, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Black, M.M.; Quigg, A.M.; Hurley, K.M.; Pepper, M.R. Iron deficiency and iron-deficiency anemia in the first two years of life: Strategies to prevent loss of developmental potential. Nutr. Rev. 2011, 69 (Suppl. 1), S64–S70. [Google Scholar] [CrossRef] [PubMed]
- WHO Sri Lanka. WHO Sri Lanka Annual Report 2017; WHO Country Office for Sri Lanka: Colombo, Sri Lanka, 2017; ISBN 978-92-9022-633-8. [Google Scholar]
- Abeysena, C.; Jayawardana, P.; Seneviratne, R.D.A. Maternal haemoglobin level at booking visit and its effect on adverse pregnancy outcome. Aust. N. Z. J. Obstet. Gynaecol. 2010, 50, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, T.H. Iron requirements in pregnancy and strategies to meet them. Am. J. Clin. Nutr. 2000, 72, 257S–264S. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, V.; De Silva, T.; Patabenda, H.; De Silva, A.; Rajapakse, L.; Lambadusuriya, S. Age of onset of menarche and secondary sexual characters in Sri Lankan girls of two different regions. Ceylon Med. J. 2009, 54, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef]
- Mahadeva, K.; Seneviratne, D.A.; Jayatilleke, D.B.; Shanmuganathan, S.S.; Premachandra, P.; Nagarajah, M. Further studies on the problem of goiter in Ceylon. Br. J. Nutr. 1968, 22, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.A.; Balasuriya, S.; Herath, K.B.; Katugampola, S. Endemic Goiter in Sri Lanka. Asia Pac. J. Public Health 1989, 1, 527–534. [Google Scholar]
- Premawardhana, L.; Parkes, A.; Smyth, P.; Wijeyaratne, C.; Jayasinghe, A.; De Silva, D.; Lazarus, J. Increased prevalence of thyroglobulin antibodies in Sri Lankan schoolgirls—Is iodine the cause? Eur. J. Endocrinol. 2000, 143, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Pathmeswaran, A.; Jayatissa, R.; Samarasinghe, S.; Fernando, A.; de Silva, R.P.; Thattil, R.O.; de Silva, N.R. Health status of primary schoolchildren in Sri Lanka. Ceylon Med. J. 2005, 50, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [PubMed]
- WHO. The world health report 2002. Chapter 4: Reducing risks, promoting healthy life. WHO Press: Geneva. Available online: http://www.who.int/whr/2002/chapter4/en/index3.html (accessed on 26 July 2018).
- Hotz, C.; Brown, K.H. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2006, 25, 99S–199S. [Google Scholar]
- Houillier, P.; Froissart, M.; Maruani, G.; Blanchard, A. What serum calcium can tell us and what it can’t. Nephrol. Dial. Transplant. 2006, 21, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Fordyce, F.M.; Johnson, C.C.; Navaratna, U.R.; Appleton, J.D.; Dissanayake, C.B. Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Sci. Total. Environ. 2000, 263, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Jayatilake, N.; Mendis, S.; Maheepala, P.; Mehta, F.R. Chronic kidney disease of uncertain aetiology: Prevalence and causative factors in a developing country. BMC Nephrol. 2013, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Diyabalanage, S.; Fonseka, S.; Dasanayake, D.; Chandrajith, R. Environmental exposures of trace elements assessed using keratinized matrices from patients with chronic kidney diseases of uncertain etiology (CKDu) in Sri Lanka. J. Trace Elements Med. Boil. 2017, 39, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Diyabalanage, S.; Navarathna, T.; Abeysundara, H.T.; Rajapakse, S.; Chandrajith, R. Trace elements in native and improved paddy rice from different climatic regions of Sri Lanka: Implications for public health. Springer Plus 2016. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Estevinho, B.; Rocha, F. Microencapsulation of vitamin A: A review. Trends Food Sci. Technol. 2016, 51, 76–87. [Google Scholar] [CrossRef] [Green Version]
- WHO. Nutrition topics: Micronutrient deficiencies. Available online: http://www.who.int/nutrition/topics/vad/en/ (accessed on 25 July 2018).
- Sommer, A.; Davidson, FR. Assessment and control of vitamin A deficiency: The Annecy Accords. J. Nutr. 2002, 132, 2845S–2850S. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, M.; Liyanage, C.; Wickremasinghe, R.; Hilmers, D.; Abrams, S. Nutrient intake and growth of adolescents in southern Sri Lanka. Ceylon Med. J. 2006, 51, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, M.; Liyanage, C. Dietary macro-and micro-nutrient intake among a cohort of pre-school children from southern Sri Lanka. Ceylon Med. J. 2010. [Google Scholar] [CrossRef]
- Mark, H.E.; Houghton, L.A.; Gibson, R.S.; Monterrosa, E.; Kraemer, K. Estimating dietary micronutrient supply and the prevalence of inadequate intakes from national Food Balance Sheets in the South Asia region. Asia Pac. J. Clin. Nutr. 2016, 25, 368–376. [Google Scholar] [PubMed]
- Rodrigo, R.; Allen, A.; Manampreri, A.; Perera, L.; Fisher, C.A.; Allen, S.; Weatherall, D.J.; Premawardhena, A. Haemoglobin variants, iron status and anaemia in Sri Lankan adolescents with low red cell indices: A cross sectional survey. Blood Cells Mol. Dis. 2018, 71, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.R. Anaemia in pregnancy-not just iron deficiency. Acta Haematol. 2013, 130, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Madatuwa, T.M.J.C.; Mahawithanage, S.T.C.; Chandrika, U.G.; Jansz, E.R.; Wickremasinghe, A.R. Evaluation of the effectiveness of the national vitamin A supplementation programme among school children in Sri Lanka. Br. J. Nutr. 2007, 97, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, M. Improving micronutrient status of the Sri Lankan population: Effect of iron and zinc fortified rice flour. Ruhuna J. Med. 2013, 1, 23–33. [Google Scholar]
- Ministry of Health, Nutrition and Indigenous Medicine, World Food Programme. A Landscape Analysis of Rice Fortification in Sri Lanka an Overview 2017. Available online: https://docs.wfp.org/api/documents/WFP-0000063797/download/ (accessed on 11 October 2018).
- Allen, L.H. Interventions for Micronutrient Deficiency Control in Developing Countries: Past, Present and Future. J. Nutr. 2003, 133, 3875S–3878S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathnayake, K.M.; Wimalathunga, M.; Weech, M.; Jackson, K.G.; Lovegrove, J.A. High prevalence of undernutrition and low dietary diversity in institutionalised elderly living in Sri Lanka. Public Health Nutr. 2015, 18, 2874–2880. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, P.; Lanerolle, P.; De Silva, A.; Atukorala, S. Dietary diversity of urban children in Colombo city. Ceylon Med. J. 2010, 55, 26. [Google Scholar]
- Ratnayake, K.M.; Madushani, P.A.E.; Silva, K.D.R.R. Use of dietary diversity score as a proxy indicator of nutrient adequacy of rural elderly people in Sri Lanka. BMC Res. Notes 2012. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.; Byrne, N.M.; Soares, M.J.; Katulanda, P.; Hills, A.P. Food consumption of Sri Lankan adults: An appraisal of serving characteristics. Public Health Nutr. 2012, 16, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Asare-Marfo, D.; Birol, E.; Gonzalez, C.; Moursi, M.; Perez, S.; Schwarz, J.; Zeller, M. Prioritizing Countries for Biofortification Interventions Using Country-Level Data; Harvest Plus Working Paper: Washington, DC, USA, 2013. [Google Scholar]
MND | SEV (%) | Attributable Global Deaths (Per 1000 Persons) | Attributable DALYs Lost (Per 1000 Persons) | Ranking among Leading Risk Factors | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2005 | 2015 | 2005 | 2015 | 2005 | 2015 | 2005 | 2015 | |||
Male | Female | Male | Female | |||||||
ID | NA | 17.5 | NA | 16.5 | 87 | 84 | 55 120 | 52 870 | 17 | 16 |
VAD | 32.4 | 29.2 | 28.4 | 25.8 | 191 | 83 | 16 864 | 7 611 | 26 | 39 |
Zinc deficiency | 16.8 | 16.8 | 15.6 | 15.6 | 93 | 55 | 8 162 | 4 967 | 36 | 40 |
Author and Year | Study Area | Population Studied | Sample Size | Micronutrients Studied |
---|---|---|---|---|
Jayatissa, Fernando and De Silva, 2017 A [16] | 25 districts | Pregnant women | 7500 | Iron, iodine, Vitamin A |
Jayatissa et al., 2014 A [17] | 25 districts | Children aged 6–59 months | 7500 | Iron, Zinc, Calcium |
Jayatissa, Fernando and Herath, 2016 B [19] | 9 provinces | School children aged 6–12 years | 8624 | Iodine |
Jayatissa and Gunathilaka, 2012 B [20] | 9 provinces | School children aged 6–10 years | 8060 | Iodine |
Pregnant women | 587 | |||
Jayatissa and Gunathilaka, 2006 B [21] | 9 provinces | School children aged 6–9 years | 1900 | Iodine |
Jayatissa, Gunathilaka and Fernando, 2005 B [22] | 9 provinces | School children 8–10 years | 7076 | Iodine |
Jayathissa and Gunathilaka, 2006 C [18] | 20 districts | Children 6–60 months | 900 | Vitamin A |
Allen et al., 2017 [23] | 25 districts | Secondary school children 11–19 years | 7526 | Iron |
Wickramasinghe et al., 2017 [9] | Colombo MC area | Infants aged 6–6.5 months | 96 | Iron, Vitamin A |
Marasinghe et al., 2015 [10] | Ragama MOH area | Pre-school children aged 2–5 years | 340 | Zinc, Calcium, Vitamin A, Vitamin D |
Hettiarachchi and Liyanage, 2012 [11] | Galle district | Pre-school children aged 3–5 years | 248 | Iron, Zinc, Calcium, Copper, Iodine, Vitamin A, Vitamin D, Folate |
Hettiarachchi et al., 2006 [12] | Galle district | Secondary school children 12–16 years | 945 | Iron, Zinc, Folate |
de Lanerolle-Dias et al., 2012 [13] | Western Province | Girls who dropped out of school (age 15–19 years) | 613 | Iron, Zinc, Folate, Vitamin B12 |
Thoradeniya et al., 2006 [14] | Colombo MC area | Adolescent girls (age 15–18.9 years) and non-pregnant, non-lactating young women (age 19–30 years) | 600 | Iron, Folate, Vitamin B12 |
Senadheera et al., 2017 [15] | Antenatal clinic at Teaching hospital, Mahamodara, Galle | Pregnant women between 12 and 20 weeks gestation | 350 | Iron |
Author and Year | Population Studied | Mean SF Level (µg/L) | ID Prevalence (%) | IDA Prevalence (%) |
---|---|---|---|---|
Jayatissa et al., 2014 A [17] | Children aged 6–59 months | NA | 33.6 a | 7.4 e |
Jayatissa, Fernando and De Silva, 2017 A [16] | Pregnant women | NA | 21.8 b | 10.8 f |
Wickramasinghe et al., 2017 [9] | Infants aged 6–6.5 months | 15.5 | 37.2 a | NA |
Allen et al., 2017 [23] | Secondary school children aged 11–19 years | NA | 19.2 b | 3.9 g |
Hettiarachchi et al., 2006 [12] | Secondary school children aged 12–16 years | M 35.03 F 26.62 B | 14.7 a 24.5 d | 33.9 h |
de Lanerolle-Dias et al., 2012 [13] | Girls who dropped out of school (age 15–19 years) | NA | 29.4 c | NA |
Thoradeniya et al., 2006 [14] | Adolescent girls (age 15–18.9 years) and non-pregnant, non-lactating young women (age 19–30 years) | 19.7 | 25·3 a | NA |
Senadheera et al., 2017 [15] | Pregnant women between 12 and 20 weeks gestation | 47.7 | 3.7 a 36.9 d | NA |
Author and Year | Population Studied | Sample Size | Deficiency | Prevalence (%) | * p Value | |
---|---|---|---|---|---|---|
Male | Female | |||||
Jayatissa et al., 2014 (National survey) [17] | Children aged 6–59 months | M 2902 F 2864 | ID a | 36.1 | 31.0 | 0.00 A |
IDA b | 8.5 | 6.2 | 0.01 A | |||
Hettiarachchi and Liyanage, 2012 [11] | Pre-school children aged 3–5 years | M 122 F 126 | ID c | 37 | 33 | NA |
IDA d | 2 | 5 | 0.59 B | |||
Allen et al., 2017 [23] | Secondary school children aged 11–19 years | M 2876 F 2885 | ID e | 11.2 | 27.1 | <0.001 C |
M 2785 F 2794 | IDA f | 1.0 | 4.6 | <0.001 C | ||
Hettiarachchi et al., 2006 [12] | Secondary school children aged 12–16 years | M 327 F 555 | ID c | 7 | 11.2 | <0.001 B |
IDA g | 26.6 | 43 | <0.001 A |
Variables | Year of Survey | |||
---|---|---|---|---|
2000 | 2005 | 2010 | 2016 | |
Total goiter rate (%) | 20.9 | 3.8 | 4.4 | 1.8 |
Median UI concentration (μg/L) | 145.3 | 154.4 | 163.4 | 232.5 |
Percent of subjects with: | ||||
Adequate UI levels (100–199.9 μg/L) | 35.4 | 34.7 | 37.5 | NA |
More than adequate UI levels (200–299.9 μg/L) | 17.8 | 18.7 | 22.2 | NA |
Excessive UI levels (>300 μg/L) | 16.3 | 16.8 | 14.9 | 29.5 |
Iodine deficiency (<100 μg/L) | 30.6 | 29.9 | 25.5 | NA |
Severe iodine deficiency (<20 μg/L) | 1.4 | 0.1 | 1.4 | NA |
Mean iodine content in salt at household level (ppm) | NA | 28 | 21.2 | 21.2 |
Percent of households with access to adequate iodine in salt | 49.5 | 91.2 | 51.2 | 78.5 |
Author and Year | Study Area | Sample Size | Population Studied | Criteria | Findings |
---|---|---|---|---|---|
Jayatissa, Fernando and De Silva, 2017 [16] | 25 districts | 980 | Pregnant women | UI concentration | Median UI concentration—157.9 μg/dL |
52.2% had UI concentration >150 μg/dL | |||||
10.1% had UI concentration > 50 μg/dL | |||||
Jayatissa and Gunathilaka, 2012 [20] | 9 provinces | 587 | Pregnant women | UI concentration | Median UI concentration—113.1 μg/L |
62.5% were iodine deficient (UI concentration < 150 μg/L) | |||||
14.5% had above requirement (250–499 μg/L) UI concentration | |||||
1.9% had excessive (>500 μg/L) UI concentration | |||||
Hettiarachchi and Liyanage, 2012 [11] | Galle district | 248 (M 122 F 126) | Pre-school children aged 3–5 years | Serum free T4 | Median free T4 concentration for M—14.83 pmol/L F—15.08 pmol/L |
None of the children had low thyroxin levels (Serum free T4 < 10.30 pmol/L) | |||||
Premawardhana et al., 2000 [36] | - | 367 | School girls aged 11–16 years | Ultrasound thyroid volume, Free T4, Free T3, TSH, UI concentrations, TgAb | Normal median thyroid volume, UI concentrations observed. |
Free T4 and free T3 were normal in all subjects. | |||||
TSH was elevated in four subjects | |||||
Higher prevalence of TgAb, which reflect | |||||
The high prevalence of TgAb, which reflects excessive iodination of Tg resulting in increased immunogenicity. | |||||
Pathmeswaran et al., 2005 [37] | 9 provinces | 2528 (M 1177 F 1351) | Grade 5 school children | Visible or palpable enlargement of thyroid gland | Goiter prevalence rate- 3% |
Prevalence rates were significantly higher among girls than boys * |
Author and year | Area | Population | Prevalence (%) | ||
---|---|---|---|---|---|
Zinc Deficiency | Calcium Deficiency | Copper Deficiency | |||
Jayatissa et al., 2014 A [17] | 25 districts | Children aged 6–59 months | 5.1 a | 47.6 f | NA |
Marasinghe et al., 2015 [10] | Ragama MOH area | Pre-school children aged 2–5 years | 66.7 b | 12.06 g | NA |
de Lanerolle-Dias et al., 2012 [13] | Western Province | Girls who dropped out of school (age 15–19 years) | 28.8 c | NA | NA |
Hettiarachchi and Liyanage, 2012 [11] | Galle district | Pre-school children aged 3–5 years | ~50 d | M 8, F 6 h | M 7, F 1 i |
Hettiarachchi et al., 2006 [12] | Galle district | Secondary school children aged 12–16 years | 55.7 e | NA | NA |
Author and year | Area | Population | Prevalence (%) | |||
---|---|---|---|---|---|---|
Vitamin A Deficiency | Vitamin D Deficiency | Vitamin B12 Deficiency | Folate Deficiency | |||
Jayatissa, Fernando and De Silva, 2017 A [16] | 25 districts | Pregnant women | 3.4 a | NA | NA | NA |
Wickramasinghe et al., 2017 [9] | Colombo MC area | Infants aged 6–6.5 months | 1.1 a | NA | NA | NA |
Marasinghe et al., 2015 [10] | Ragama MOH area | Pre-school children aged 2–5 years | 38.2 b | 5 d | NA | NA |
de Lanerolle-Dias et al., 2012 [13] | Western Province | Girls who dropped out of school (age 15–19 years) | NA | NA | W-1.7 NW-1.8 f | T-28 g (W-35.9, NW-24.7) |
Hettiarachchi and Liyanage, 2012 [11] | Galle district | Pre-school children aged 3–5 years | 5 c | >25 e | NA | M 41, F 32 h |
Thoradeniya et al., 2006 [14] | Colombo MC area | Adolescent girls and young women | NA | NA | 0·44 f | 43.6 h |
Hettiarachchi et al., 2006 [12] | Galle district | Secondary school children aged 12–16 years | NA | NA | NA | 53.3 h (M 54.6, F 52.5) |
Jayatissa and Gunathilaka, 2006 A [18] | 20 districts | Children aged 6–60 months | 29.3 a | NA | NA | NA |
Non-pregnant women aged 15–49 years | 14.9 a | NA | NA | NA |
Study | Population Studied | Micronutrient status | Prevalence (%) | p Value # | Risk * | p Value # |
---|---|---|---|---|---|---|
Thoradeniya et al., 2006 [14] A | Adolescent girls and young women in Colombo | Serum folic acid < 3 ng/mL | 62·1 | 0·001 | NA | NA |
SF < 12 mg/L | 65·2 | < 0·001 | NA | NA | ||
SF < 20 mg/L | 74·2 | < 0·001 | NA | NA | ||
Serum folic acid < 3 ng/mL and SF < 12 mg/L | 43·9 | < 0·001 | NA | NA | ||
Serum folic acid < 3 ng/mL and SF <20 mg/L | 51·5 | < 0·001 | NA | NA | ||
Hettiarachchi and Liyanage, 2012 [11] | Preschool children in Galle district | Serum folate < 3 ng/L | NA | NA | M 2.2 (1.8,6.0) F 1.5 (1.1, 4.3) | 0.02 |
SF 12.00 mg/L | NA | NA | F 2.4 (1.0,5.5) | 0.03 | ||
Serum calcium 1.20 mmol/L | NA | NA | F 2.4 (1.2, 15.3) | 0.001 | ||
Serum retinol < 0.70 mmol/L | NA | NA | F 3.8 (1.5, 9.2) | 0.003 | ||
Iron and folate deficiency | NA | NA | F 2.3 (1.8, 7.5) | 0.02 | ||
Folate deficiency and serum zinc < 9.945 mmol/L | NA | NA | F 4.6 (1.1, 20.9) | 0.03 | ||
Hettiarachchi et al., 2006 [12] | Secondary school children in Galle district | SF < 30 μg/L | M 30.2 F 47.8 | NA | F 1.58 (1.11, 2.23) | 0.01 |
SF < 30 μg/L and serum zinc < 9.95 μmol/L | NA | NA | F 0.64 (0.43,0.96) | 0.029 | ||
Marasinghe et al., 2015 [10] | Preschool children in Ragama MOH area | Serum vitamin A < 20 μg/dL | 60 | NA | NA | NA |
Serum zinc < 9.9 μmol/L | 60 | NA | NA | NA | ||
Serum vitamin D < 10 ng/mL | 56 | NA | NA | NA | ||
Jayatissa et al., 2014 [17] | Children aged 6–59 months | SF < 30 μg/dL | 52.3 | NA | NA | NA |
Serum zinc < 65 μg/dL | 6.7 | NA | NA | NA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abeywickrama, H.M.; Koyama, Y.; Uchiyama, M.; Shimizu, U.; Iwasa, Y.; Yamada, E.; Ohashi, K.; Mitobe, Y. Micronutrient Status in Sri Lanka: A Review. Nutrients 2018, 10, 1583. https://doi.org/10.3390/nu10111583
Abeywickrama HM, Koyama Y, Uchiyama M, Shimizu U, Iwasa Y, Yamada E, Ohashi K, Mitobe Y. Micronutrient Status in Sri Lanka: A Review. Nutrients. 2018; 10(11):1583. https://doi.org/10.3390/nu10111583
Chicago/Turabian StyleAbeywickrama, Hansani Madushika, Yu Koyama, Mieko Uchiyama, Utako Shimizu, Yuka Iwasa, Etsuko Yamada, Kazuki Ohashi, and Yuta Mitobe. 2018. "Micronutrient Status in Sri Lanka: A Review" Nutrients 10, no. 11: 1583. https://doi.org/10.3390/nu10111583
APA StyleAbeywickrama, H. M., Koyama, Y., Uchiyama, M., Shimizu, U., Iwasa, Y., Yamada, E., Ohashi, K., & Mitobe, Y. (2018). Micronutrient Status in Sri Lanka: A Review. Nutrients, 10(11), 1583. https://doi.org/10.3390/nu10111583