Next Article in Journal
Hybrid Spectral Unmixing: Using Artificial Neural Networks for Linear/Non-Linear Switching
Next Article in Special Issue
Use of Proper Orthogonal Decomposition for Extraction of Ocean Surface Wave Fields from X-Band Radar Measurements of the Sea Surface
Previous Article in Journal
A New Urban Index for Expressing Inner-City Patterns Based on MODIS LST and EVI Regulated DMSP/OLS NTL
Open AccessArticle

An Improved Spectrum Model for Sea Surface Radar Backscattering at L-Band

The Key Laboratory for Earth Observation of Hainan Province, Sanya 572029, China
State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049, China
Author to whom correspondence should be addressed.
Remote Sens. 2017, 9(8), 776;
Received: 22 June 2017 / Revised: 24 July 2017 / Accepted: 27 July 2017 / Published: 29 July 2017
(This article belongs to the Special Issue Ocean Radar)
L-band active microwave remote sensing is one of the most important technical methods of ocean environmental monitoring and dynamic parameter retrieval. Recently, a unique negative upwind-crosswind (NUC) asymmetry of L-band ocean backscatter over a low wind speed range was observed. To study the directional features of L-band ocean surface backscattering, a new directional spectrum model is proposed and built into the advanced integral equation method (AIEM). This spectrum combines Apel’s omnidirectional spectrum and an improved empirical angular spreading function (ASF). The coefficients in the ASF were determined by the fitting of radar observations so that it provides a better description of wave directionality, especially over wavenumber ranges from short-gravity waves to capillary waves. Based on the improved spectrum and the AIEM scattering model, L-band NUC asymmetry at low wind speeds and positive upwind-crosswind (PUC) asymmetry at higher wind speeds are simulated successfully. The model outputs are validated against Aquarius/SAC-D observations under different incidence angles, azimuth angles and wind speed conditions. View Full-Text
Keywords: sea surface; scattering; L-band; radar remote sensing; wave spectra sea surface; scattering; L-band; radar remote sensing; wave spectra
Show Figures

Graphical abstract

MDPI and ACS Style

Du, Y.; Yang, X.; Chen, K.-S.; Ma, W.; Li, Z. An Improved Spectrum Model for Sea Surface Radar Backscattering at L-Band. Remote Sens. 2017, 9, 776.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop