Nonlinear Classification of Multispectral Imagery Using Representation-Based Classifiers
Abstract
:1. Introduction
2. Representation-Based Algorithms
2.1. SRC
2.2. NRS
3. Nonlinear Band Generation Method
3.1. Multiplication
3.2. Division
3.3. Practical Consideration
4. Experiment Results
4.1. Data Description and Experimental Setup
4.2. Classification Results
4.3. Parameter Tuning
4.4. Modified Band Ratio
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Xu, Y.; Du, Q.; Younan, N. Particle swarm optimization-based band selection for hyperspectral target detection. IEEE Geosci. Remote Sens. Lett. 2017, 14, 554–558. [Google Scholar] [CrossRef]
- Su, H.; Yang, H.; Du, Q.; Sheng, Y. Semi-supervised band clustering for dimensionality reduction of hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1135–1139. [Google Scholar] [CrossRef]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE PAMI 2009, 31, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, M.; Feng, X. Sparse Representation or Collaborative Representation: Which Helps faCe Recognition? In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 471–478. [Google Scholar]
- Li, W.; Tramel, E.W.; Prasad, S.; Fowler, J.E. Nearest regularized subspace for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 477–489. [Google Scholar] [CrossRef]
- Zou, J.; Li, W.; Du, Q. Sparse representation-based nearest neighbor classifiers for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2418–2422. [Google Scholar]
- Xiong, M.; Ran, Q.; Li, W.; Zou, J.; Du, Q. Hyperspectral image classification using weighted joint collaborative representation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1209–1213. [Google Scholar] [CrossRef]
- Bian, X.; Chen, C.; Xu, Y.; Du, Q. Robust hyperspectral image classification by multi-layer spatial-spectral sparse representations. Remote Sens. 2016, 8, 985. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Joint within-class collaborative representation for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2200–2208. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Gabor-filtering based nearest regularized subspace for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1012–1022. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. A survey on representation-based classification and detection in hyperspectral imagery. Pattern Recognit. Lett. 2016, 83, 115–123. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Bernabe, S.; Marpu, P.R.; Plaza, A.; Mura, M.D.; Benediktsson, J.A. Spectral–spatial classification of multispectral images using kernel feature space representation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 288–292. [Google Scholar] [CrossRef]
- Li, W.; Du, Q.; Xiong, M. Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 48–52. [Google Scholar]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 217–231. [Google Scholar] [CrossRef]
- Ren, H.; Chang, C.-I. A generalized orthogonal subspace projection approach to unsupervised multispectral image classification. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2515–2528. [Google Scholar]
- SPArse Modeling Software. Available online: http://spams-devel.gforge.inria.fr/ (accessed on 15 October 2016).
- Du, Q.; Kopriva, I.; Szu, H. Independent component analysis for classifying multispectral images with dimensionality limitation. Int. J. Inf. Acquis. 2004, 1, 201–216. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W. Remote Sensing and Image Interpretation; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Proc. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Platt, R.V.; Goetz, A.F.H. A comparison of AVIRIS and Landsat for land use classification at the urban fringe. Photogram. Eng. Remote Sens. 2004, 70, 813–819. [Google Scholar] [CrossRef]
- Kramer, H.J. Observations of the Earth and Its Environment; Springer: Berlin, Germany, 2002. [Google Scholar]
Class No. | Class Name | Number of Samples |
---|---|---|
C1 | Alfalfa | 46 |
C2 | Corn-no-till | 1460 |
C3 | Corn-min-till | 834 |
C4 | Corn | 237 |
C5 | Grass-pasture | 483 |
C6 | Grass-trees | 730 |
C7 | Grass-pasture-mowed | 28 |
C8 | Hay-windowed | 478 |
C9 | Oats | 20 |
C10 | Soybean-no-till | 972 |
C11 | Soybean-min-till | 2455 |
C12 | Soybean-clean | 593 |
C13 | Wheat | 205 |
C14 | Woods | 1265 |
C15 | Building-grass-trees-drives | 386 |
C16 | Stone-steel-towers | 93 |
Total | 10,249 |
Class No. | Class Name | Number of Samples |
---|---|---|
C1 | Asphalt | 6631 |
C2 | Meadows | 18,649 |
C3 | Gravel | 2099 |
C4 | Trees | 3064 |
C5 | Painted metal sheets | 1345 |
C6 | Bare Soil | 5029 |
C7 | Bitumen | 1330 |
C8 | Self-Blocking Bricks | 3682 |
C9 | Shadows | 947 |
Total | 42,776 |
Datasets | SRC | KSRC | NRS | KNRS | KSVM |
---|---|---|---|---|---|
Original | 50.49 | 311.89 | 122.70 | 152.81 | 1572.29 |
Original + Multiplication | 54.84 | — | 131.27 | — | — |
Original + Division | 56.78 | — | 135.90 | — | — |
Original + Multiplication + Division | 57.88 | — | 137.05 | — | — |
Datasets | SRC | KSRC | NRS | KNRS | KSVM |
---|---|---|---|---|---|
Original | 228.54 | 2046.9 | 592.97 | 794.09 | 2122.59 |
Original + Multiplication | 240.34 | — | 611.35 | — | — |
Original + Division | 245.34 | — | 604.75 | — | — |
Original + Multiplication + Division | 251.48 | — | 620.75 | — | — |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Du, Q.; Li, W.; Chen, C.; Younan, N.H. Nonlinear Classification of Multispectral Imagery Using Representation-Based Classifiers. Remote Sens. 2017, 9, 662. https://doi.org/10.3390/rs9070662
Xu Y, Du Q, Li W, Chen C, Younan NH. Nonlinear Classification of Multispectral Imagery Using Representation-Based Classifiers. Remote Sensing. 2017; 9(7):662. https://doi.org/10.3390/rs9070662
Chicago/Turabian StyleXu, Yan, Qian Du, Wei Li, Chen Chen, and Nicolas H. Younan. 2017. "Nonlinear Classification of Multispectral Imagery Using Representation-Based Classifiers" Remote Sensing 9, no. 7: 662. https://doi.org/10.3390/rs9070662
APA StyleXu, Y., Du, Q., Li, W., Chen, C., & Younan, N. H. (2017). Nonlinear Classification of Multispectral Imagery Using Representation-Based Classifiers. Remote Sensing, 9(7), 662. https://doi.org/10.3390/rs9070662