Deriving 3-D Time-Series Ground Deformations Induced by Underground Fluid Flows with InSAR: Case Study of Sebei Gas Fields, China
Abstract
:1. Introduction
2. Study Area and Data Coverage
3. Methodology
3.1. SAR Data Pre-Processing
3.2. WLS InSAR Processing Implementation
3.3. 3-D Deformations and Volume Changes Inversion
4. Results
5. Discussion
6. Conclusions
- The 3-D time-series deformations allow us to understand the ground deformation features under high-intensity gas-exploitation, and have unique insight into the corresponding damages and threats. The time-series analysis of 3-D deformations reflects that the main 3-D time-series surface displacements patterns of the Sebei gas fields are heterogeneous, of up to 73.4 mm/year, 23.5 mm/year and 31.3 mm/year in the investigation period along the U–D, E–W and N–S directions, respectively. These heterogeneous displacements will induce varied stress and strain in different directions, which well explain the damages of the gas wells and pipelines, and indicates potential threats to the G315 Highway. In addition, the knowledge of the patterns of 3-D time-series deformations can be used to predict the extent of the gas-extraction-derived deformation such that some measures can be taken to prevent gas wells and pipelines from being damaged or to control the potential geo-hazards.
- The estimated volume change rates reveal that underground gas of about had been exploited in the Sebei gas systems during the period of November 2014–July 2017. The estimated gas production of 5.022 billion m3 under the conditions of standard state of China in this case coincides with the actual gas productions of 5.499 billion m3 from the PQOCYs between the beginning of this study and the end of 2015, which signifies that the proposed method can not only estimate reliable 3-D time-series deformations, but also the corresponding underground fluids’ volume changes if some a priori information (such as the depths and thickness of the underground fluids) is available or can be estimated. Moreover, the InSAR-derived volume changes can be used to assess the gas production ability, and to assist related departments to ensure the long-term development of Sebei gas field.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Geertsma, J. The effect of fluid pressure decline on volumetric changes of porous rocks. Trans. AIME 1957, 210, 331–340. [Google Scholar]
- Han, W.S.; Lu, M.; McPherson, B.J.; Keating, E.H.; Moore, J.; Park, E.; Watson, Z.T.; Jung, N.H. Characteristics of CO2-driven cold-water geyser, Crystal Geyser in Utah: Experimental observation and mechanism analyses. Geofluids 2013, 13, 283–297. [Google Scholar] [CrossRef]
- Mathias, S.A.; Hardisty, P.E.; Trudell, M.R.; Zimmerman, R.W. Screening and selection of sites for CO2 sequestration based on pressure buildup. Int. J. Greenh. Gas Control 2009, 3, 577–585. [Google Scholar] [CrossRef]
- Ramirez, A.; Foxall, W. Stochastic inversion of InSAR data to assess the probability of pressure penetration into the lower caprock at In Salah. Int. J. Greenh. Gas Control 2014, 27, 42–58. [Google Scholar] [CrossRef]
- Van Berk, W.; Fu, Y.; Schulz, H.-M. Temporal and spatial development of scaling in reservoir aquifers triggered by seawater injection: Three-dimensional reactive mass transport modeling of water-rock-gas interactions. J. Pet. Sci. Eng. 2015, 135, 206–217. [Google Scholar] [CrossRef]
- Xu, Z.J.; Fang, Y.L.; Scheibe, T.D.; Bonneville, A. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide. Comput. Geosci. 2012, 46, 31–37. [Google Scholar] [CrossRef]
- Tomas, R.; Marquez, Y.; Lopez-Sanchez, J.M.; Delgado, J.; Blanco, P.; Mallorqui, J.J.; Martinez, M.; Herrera, G.; Mulas, J. Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR Interferometry: Vega Media of the Segura River (SE Spain) case study. Remote Sens. Environ. 2005, 98, 269–283. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Hanssen, R.F.; Weckwerth, T.M.; Zebker, H.A.; Klees, R. High-resolution water vapor mapping from interferometric radar measurements. Science 1999, 283, 1297–1299. [Google Scholar] [CrossRef] [PubMed]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.-H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Cigna, F.; Osmanoglu, B.; Cabral-Cano, E.; Dixon, T.H.; Avila-Olivera, J.A.; Garduno-Monroy, V.H.; DeMets, C.; Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sens. Environ. 2012, 117, 146–161. [Google Scholar] [CrossRef]
- Heleno, S.I.N.; Oliveira, L.G.S.; Henriques, M.J.; Falcao, A.P.; Lima, J.N.P.; Cooksley, G.; Ferretti, A.; Fonseca, A.M.; Lobo-Ferreira, J.P.; Fonseca, J.F.B.D. Persistent Scatterers Interferometry detects and measures ground subsidence in Lisbon. Remote Sens. Environ. 2011, 115, 2152–2167. [Google Scholar] [CrossRef]
- Herrera, G.; Fernandez, J.A.; Tomas, R.; Cooksley, G.; Mulas, J. Advanced interpretation of subsidence in Murcia (SE Spain) using A-DInSAR data - modelling and validation. Nat. Hazards Earth Syst. Sci. 2009, 9, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Hung, W.-C.; Hwang, C.; Chen, Y.-A.; Chang, C.-P.; Yen, J.-Y.; Hooper, A.; Yang, C.-Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ. 2011, 115, 957–967. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Li, X.; Zhang, K. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry. J. Geodesy 2012, 86, 375–392. [Google Scholar] [CrossRef]
- Osmanoglu, B.; Dixon, T.H.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y. Mexico City subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 1–12. [Google Scholar] [CrossRef]
- Teatini, P.; Tosi, L.; Strozzi, T.; Carbognin, L.; Wegmuller, U.; Rizzetto, F. Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens. Environ. 2005, 98, 403–413. [Google Scholar] [CrossRef]
- Moghaddam, N.F.; Sahebi, M.R.; Matkan, A.A.; Roostaei, M. Subsidence rate monitoring of Aghajari oil field based on Differential SAR Interferometry. Adv. Space Res. 2013, 51, 2285–2296. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, W.; Dixon, T.H.; Amelung, F.; Han, W.S.; Li, P. InSAR monitoring of ground deformation due to CO2 injection at an enhanced oil recovery site, West Texas. Int. J. Greenh. Gas Control 2015, 41, 20–28. [Google Scholar] [CrossRef]
- Deschamps, B.; Henschel, M.D.; Walter, G.; Chen, J.; Sato, S.; Gravelle, S. Multi-sensor/multi-beam InSAR ground deformation monitoring of water-flood oil fields. In Proceedings of the Multitemp 2013 7th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Banff, AB, Canada, 25–27 June 2013. [Google Scholar]
- Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J.P.M. Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys. Res. Lett. 2013, 40, 3898–3902. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Li, X. Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote Sens. Environ. 2015, 159, 86–101. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Q.; Zhao, C.; Yang, C.; Sun, Q.; Chen, W. Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique. Remote Sens. Environ. 2017, 188, 73–84. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Huang, H.-J.; Bi, H.-B. Land subsidence in the modern Yellow River Delta based on InSAR time series analysis. Nat. Hazards 2015, 75, 2385–2397. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, Y.; Wang, Q.; Xin, Y.; Li, J. Detecting land uplift associated with enhanced oil recovery using InSAR in the Karamay oil field, Xinjiang, China. Int. J. Remote Sens. 2016, 37, 1527–1540. [Google Scholar] [CrossRef]
- Mikhailov, V.; Kiseleva, E.; Dmitriev, P.; Golubev, V.; Smolyaninova, E.; Timoshkina, E. On reconstruction of the three displacement vector components from SAR LOS displacements for oil and gas producing fields. Procedia Technol. 2014, 16, 385–393. [Google Scholar] [CrossRef]
- Vasiliev, Y.V.; Yevtyushkin, A.V.; Martynov, O.S.; Radchenko, A.V.; Filatov, A.V. Use PALSAR images by geodynamics monitoring gas and oil fields. Curr. Probl. Remote Sens. Earth Space 2010, 7, 122–128. [Google Scholar]
- Matsunaga, T.; Mialdun, A.; Nishino, K.; Shevtsova, V. Measurements of gas/oil free surface deformation caused by parallel gas flow. Phys. Fluids 2012, 24, 062101. [Google Scholar] [CrossRef]
- Codegone, G.; Rocca, V.; Verga, F.; Coti, C. Subsidence Modeling Validation Through Back Analysis for an Italian Gas Storage Field. Geotech. Geol. Eng. 2016, 34, 1749–1763. [Google Scholar] [CrossRef]
- Wang, G.; Guo, K.; Christianson, M.; Konietzky, H. Deformation characteristics of rock salt with mudstone interbeds surrounding gas and oil storage cavern. Int. J. Rock Mech. Min. Sci. 2011, 48, 871–877. [Google Scholar] [CrossRef]
- Filatov, A.V.; Yevtyushkin, A.V.; Vasiliev, Y.V. Long-term geodynamic monitoring of oil and gas fields in Western Siberia by InSAR technique. Curr. Probl. Remote Sens. Earth Space 2012, 9, 39–47. [Google Scholar]
- Fokker, P.A.; Wassing, B.B.T.; van Leijen, F.J.; Hanssen, R.F.; Nieuwland, D.A. Application of an ensemble smoother with multiple data assimilation to the Bergermeer gas field, using PS-InSAR. Geomech. Energy Environ. 2016, 5, 16–28. [Google Scholar] [CrossRef]
- Gee, D.; Sowter, A.; Novellino, A.; Marsh, S.; Gluyas, J. Monitoring land motion due to natural gas extraction: Validation of the Intermittent SBAS (ISBAS) DInSAR algorithm over gas fields of North Holland, The Netherlands. Mar. Pet. Geol. 2016, 77, 1338–1354. [Google Scholar] [CrossRef]
- Ali, S.T.; Akerley, J.; Baluyut, E.C.; Cardiff, M.; Davatzes, N.C.; Feigl, K.L.; Foxall, W.; Fratta, D.; Mellors, R.J.; Spielman, P.; et al. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar. Geothermics 2016, 61, 114–120. [Google Scholar] [CrossRef]
- Ishitsuka, K.; Tsuji, T.; Matsuoka, T.; Nishijima, J.; Fujimitsu, Y. Heterogeneous surface displacement pattern at the Hatchobaru geothermal field inferred from SAR interferometry time-series. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 95–103. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Q.; Li, Z.; Zhao, R.; Sun, Q. Investigating the Ground Deformation and Source Model of the Yangbajing Geothermal Field in Tibet, China with the WLS InSAR Technique. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Koros, W.K.; Agustin, F. Subsidence surveys at Olkaria geothermal field, Kenya. J. Spat. Sci. 2017, 62, 195–205. [Google Scholar] [CrossRef]
- Sarychikhina, O.; Glowacka, E. Spatio-temporal evolution of aseismic ground deformation in the Mexicali Valley (Baja California, Mexico) from 1993 to 2010, using differential SAR interferometry. In Prevention and Mitigation of Natural and Anthropogenic Hazards Due to Land Subsidence; Daito, K., Galloway, D., Eds.; Copernicus Publications: Göttingen, Germany, 2015; Volume 372, pp. 335–341. [Google Scholar]
- Han, J.-Y.; Forster, R.R.; Moser, D.E.; Ford, A.L.J.; Ramirez-Hernandez, J.; Tiampo, K.F. The spatial and temporal subsidence variability of the East Mesa Geothermal Field, California, USA, and its potential impact on the All American Canal System. Int. J. Remote Sens. 2011, 32, 3427–3449. [Google Scholar] [CrossRef]
- Lubitz, C.; Motagh, M.; Wetzel, H.U.; Kaufmann, H. Remarkable Urban Uplift in Staufen im Breisgau, Germany: Observations from TerraSAR-X InSAR and Leveling from 2008 to 2011. Remote Sens. 2013, 5, 3082–3100. [Google Scholar] [CrossRef]
- Samsonov, S.; van der Kooij, M.; Tiampo, K. A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Comput. Geosci. 2011, 37, 1083–1091. [Google Scholar] [CrossRef]
- Hu, J.; Ding, X.-L.; Zhang, L.; Sun, Q.; Li, Z.-W.; Zhu, J.-J.; Lu, Z. Estimation of 3-D Surface Displacement Based on InSAR and Deformation Modeling. IEEE Trans. Geosci. Remote Sens. 2017, 1–10. [Google Scholar] [CrossRef]
- Raucoules, D.; de Michele, M.; Malet, J.P.; Ulrich, P. Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR). application to La Valette landslide (South French Alps). Remote Sens. Environ. 2013, 139, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Michel, R.; Avouac, J.P.; Taboury, J. Measuring near field coseismic displacements from SAR images: Application to the Landers earthquake. Geophys. Res. Lett. 1999, 26, 3017–3020. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Singleton, A.; Li, Z.; Hoey, T.; Muller, J.-P. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 2014, 147, 133–144. [Google Scholar] [CrossRef]
- He, L.; Wu, L.; Liu, S.; Wang, Z.; Su, C.; Liu, S.-N. Mapping Two-Dimensional Deformation Field Time-Series of Large Slope by Coupling DInSAR-SBAS with MAI-SBAS. Remote Sens. 2015, 7, 12440–12458. [Google Scholar] [CrossRef]
- Bechor, N.B.D.; Zebker, H.A. Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Samsonov, S.; Tiampo, K.; Rundle, J.; Li, Z. Application of DInSAR-GPS Optimization for Derivation of Fine-Scale Surface Motion Maps of Southern California. IEEE Trans. Geosci. Remote Sens. 2007, 45, 512–521. [Google Scholar] [CrossRef]
- Guglielmino, F.; Nunnari, G.; Puglisi, G.; Spata, A. Simultaneous and Integrated Strain Tensor Estimation From Geodetic and Satellite Deformation Measurements to Obtain Three-Dimensional Displacement Maps. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1815–1826. [Google Scholar] [CrossRef]
- Vollrath, A.; Zucca, F.; Bekaert, D.; Bonforte, A.; Guglielmino, F.; Hooper, A.J.; Stramondo, S. Decomposing DInSAR Time-Series into 3-D in Combination with GPS in the Case of Low Strain Rates: An Application to the Hyblean Plateau, Sicily, Italy. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Ozawa, T.; Ueda, H. Advanced interferometric synthetic aperture radar (InSAR) time series analysis using interferograms of multiple-orbit tracks: A case study on Miyake-jima. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Hu, J.; Ding, X.-L.; Li, Z.-W.; Zhu, J.-J.; Sun, Q.; Zhang, L. Kalman-filter-based approach for multisensor, multitrack, and multitemporal InSAR. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4226–4239. [Google Scholar] [CrossRef]
- Raw Precipitation Data. Available online: http://data.cma.cn/data/cdcindex/cid/6d1b5efbdcbf9a58.html (accessed on 10 March 2017).
- Jin, Q.; Cheng, F.Q.; Su, A.G.; Zhu, G.Y.; Wang, L.; Cao, Q. Biogas charging and dissipating process and its accumulation in the Sebei gasfield, Qaidam Basin, China. Sci. China Ser. D Earth Sci. 2008, 51, 36–44. [Google Scholar] [CrossRef]
- Ou, C.H. Fluid typing extends production in Chinese gas reservoir. Oil Gas J. 2015, 113, 54–61. [Google Scholar]
- Ou, C.H.; Wang, X.L.; Li, C.C.; He, Y. Three-Dimensional Modelling of a Multi-Layer Sandstone Reservoir: The Sebei Gas Field, China. Acta Geol. Sin. Engl. Ed. 2016, 90, 209–221. [Google Scholar] [CrossRef]
- Li, J.T.; Gao, J.F.; Tian, H.M.; Qian, Z.H.; Sun, Y.Q. Calculation and Evaluation of Dynamic Reserves in Sebei No. 1 Gas Field. Nat. Gas Ind. 2009, 29, 95–98. [Google Scholar]
- Petro China Qinghai Oilfield Company (PCQOC). Petro China Qinghai Oilfield Company Yearbook, 2008–2009; Tongxin Press: Beijing, China, 2011. [Google Scholar]
- Petro China Qinghai Oilfield Company (PCQOC). PetroChina Qinghai Oilfield Company Yearbook, 2011–2012; Dunhuang Literature and Art Publishing House: Lanzhou, China, 2012. [Google Scholar]
- Petro China Qinghai Oilfield Company (PCQOC). PetroChina Qinghai Oilfield Company Yearbook, 2013; Dunhuang Literature and Art Publishing House: Lanzhou, China, 2013. [Google Scholar]
- Petro China Qinghai Oilfield Company (PCQOC). PetroChina Qinghai Oilfield Company Yearbook, 2014; Gansu Culture Publishing House: Lanzhou, China, 2014. [Google Scholar]
- Petro China Qinghai Oilfield Company (PCQOC). PetroChina Qinghai Oilfield Company Yearbook, 2015; Gansu Culture Publishing House: Lanzhou, China, 2015. [Google Scholar]
- Petro China Qinghai Oilfield Company (PCQOC). PetroChina Qinghai Oilfield Company Yearbook, 2016; Gansu Culture Publishing House: Lanzhou, China, 2016. [Google Scholar]
- Wei, C.R.; Wang, Y.Z.; Li, Z.C. Calibration of recoverable reserves of three large gas fields in Qaidam Basin. Nat. Gas Ind. 2000, 20, 69–72. [Google Scholar]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Fiegl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Sentinel1 Orbit State Vectors. Available online: https://qc.sentinel1.eo.esa.int/ (accessed on 10 March 2017).
- Li, Z.W.; Ding, X.L.; Zheng, D.W.; Huang, C. Least squares-based filter for remote sensing image noise reduction. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2044–2049. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin, Germany, 2001; Volume 2. [Google Scholar]
- Lei, M.F.; Wang, Q.J.; Liu, X.L.; Xu, B.; Zhang, H.Q. Influence of ocean tidal loading on InSAR offshore areas deformation monitoring. Geodesy Geodyn. 2017, 8, 70–76. [Google Scholar] [CrossRef]
- Vasco, D.W.; Puskas, C.M.; Smith, R.B.; Meertens, C.M. Crustal deformation and source models of the Yellowstone volcanic field from geodetic data. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Mogi, K. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull. Earthquake Res. Inst. 1958, 36, 99–134. [Google Scholar]
- Tarantola, A. Inverse Problem Theory: Method for Data Fitting and Model Parameter Estimation; Elsevier: Amsterdam, The Netherlands, 1987; 613p. [Google Scholar]
- William, M. Geophysical Data Analysis: Discrete Inverse Theory; Academic Press, Inc.: Cambridge, MA, USA, 1989. [Google Scholar]
- Zhang, W.D.; Wang, X.L.; Zhang, D.; Yuan, W.K. Optimum Design of Horizontal Section Length of the Horizontal Wells in Sebei-2 Gas Field. Adv. Eng. Res. 2010, 4, 55–66. [Google Scholar]
- Biot, M.A. General Theory of Three—Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
Year | TN | SB1 | SB2 | Total | ||||
---|---|---|---|---|---|---|---|---|
Actual | Estimated | Actual | Estimated | Actual | Estimated | Actual | Estimated | |
2011 | 3.432 | - | 0.875 | - | 1.964 | - | 6.271 | - |
2012 | 2.854 | - | 1.560 | - | 1.597 | - | 6.011 | - |
2013 | 3.235 | - | 1.511 | - | 1.461 | - | 6.207 | - |
3–27 November 2014 | 2.838 | 2.769 | 1.381 | 1.271 | 1.171 | 0.987 | 5.390 | 5.027 |
14 January–14 December 2015 | 2.204 | 2.135 | 1.372 | 1.237 | 1.052 | 0.883 | 4.628 | 4.255 |
14 February–28 December 2016 | - | 1.994 | - | 1.251 | - | 0.834 | - | 4.079 |
21 January–2 July 2017 | - | 1.921 | - | 1.102 | - | 0.827 | - | 3.850 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hu, J.; Sun, Q.; Li, Z.; Zhu, J. Deriving 3-D Time-Series Ground Deformations Induced by Underground Fluid Flows with InSAR: Case Study of Sebei Gas Fields, China. Remote Sens. 2017, 9, 1129. https://doi.org/10.3390/rs9111129
Liu X, Hu J, Sun Q, Li Z, Zhu J. Deriving 3-D Time-Series Ground Deformations Induced by Underground Fluid Flows with InSAR: Case Study of Sebei Gas Fields, China. Remote Sensing. 2017; 9(11):1129. https://doi.org/10.3390/rs9111129
Chicago/Turabian StyleLiu, Xiaoge, Jun Hu, Qian Sun, Zhiwei Li, and Jianjun Zhu. 2017. "Deriving 3-D Time-Series Ground Deformations Induced by Underground Fluid Flows with InSAR: Case Study of Sebei Gas Fields, China" Remote Sensing 9, no. 11: 1129. https://doi.org/10.3390/rs9111129
APA StyleLiu, X., Hu, J., Sun, Q., Li, Z., & Zhu, J. (2017). Deriving 3-D Time-Series Ground Deformations Induced by Underground Fluid Flows with InSAR: Case Study of Sebei Gas Fields, China. Remote Sensing, 9(11), 1129. https://doi.org/10.3390/rs9111129