Improving Rainfall Erosivity Estimates Using Merged TRMM and Gauge Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rain Gauge Measurements
2.2. Satellite-Based Rainfall Measurements
2.3. Merging Daily Rain Gauge and Satellite Data
2.4. Estimation of Gauge-Based Rainfall by Block Kriging
2.5. Calculation of Rainfall Erosivity from Merged Daily Rainfall Data
2.6. Uncertainty Estimation
3. Results
3.1. Spatial Distribution of Daily Rainfall
3.2. Mean Annual Rainfall Erosivity over China
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, J.H.; Heo, J.H. Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. J. Hydrol. 2011, 409, 30–48. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; US Department of Agriculture: Washington, DC, USA, 1978.
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.F.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.R.; Miao, C.Y.; Chattopadhyay, N.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Xie, Y.; Nearing, M.A.; Wang, C. Estimation of rainfall erosivity using 5 to 60 minute fixed–interval rainfall data from China. Catena 2007, 70, 306–312. [Google Scholar] [CrossRef]
- Meusburger, K.; Steel, A.; Panagos, P.; Montanarella, L.; Alewell, C. Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrol. Earth Syst. Sci. 2012, 16, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadic, M.P.; Michaelides, S.; Hrabalikova, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.G.; Chen, X.H.; Wang, Z.L.; Wu, X.S.; Zhao, S.W.; Wu, X.Q.; Bai, W.K. Spatio-temporal variation in rainfall erosivity during 1960–2012 in the Pearl River Basin, China. Catena 2016, 137, 382–391. [Google Scholar] [CrossRef]
- Gu, Z.J.; Duan, X.W.; Liu, B.; Hu, J.M.; He, J.N. The spatial distribution and temporal variation of rainfall erosivity in the Yunnan Plateau, Southwest China: 1960–2012. Catena 2016, 145, 291–300. [Google Scholar]
- Angulo-Martinez, M.; Begueria, S. Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). J. Hydrol. 2009, 379, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Mikhailova, E.A.; Bryant, R.B.; Schwager, S.J.; Smith, S.D. Predicting rainfall erosivity in Honduras. Soil Sci. Soc. Am. J. 1997, 61, 273–279. [Google Scholar] [CrossRef]
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Ma, X.; He, Y.; Xu, J.; van Noordwijk, M.; Lu, X. Spatial and temporal variation in rainfall erosivity in a Himalayan watershed. Catena 2014, 121, 248–259. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R.; Moatamednia, M.; Behzadfar, M. Spatial and temporal variations in the rainfall erosivity factor in Iran. J. Agric. Sci. Technol. 2011, 13, 451–464. [Google Scholar]
- Bonilla, C.A.; Vidal, K.L. Rainfall erosivity in central Chile. J. Hydrol. 2011, 410, 126–133. [Google Scholar] [CrossRef]
- Kuhnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning—A random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ. 2014, 141, 129–143. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.P.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. Data descriptor: A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef] [PubMed]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z.B. An assessment of satellite-derived rainfall products relative to ground observations over East Africa. Remote Sens. 2017, 9, 430. [Google Scholar] [CrossRef]
- Satge, F.; Xavier, A.; Zola, R.P.; Hussain, Y.; Timouk, F.; Garnier, J.; Bonnet, M.P. Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main Bolivian watersheds. Remote Sens. 2017, 9, 369. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Vrieling, A.; Sterk, G.; de Jong, S.M. Satellite-based estimation of rainfall erosivity for Africa. J. Hydrol. 2010, 395, 235–241. [Google Scholar] [CrossRef]
- Chen, G.X.; Sha, W.M.; Iwasaki, T.; Ueno, K. Diurnal variation of rainfall in the Yangtze River Valley during the spring–summer transition from TRMM measurements. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Clarke, R.T.; Buarque, D.C. Statistically combining rainfall characteristics estimated from remote-sensed and rain gauge data sets in the Brazilian Amazon-Tocantins Basins. J. Geophys. Res. Atmos. 2013, 118, 7467–7480. [Google Scholar] [CrossRef]
- Muller, M.F.; Thompson, S.E. Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and application to Nepal. Adv. Water Resour. 2013, 60, 121–134. [Google Scholar] [CrossRef]
- Sanchez-Moreno, J.F.; Mannaerts, C.M.; Jetten, V. Applicability of satellite rainfall estimates for erosion studies in small offshore areas: A case study in Cape Verde Islands. Catena 2014, 121, 365–374. [Google Scholar] [CrossRef]
- Vrieling, A.; Hoedjes, J.C.B.; van der Velde, M. Towards large-scale monitoring of soil erosion in Africa: Accounting for the dynamics of rainfall erosivity. Global Planet. Chang. 2014, 115, 33–43. [Google Scholar] [CrossRef]
- Teng, H.F.; Rossel, R.A.V.; Shi, Z.; Behrens, T.; Chappell, A.; Bui, E. Assimilating satellite imagery and visible-near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environ. Model. Softw. 2016, 77, 156–167. [Google Scholar] [CrossRef]
- Kumar, R.; Varma, A.K.; Mishra, A.; Gairola, R.M.; Das, I.M.L.; Sarkar, A.; Agarwal, V.K. Comparison of TRMM TMI and PR version 5 and 6 precipitation data products under cyclonic weather conditions. IEEE Geosci. Remote Sens. Lett. 2009, 6, 378–382. [Google Scholar] [CrossRef]
- Chen, S.; Hong, Y.; Cao, Q.; Gourley, J.J.; Kirstetter, P.E.; Yong, B.; Tian, Y.D.; Zhang, Z.X.; Shen, Y.; Hu, J.J.; et al. Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. J. Geophys. Res. Atmos. 2013, 118, 13060–13074. [Google Scholar] [CrossRef]
- Yong, B.; Chen, B.; Gourley, J.J.; Ren, L.L.; Hong, Y.; Chen, X.; Wang, W.G.; Chen, S.; Gong, L.Y. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol. 2014, 508, 77–87. [Google Scholar]
- De Goncalves, L.G.G.; Shuttleworth, W.J.; Nijssen, B.; Burke, E.J.; Marengo, J.A.; Chou, S.C.; Houser, P.; Toll, D.L. Evaluation of model-derived and remotely sensed precipitation products for continental South America. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Tang, G.Q.; Long, D.; Hong, Y. Systematic anomalies over inland water bodies of High Mountain Asia in TRMM precipitation estimates: No longer a problem for the GPM era? IEEE Geosci. Remote. Sens. Lett. 2016, 13, 1762–1766. [Google Scholar] [CrossRef]
- Li, M.; Shao, Q.X. An improved statistical approach to merge satellite rainfall estimates and raingauge data. J. Hydrol. 2010, 385, 51–64. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J.J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Woldemeskel, F.M.; Sivakumar, B.; Sharma, A. Merging gauge and satellite rainfall with specification of associated uncertainty across Australia. J. Hydrol. 2013, 499, 167–176. [Google Scholar] [CrossRef]
- Chappell, A.; Renzullo, L.J.; Raupach, T.H.; Haylock, M. Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. J. Hydrol. 2013, 493, 105–114. [Google Scholar] [CrossRef]
- Velasco-Forero, C.A.; Sempere-Torres, D.; Cassiraga, E.F.; Gomez-Hernandez, J.J. A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv. Water Resour. 2009, 32, 986–1002. [Google Scholar] [CrossRef]
- Goovaerts, P. Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena 1999, 34, 227–242. [Google Scholar] [CrossRef]
- Clarke, R.T.; Buarque, D.C.; de Paiva, R.C.D.; Collischonn, W. Issues of spatial correlation arising from the use of TRMM rainfall estimates in the Brazilian Amazon. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, X.W.; Fan, Q.X.; Jin, H.P.; Li, J.R. A new procedure to estimate the rainfall erosivity factor based on Tropical Rainfall Measuring Mission (TRMM) data. Sci. China Technol. Sci. 2011, 54, 2437–2445. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.J.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Yu, B. Rainfall erosivity and its estimation for Australia’s tropics. Aust. J. Soil Res. 1998, 36, 143–165. [Google Scholar] [CrossRef]
- Xie, Y.; Yin, S.Q.; Liu, B.Y.; Nearing, M.A.; Zhao, Y. Models for estimating daily rainfall erosivity in China. J. Hydrol. 2016, 535, 547–558. [Google Scholar] [CrossRef]
- Zhang, W.B.; Xie, Y.; Liu, B.Y. Rainfall erosivity estimation using daily rainfall amounts. Sci. Geogr. Sin. 2002, 22, 705–711. [Google Scholar]
- Sun, W.Y.; Shao, Q.Q.; Liu, J.Y.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Qin, W.; Guo, Q.K.; Zuo, C.Q.; Shan, Z.J.; Ma, L.; Sun, G. Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951–2010. Catena 2016, 147, 177–186. [Google Scholar] [CrossRef]
- Zhang, W.B.; Fu, J.S. Rainfall erosivity estimation under different rainfall amount. Resour. Sci. 2003, 25, 35–41. [Google Scholar]
- Xie, Y.; Liu, B.Y.; Zhang, W.B. Study on standard of erosive rainfall. J. Soil Water Conserv. 2000, 14, 6–11. [Google Scholar]
- Shin, D.B.; Kim, J.H.; Park, H.J. Agreement between monthly precipitation estimates from TRMM satellite, NCEP reanalysis, and merged gauge-satellite analysis. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Da Silva, A.M. Rainfall erosivity map for Brazil. Catena 2004, 57, 251–259. [Google Scholar] [CrossRef]
- Mello, C.R.; Viola, M.R.; Beskow, S.; Norton, L.D. Multivariate models for annual rainfall erosivity in Brazil. Geoderma 2013, 202–203, 88–102. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A. Rainfall erosivity in Brazil: A review. Catena 2013, 100, 139–147. [Google Scholar] [CrossRef]
- Khanal, S.; Anex, R.P.; Anderson, C.J.; Herzmann, D.E.; Jha, M.K. Implications of biofuel policy-driven land cover change for rainfall erosivity and soil erosion in the United States. GCB Bioenergy 2013, 5, 713–722. [Google Scholar] [CrossRef]
- Schonbrodt-Stitt, S.; Bosch, A.; Behrens, T.; Hartmann, H.; Shi, X.Z.; Scholten, T. Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China. Environ. Sci. Pollut. Res. 2013, 20, 6917–6933. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Xie, Y.; Liu, B.; Nearing, M.A. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions. Hydrol. Earth Syst. Sci. 2015, 19, 4113–4126. [Google Scholar] [CrossRef]
- Zhu, Z.; Yu, B. Validation of rainfall erosivity estimators for mainland China. Trans. ASABE 2015, 58, 61–71. [Google Scholar]
- Fan, J.R.; Chen, Y.; Yan, D.; Guo, F.F. Characteristics of rainfall erosivity based on tropical rainfall measuring mission data in Tibet, China. J. Mt. Sci. 2013, 10, 1008–1017. [Google Scholar] [CrossRef]
Climate Region | Training Gauges | Testing Gauges | Total Gauges | Percentage (%) |
---|---|---|---|---|
Humid | 200 | 100 | 300 | 46.15 |
Semi–humid | 88 | 45 | 133 | 20.46 |
Semi–arid | 87 | 44 | 131 | 20.15 |
Arid | 58 | 28 | 86 | 13.23 |
China | 433 | 217 | 650 | 100.00 |
Climate Region | BK Gauges | TRMM | ColCOK | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | Bias | R2 | RMSE | Bias | R2 | RMSE | Bias | R2 | |
3 June 2012 | |||||||||
Humid | 38.61 | −0.30 | 0.67 | 18.48 | 1.72 | 0.34 | 33.11 | −0.27 | 0.73 |
Semi-humid | 42.64 | −0.03 | 0.53 | 8.58 | 2.88 | 0.83 | 39.76 | −0.03 | 0.55 |
Semi-arid | 22.27 | 0.13 | 0.15 | 9.76 | 2.89 | 0.18 | 21.00 | 0.01 | 0.21 |
Arid | 9.40 | −0.54 | 0.09 | 4.34 | 0.04 | 0.53 | 7.71 | −0.69 | 0.17 |
China | 35.01 | −0.21 | 0.61 | 14.18 | 2.00 | 0.47 | 30.63 | −0.20 | 0.66 |
9 November 2012 | |||||||||
Humid | 29.57 | 0.14 | 0.79 | 19.31 | 2.64 | 0.55 | 28.05 | −0.07 | 0.84 |
Semi-humid | 4.54 | −0.30 | 0.19 | 0.38 | 24.41 | 0.22 | 2.36 | −0.74 | 0.29 |
Semi-arid | 5.75 | −0.16 | 0.77 | 3.60 | 4.02 | 0.00 | 8.05 | −0.65 | 0.56 |
Arid | 1.51 | 0.94 | 0.04 | 7.33 | 0.75 | 0.01 | 0.39 | −0.69 | 0.01 |
China | 20.78 | 0.11 | 0.76 | 13.32 | 2.67 | 0.53 | 18.15 | −0.16 | 0.83 |
Climate Region | BK Gauges | TRMM | ColCOK | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | Bias | R2 | RMSE | Bias | R2 | RMSE | Bias | R2 | |
Humid | 1298.97 | 0.06 | 0.70 | 2185.74 | 0.02 | 0.50 | 1063.08 | 0.03 | 0.80 |
Semi-humid | 556.09 | −0.10 | 0.76 | 1253.92 | −0.20 | 0.28 | 465.12 | −0.12 | 0.81 |
Semi-arid | 233.17 | −0.02 | 0.75 | 731.86 | −0.19 | 0.11 | 207.59 | −0.19 | 0.74 |
Arid | 84.39 | −0.32 | 0.58 | 82.39 | 0.10 | 0.52 | 55.91 | −0.69 | 0.59 |
China | 988.37 | 0.03 | 0.86 | 1649.71 | −0.02 | 0.72 | 796.62 | −0.01 | 0.91 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, H.; Ma, Z.; Chappell, A.; Shi, Z.; Liang, Z.; Yu, W. Improving Rainfall Erosivity Estimates Using Merged TRMM and Gauge Data. Remote Sens. 2017, 9, 1134. https://doi.org/10.3390/rs9111134
Teng H, Ma Z, Chappell A, Shi Z, Liang Z, Yu W. Improving Rainfall Erosivity Estimates Using Merged TRMM and Gauge Data. Remote Sensing. 2017; 9(11):1134. https://doi.org/10.3390/rs9111134
Chicago/Turabian StyleTeng, Hongfen, Ziqiang Ma, Adrian Chappell, Zhou Shi, Zongzheng Liang, and Wu Yu. 2017. "Improving Rainfall Erosivity Estimates Using Merged TRMM and Gauge Data" Remote Sensing 9, no. 11: 1134. https://doi.org/10.3390/rs9111134
APA StyleTeng, H., Ma, Z., Chappell, A., Shi, Z., Liang, Z., & Yu, W. (2017). Improving Rainfall Erosivity Estimates Using Merged TRMM and Gauge Data. Remote Sensing, 9(11), 1134. https://doi.org/10.3390/rs9111134