Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Sierra Nevada Meadows
2.2. Google Earth Engine (GEE) Image Processing and Noise Removal
2.3. Testing for Differences in NDVI Mean
2.4. NDVI Outlier Frequency
2.5. NDVI Trends
3. Results
3.1. Mean NDVI—Before and After Fire
3.2. NDVI Outlier Frequency
3.3. NDVI Trends
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ACCA | Automatic Cloud Cover Assessment |
AVHRR | Advanced very-high-resolution radiometer satellite |
dNBR | Differenced Normalized Burn Ratio |
EOS | Earth Observation Systems |
GEE | Google Earth Engine |
MODIS | moderate-resolution imaging spectroradiometer satellite |
Landsat TM | Landsat Thematic Mapper satellite |
NBR | Normalized Burn Ratio |
NDVI | normalized difference vegetation index |
References
- Lunetta, R.S.; Elvidge, C.D. Remote Sensing Change Detection: Environmental Monitoring Methods and Applications; Taylor & Francis Ltd.: Philadelphia, PA, USA, 1999. [Google Scholar]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Van Leeuwen, W.J.D.; Huete, A.R.; Laing, T.W. MODIS vegetation index compositing approach: A prototype with AVHRR data. Remote Sens. Environ. 1999, 69, 264–280. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.; Phinn, S.; Taylor, M. Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sens. Appl.: Soc. Environ. 2015, 1, 36–49. [Google Scholar] [CrossRef]
- Patel, N.N.; Angiuli, E.; Gamba, P.; Gaughan, A.; Lisini, G.; Stevens, F.R.; Trianni, G. Multitemporal settlement and population mapping from Landsat using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinform. 2015, 35, 199–208. [Google Scholar] [CrossRef]
- Friedl, M.A.; Gray, J.M.; Melaas, E.K.; Richardson, A.D.; Hufkens, K.; Keenan, T.F.; O’Keefe, J. A tale of two springs: Using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ. Res. Lett. 2014, 9, 054006. [Google Scholar] [CrossRef]
- Sawyer, P.S.; Stephen, H. The big pine creek watershed and climate change: A trend analysis of Landsat surface reflectance and PRISM datasets over the last 3 decades. Adv. Space Res. 2014, 54, 37–48. [Google Scholar] [CrossRef]
- Wittenberg, L.; Malkinson, D.; Beeri, O.; Halutzy, A.; Tesler, N. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. CATENA 2007, 71, 76–83. [Google Scholar] [CrossRef]
- Potter, C. Ten years of forest cover change in the Sierra Nevada detected using Landsat satellite image analysis. Int. J. Remote Sens. 2010, 35, 7136–7153. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Moisen, G.G.; Frescino, T.S. Comparing five modelling techniques for predicting forest characteristics. Ecol. Model. 2002, 157, 209–225. [Google Scholar] [CrossRef]
- Rollins, M.G. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildland Fire 2009, 18, 235. [Google Scholar] [CrossRef]
- Nelson, K.J.; Connot, J.; Peterson, B.; Martin, C. The landfire refresh strategy: Updating the national dataset. Fire Ecol. 2013, 9, 80–101. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous fields of land cover for the conterminous United States using Landsat data: First results from the Web-Enabled Landsat Data (WELD) project. Remote Sens. Lett. 2011, 2, 279–288. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Jin, S.; Yang, L.; Danielson, P.; Homer, C.; Fry, J.; Xian, G. A comprehensive change detection method for updating the national land cover database to circa 2011. Remote Sens. Environ. 2013, 132, 159–175. [Google Scholar] [CrossRef]
- Masek, J.G.; Goward, S.N.; Kennedy, R.E.; Cohen, W.B.; Moisen, G.G.; Schleeweis, K.; Huang, C. United States forest disturbance trends observed using Landsat time series. Ecosystems 2013, 16, 1087–1104. [Google Scholar] [CrossRef]
- Barrachina, M.; Cristóbal, J.; Tulla, A.F. Estimating above-ground biomass on mountain meadows and pastures through remote sensing. Int. J. Appl. Earth Obs. Geoinform. 2015, 38, 184–192. [Google Scholar] [CrossRef]
- Smith, R.S.; Shiel, R.S.; Millward, D.; Corkhill, P.; Sanderson, R.A. Soil seed banks and the effects of meadow management on vegetation change in a 10-year meadow field trial. J. Appl. Ecol. 2002, 39, 279–293. [Google Scholar] [CrossRef]
- Null, S.E.; Viers, J.H.; Mount, J.F. Hydrologic response and watershed sensitivity to climate warming in California’s Sierra Nevada. PLoS ONE 2010, 5, e9932. [Google Scholar] [CrossRef] [PubMed]
- Ratliff, R.D. Meadows in the Sierra Nevada of California: State of knowledge; General Technical Report, PSW-GTR-84.; Pacific Southwest Forest and Range Experiment Station, Forest Service, Department of Agriculture: Berkeley, CA, USA, 1985. [Google Scholar]
- Debinski, D.M.; Jakubauskas, M.E.; Kindscher, K. Montane meadows as indicators of environmental change. Environ. Monit. Assess. 2000, 64, 213–225. [Google Scholar] [CrossRef]
- Moore, P.E.; van Wagtendonk, J.W.; Yee, J.L.; McClaran, M.P.; Cole, D.N.; McDougald, N.K.; Brooks, M.L. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability. West. N. Am. Nat. 2013, 73, 409–418. [Google Scholar] [CrossRef]
- Dwire, K.; Kauffman, J. Fire and riparian ecosystems in landscapes of the western USA. For. Ecol. Manag. 2003, 178, 61–74. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Finco, M.; Quayle, B.; Zhang, Y.; Lecker, J.; Megown, K.A.; Brewer, C.K. Others monitoring trends and burn severity (MTBS): Monitoring wildfire activity for the past quarter century using Landsat data. In Proceedings of the Moving from Status to Trends: Forest Inventory and Analysis (FIA) Symposium, Baltimore, MD, USA, 4–6 December 2012; pp. 222–228.
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Viers, F.-H. Sierra Nevada Multi-Source Meadow Polygons Compilation (v 1.0); Center for Watershed Sciences, UC Davis: Davis, CA, USA, 2012. [Google Scholar]
- Keeler-Wolf, T.; Moore, P.E.; Reyes, E.T.; Menke, J.M.; Johnson, D.N.; Karavidas, D.L. Yosemite National Park Vegetation Classification and Mapping Project Report; National Park Service: Fort Collins, CO, USA, 2012. [Google Scholar]
- Pretty, R. cpt. mean ${$changepoint$}$ Identifying Changes in Mean. CRAN Repository 2015. Available online: https://github.com/rkillick/changepoint/ (accessed on 22 April 2016).
- Scott, A.J.; Knott, M. A cluster analysis method for grouping means in the analysis of variance. Biometrics 1974, 30, 507–518. [Google Scholar] [CrossRef]
- Monitoring Trends in Burn Severity (2014). National MTBS Burn Severity Mosaics: 1984–2014. Available online: http://www.mtbs.gov/nationalregional/download.html (accessed on 22 April 2016).
- California Department of Forestry Fire and Resource Assessment Program. Fire Perimeters (firep14_2). 2014 version 2. Available online: http://frap.cdf.ca.gov/data/frapgisdata-sw-fireperimeters_download (accessed on 22 April 2016).
- Tasumi, M.; Allen, R.G.; Trezza, R. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Van Wagtendonk, J.W.; Root, R.R. The use of multi-temporal landsat normalized difference vegetation index (NDVI) data for mapping fuel models in Yosemite National Park, USA. Int. J. Remote Sens. 2003, 24, 1639–1651. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: Nashville, TN, USA, 1976. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, I, II, III. Nederl. Akad. Wetensch 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379. [Google Scholar] [CrossRef]
- McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test. Available online: http://finzi.psych.upenn.edu/library/Kendall/html/00Index.html (accessed on 22 April 2016).
- Kulkarni, A.; Von Storch, H. Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol. Z. 1995, 4, 82–85. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Processes 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Bronaugh, D.; Werner, A.; Bronaugh, M.D. Package “ZYP.”. Available online: https://cran.r-project.org/web/packages/zyp/index.html (accessed on 22 April 2016).
- Komsta, L. Median-Based Linear Models. Available online: http://artax.karlin.mff.cuni.cz/r-help/library/mblm/html/mblm.html (accessed on 22 April 2016).
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evolut. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.F.; Moir, W.H.; Douglas, G.W.; Wiberg, C. Invasion of subalpine meadows by trees in the Cascade Range, Washington and Oregon. Arctic Alpine Res. 1971, 3, 215–225. [Google Scholar] [CrossRef]
- Lang, N.L.; Halpern, C.B. The soil seed bank of a montane meadow: Consequences of conifer encroachment and implications for restoration. Can. J. Bot. 2007, 85, 557–569. [Google Scholar] [CrossRef]
- Jones, B.E.; Rickman, T.H.; Vazquez, A.; Sado, Y.; Tate, K.W. Removal of encroaching conifers to regenerate degraded aspen stands in the Sierra Nevada. Restor. Ecol. 2005, 13, 373–379. [Google Scholar] [CrossRef]
- White, J.D.; Ryan, K.C.; Key, C.C.; Running, S.W. Remote sensing of forest fire severity and vegetation recovery. Int. J. Wildland Fire 1996, 6, 125–136. [Google Scholar] [CrossRef]
- Norman, S.P.; Taylor, A.H. Pine forest expansion along a forest-meadow ecotone in northeastern California, USA. For. Ecol. Manag. 2005, 215, 51–68. [Google Scholar] [CrossRef]
- Gross, S.; Coppoletta, M. Historic Range of Variability for Meadows in the Sierra Nevada and South Cascades; USDA Forest Service, Region 5: Vallejo, CA, USA, 2013. [Google Scholar]
- Woodward, A.; Schreiner, E.G.; Silsbee, D.G. Climate, geography, and tree establishment in subalpine meadows of the Olympic Mountains, Washington, USA. Arctic Alpine Res. 1995, 27, 217–225. [Google Scholar] [CrossRef]
- Haugo, R.D.; Halpern, C.B. Vegetation responses to conifer encroachment in a dry, montane meadow: A chronosequence approach. Can. J. Bot. 2007, 85, 285–298. [Google Scholar] [CrossRef]
Burned | Post Fire Interval Length | Pre Fire Mean | Post Fire Mean | Pre–Post | P(T ≤ t) | ||
---|---|---|---|---|---|---|---|
Dormant | January 1996 | to | January 1997 | 0.445 | 0.342 | 0.103 | 0.017 |
Dormant | January 1997 | to | January 1998 | 0.445 | 0.247 | 0.197 | <0.001 |
Dormant | January 1998 | to | January 1999 | 0.445 | 0.307 | 0.137 | 0.003 |
Dormant | January 1999 | to | January 2000 | 0.445 | 0.375 | 0.070 | 0.056 |
Dormant | January 2000 | to | January 2001 | 0.445 | 0.310 | 0.135 | 0.003 |
Dormant | January 1996 | to | January 2001 | 0.445 | 0.318 | 0.126 | 0.004 |
Dormant | January 2001 | to | January 2006 | 0.445 | 0.292 | 0.153 | 0.001 |
Dormant | January 2006 | to | January 2012 | 0.445 | 0.300 | 0.145 | 0.001 |
Dormant | January 1996 | to | January 2012 | 0.445 | 0.318 | 0.126 | 0.004 |
Growing | January 1996 | to | January 1997 | 0.545 | 0.585 | −0.039 | 0.088 |
Growing | January 1997 | to | January 1998 | 0.545 | 0.444 | 0.101 | 0.001 |
Growing | January 1998 | to | January 1999 | 0.545 | 0.529 | 0.017 | 0.262 |
Growing | January 1999 | to | January 2000 | 0.545 | 0.551 | −0.005 | 0.420 |
Growing | January 2000 | to | January 2001 | 0.545 | 0.538 | 0.007 | 0.386 |
Growing | January 1996 | to | January 2001 | 0.545 | 0.524 | 0.021 | 0.205 |
Growing | January 2001 | to | January 2006 | 0.545 | 0.519 | 0.026 | 0.149 |
Growing | January 2006 | to | January 2012 | 0.545 | 0.515 | 0.030 | 0.118 |
Growing | January 1996 | to | January 2012 | 0.545 | 0.521 | 0.025 | 0.169 |
All | January 1996 | to | January 2012 | 0.500 | 0.419 | 0.080 | 0.008 |
Unburned | Post Fire Interval Length | Pre Fire Mean | Post Fire Mean | Pre–Post | P(T ≤ t) | ||
---|---|---|---|---|---|---|---|
Dormant | January 1996 | to | January 1997 | 0.349 | 0.288 | 0.103 | 0.108 |
Dormant | January 1997 | to | January 1998 | 0.349 | 0.241 | 0.197 | 0.012 |
Dormant | January 1998 | to | January 1999 | 0.349 | 0.284 | 0.137 | 0.092 |
Dormant | January 1999 | to | January 2000 | 0.349 | 0.299 | 0.070 | 0.157 |
Dormant | January 2000 | to | January 2001 | 0.349 | 0.301 | 0.135 | 0.164 |
Dormant | January 1996 | to | January 2001 | 0.349 | 0.294 | 0.126 | 0.125 |
Dormant | January 2001 | to | January 2006 | 0.349 | 0.291 | 0.153 | 0.104 |
Dormant | January 2006 | to | January 2012 | 0.349 | 0.306 | 0.145 | 0.178 |
Dormant | January 1996 | to | January 2012 | 0.349 | 0.302 | 0.126 | 0.160 |
Growing | January 1996 | to | January 1997 | 0.492 | 0.544 | -0.039 | 0.030 |
Growing | January 1997 | to | January 1998 | 0.492 | 0.368 | 0.101 | <0.001 |
Growing | January 1998 | to | January 1999 | 0.492 | 0.493 | 0.017 | 0.472 |
Growing | January 1999 | to | January 2000 | 0.492 | 0.507 | -0.005 | 0.267 |
Growing | January 2000 | to | January 2001 | 0.492 | 0.516 | 0.007 | 0.135 |
Growing | January 1996 | to | January 2001 | 0.492 | 0.484 | 0.021 | 0.361 |
Growing | January 2001 | to | January 2006 | 0.492 | 0.481 | 0.026 | 0.322 |
Growing | January 2006 | to | January 2012 | 0.492 | 0.482 | 0.030 | 0.331 |
Growing | January 1996 | to | January 2012 | 0.492 | 0.483 | 0.025 | 0.350 |
All | January 1996 | to | January 2012 | 0.427 | 0.392 | 0.080 | 0.141 |
# of Months | Period | Burned (Mean) | Frequency (%) | Unburned (Mean) | Frequency (%) | p-Value |
---|---|---|---|---|---|---|
Within Range | 1996–2001 | 35.85 | 60% | 42.42 | 71% | 0.002 |
Within Range | 2001–2006 | 33.71 | 56% | 39.42 | 66% | 0.03 |
Within Range | 2006–2012 | 41.07 | 54% | 48.75 | 64% | 0.004 |
Within Range | 1996–2012 | 108.21 | 55% | 128.75 | 66% | 0.003 |
Within Range | 2001–2012 | 74.14 | 55% | 87.58 | 64% | 0.007 |
Below Range | 1996–2001 | 21.14 | 35% | 11.42 | 19% | <0.001 |
Below Range | 2001–2006 | 24.86 | 41% | 11.50 | 19% | <0.001 |
Below Range | 2006–2012 | 31.29 | 41% | 13.58 | 18% | <0.001 |
Below Range | 1996–2012 | 78.07 | 40% | 36.50 | 19% | <0.001 |
Below Range | 2001–2012 | 55.77 | 41% | 24.92 | 18% | <0.001 |
Dormant Season 1985–2012 | Growing Season 1985–2012 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Kendall | Theil Sen | Kendall | Theil Sen | ||||||
ID | tau | p-value | Slope | MTBS dNBR | ID | tau | p-value | Slope | MTBS dNBR |
2807 | −0.233 | 0.09 | −0.0022 | 0.0 | 2807 | −0.270 | 0.05 | −0.0016 | 0.0 |
2811 | −0.497 | 0.00 | −0.0090 | 82.4 | 2811 | −0.376 | 0.01 | −0.0027 | 82.4 |
2835 | −0.550 | 0.00 | −0.0103 | 60.6 | 2835 | −0.444 | 0.00 | −0.0038 | 60.6 |
2878 * | −0.429 | 0.00 | −0.0067 | 87.1 | 2867 | −0.259 | 0.06 | −0.0019 | 0.0 |
2880 | −0.577 | 0.00 | −0.0113 | 86.0 | 2878 * | −0.360 | 0.01 | −0.0029 | 87.1 |
2882 | −0.259 | 0.06 | −0.0018 | 0.0 | 2880 | −0.259 | 0.06 | −0.0018 | 86.0 |
2886 | −0.434 | 0.00 | −0.0054 | 0.0 | 2886 | −0.296 | 0.03 | −0.0016 | 0.0 |
2887 | −0.667 | 0.00 | −0.0221 | 205.6 | 2887 | −0.481 | 0.00 | −0.0045 | 205.6 |
2893 | −0.503 | 0.00 | −0.0063 | 0.0 | 2893 | −0.333 | 0.01 | −0.0029 | 0.0 |
2900 * | −0.582 | 0.00 | −0.0096 | 190.8 | 2895 | −0.212 | 0.12 | −0.0016 | 70.2 |
2905 | −0.460 | 0.00 | −0.0069 | 93.5 | 2900* | −0.344 | 0.01 | −0.0029 | 190.8 |
2918 | −0.651 | 0.00 | −0.0139 | 117.7 | 2905 | −0.275 | 0.04 | −0.0013 | 93.5 |
2923 * | 0.222 | 0.10 | 0.0020 | 42.6 | 2918 | −0.413 | 0.00 | −0.0031 | 117.7 |
2944 | −0.365 | 0.01 | −0.0051 | 71.3 | 2944 | −0.307 | 0.02 | −0.0019 | 71.3 |
2950 | −0.291 | 0.03 | −0.0037 | 76.9 | 2959 | −0.254 | 0.06 | −0.0021 | 135.8 |
2959 | −0.667 | 0.00 | −0.0163 | 135.8 | 2971 | −0.222 | 0.10 | −0.0021 | 97.9 |
2971 | −0.540 | 0.00 | −0.0100 | 97.9 | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soulard, C.E.; Albano, C.M.; Villarreal, M.L.; Walker, J.J. Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California. Remote Sens. 2016, 8, 371. https://doi.org/10.3390/rs8050371
Soulard CE, Albano CM, Villarreal ML, Walker JJ. Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California. Remote Sensing. 2016; 8(5):371. https://doi.org/10.3390/rs8050371
Chicago/Turabian StyleSoulard, Christopher E., Christine M. Albano, Miguel L. Villarreal, and Jessica J. Walker. 2016. "Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California" Remote Sensing 8, no. 5: 371. https://doi.org/10.3390/rs8050371
APA StyleSoulard, C. E., Albano, C. M., Villarreal, M. L., & Walker, J. J. (2016). Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California. Remote Sensing, 8(5), 371. https://doi.org/10.3390/rs8050371