Multiyear Arctic Ice Classification Using ASCAT and SSMIS
Abstract
:1. Introduction
2. Methodology
2.1. Sensor Information
2.2. Sensors and Data Sources
2.3. Comparison Datasets
2.4. ASCAT/SSMIS Classification
3. Results and Discussion
3.1. CIS Chart Comparison
3.2. Ice Extent Time Series
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Swan, A.; Long, D. Multiyear Arctic sea ice classification using QuikSCAT. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3317–3326. [Google Scholar] [CrossRef]
- Lindell, D.; Long, D. Multiyear Arctic sea ice classification using OSCAT and QuikSCAT. IEEE Trans. Geosci. Remote Sens. 2016, 54, 167–175. [Google Scholar] [CrossRef]
- Kwok, R. Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Kwok, R.; Rignot, E.; Holt, B.; Onstott, R. Identification of sea ice types in spaceborne synthetic aperture radar data. J. Geophys. Res. 1992, 97, 2391–2402. [Google Scholar] [CrossRef]
- Nghiem, S.; Bertoia, C. Study of multi-polarization C-band backscatter signatures for Arctic sea ice mapping with future satellite SAR. Can. J. Remote Sens. 2001, 27, 387–402. [Google Scholar] [CrossRef]
- Zakhvatkina, N.; Alexandrov, V.; Johannessen, O.; Sandven, S.; Frolov, I. Classification of sea ice types in ENVISAT synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2587–2600. [Google Scholar] [CrossRef]
- Casey, J.A.; Howell, S.E.; Tivy, A.; Haas, C. Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season. Remote Sens. Environ. 2016, 174, 314–328. [Google Scholar] [CrossRef]
- Comiso, J. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data. J. Geophys. Res. 1990, 95, 13411–13422. [Google Scholar] [CrossRef]
- Lomax, A.; Lubin, D.; Whritner, R. The potential for interpreting total and multiyear ice concentrations in SSM/I 85.5 GHz imagery. Remote Sens. Environ. 1995, 54, 13–26. [Google Scholar] [CrossRef]
- Belchansky, G.; Douglas, D.; Platonov, N. Spatial and temporal variations in the age structure of Arctic sea ice. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Comiso, J. Large decadal decline of the Arctic multiyear ice cover. J. Clim. 2012, 25, 1176–1193. [Google Scholar] [CrossRef]
- Cavalieri, D. NASA Team Sea Ice Algorithm. Available online: http://nsidc.org/data/docs/daac/nasateam/ (accessed on 28 March 2016).
- Comiso, J. SSM/I Concentration Using the Bootstrap Algorithm; NASA Report 1380; NASA Center for Aerospace Information: Linthicum Heights, MD, USA, 1995. [Google Scholar]
- Shokr, M.; Agnew, T. Validation and potential applications of Environment Canada Ice Concentration Extractor (ECICE) algorithm to Arctic ice by combining AMSR-E and QuikSCAT observations. Remote Sens. Environ. 2013, 128, 315–332. [Google Scholar] [CrossRef]
- Yu, P.; Clausi, D.; Howell, S. Fusing AMSR-E and QuikSCAT imagery for improved sea ice recognition. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1980–1989. [Google Scholar] [CrossRef]
- Walker, N.; Partington, K.; Van Woert, M.; Street, T. Arctic sea ice type and concentration mapping using passive and active microwave sensors. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3574–3584. [Google Scholar] [CrossRef]
- Screen, J.; Simmonds, I.; Deser, C.; Tomas, R. The atmospheric response to three decades of observed Arctic sea ice loss. J. Clim. 2013, 26, 1230–1248. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [PubMed]
- Kwok, R.; Spreen, G.; Pang, S. Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. J. Geophys. Res. Oceans 2013, 118, 2408–2425. [Google Scholar] [CrossRef]
- Maslanik, J.; Stroeve, J.; Fowler, C.; Emery, W. Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett. 2011, 38, L13502. [Google Scholar] [CrossRef]
- Schweiger, A.; Lindsay, R.; Zhang, J.; Steele, M.; Stern, H.; Kwok, R. Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res. Oceans 2011, 116, C00D06. [Google Scholar] [CrossRef]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef]
- Rivas, M.; Verspeek, J.; Verhoef, A.; Stoffelen, A. Bayesian sea ice detection with the Advanced Scatterometer ASCAT. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2649–2657. [Google Scholar] [CrossRef]
- Mortin, J.; Howell, S.; Wang, L.; Derksen, C.; Svensson, G.; Graversen, R.; Schrøder, T. Extending the QuikSCAT record of seasonal melt–freeze transitions over Arctic sea ice using ASCAT. Remote Sens. Environ. 2014, 141, 214–230. [Google Scholar] [CrossRef]
- Rivas, M.B.; Stoffelen, A. New Bayesian Algorithm for sea ice detection with QuikSCAT. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1894–1901. [Google Scholar] [CrossRef]
- Onstott, R.G. SAR and scatterometer signatures of sea ice. In Microwave Remote Sensing of Sea Ice; Carsey, F.D., Ed.; American Geophysical Union: Washington, DC, USA, 1992. [Google Scholar] [CrossRef]
- Shokr, M.E. Field observations and model calculations of dielectric properties of Arctic sea ice in the microwave C-band. IEEE Trans. Geosci. Remote Sens. 1998, 36, 463–478. [Google Scholar] [CrossRef]
- Eppler, D.; Farmer, L.; Lohanick, A.; Anderson, M.; Cavalieri, D.; Comiso, J.; Glorsen, P.; Garrity, C.; Grenfell, T.; Hallikainen, M.; et al. Passive microwave signatures of sea ice. In Microwave Remote Sensing of Sea Ice; Carsey, F.D., Ed.; American Geophysical Union: Washington, DC, USA, 1992. [Google Scholar] [CrossRef]
- Vant, M.; Ramseier, R.; Makios, V. The complex-dielectric constant of sea ice at frequencies in the range 0.1–40 GHz. J. Appl. Phys. 1978, 49, 1264–1280. [Google Scholar] [CrossRef]
- Scatterometer Climate Record Pathfinder. Available online: http://www.scp.byu.edu/ (accessed on 28 March 2016).
- Cavalieri, D.; Parkinson, C.; Gloersen, P.; Zwally, H. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. Available online: http://dx.doi.org/10.5067/8GQ8LZQVL0VL (accessed on 28 March 2016).
- Lindsley, R. Estimating the ASCAT Spatial Response Function; Technical Report 14-01; BYU MERS Lab: Provo, UT, USA, 2014; Available online: http://www.mers.byu.edu/docs/reports/MERS1401.pdf (accessed on 28 March 2016).
- Lindsley, R.; Long, D. A parameterized ASCAT measurement spatial response function. IEEE. Trans. Geosci. Remote Sens. 2016. submitted. [Google Scholar]
- Maslanik, J.; Stroeve, J. DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures. National Snow and Ice Data Center: Boulder, CO; Available online: http://nsidc.org/data/nsidc-0001/ (accessed on 28 March 2016).
- Long, D.G.; Daum, D.L. Spatial resolution enhancement of SSM/I data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 407–417. [Google Scholar] [CrossRef]
- Long, D.; Hardin, P.; Whiting, P. Resolution enhancement of spaceborne scatterometer data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 700–715. [Google Scholar]
- Lindsley, R.D.; Long, D.G. Enhanced-resolution reconstruction of ASCAT backscatter measurements. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2589–2601. [Google Scholar]
- Cavalieri, D.; Parkinson, C.; DiGirolamo, N.; Ivanoff, A. Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records. IEEE Geosci. Remote Sens. Lett. 2012, 9, 233–236. [Google Scholar]
- Tschudi, M.; Fowler, C.; Maslanik, J. EASE-Grid Sea Ice Age [2009–2012]. Available online: http://dx.doi.org/10.5067/1UQJWCYPVX61 (accessed on 28 March 2016).
- Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format, Version 1. [2010–2012]. Available online: http://dx.doi.org/10.7265/N51V5BW9 (accessed on 28 March 2016).
- Fowler, C.; Emery, W.J.; Maslanik, J. Satellite-derived evolution of Arctic sea ice age: October 1978 to March 2003. IEEE Geosci. Remote Sens. Lett. 2004, 1, 71–74. [Google Scholar] [CrossRef]
- Tschudi, M.; Fowler, C.; Maslanik, J.; Stroeve, J. Tracking the movement and changing surface characteristics of Arctic sea ice. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 536–540. [Google Scholar]
- Kwok, R.; Schweiger, A.; Rothrock, D.A.; Pang, S.; Kottmeier, C. Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. J. Geophys. Res. Oceans 1998, 103, 8191–8214. [Google Scholar]
- MANICE. Manual of Standard Procedures for Observing and Reporting Ice Conditions; Technical report; Environment Canada: Ottawa, ON, Canada, 2005. [Google Scholar]
- Tilling, R.; Ridout, A.; Shepherd, A.; Wingham, D. Increased Arctic sea ice volume after anomalously low melting in 2013. Nat. Geosci. 2015, 8, 643–646. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J. Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data. In Antarctic Sea Ice: Physical Processes, Interactions and Variability; Jeffries, M.O., Ed.; American Geophysical Union: Washington, DC, USA, 1998; pp. 19–39. [Google Scholar]
- Cavalieri, D.J.; Markus, T.; Ivanoff, A.; Miller, J.A.; Brucker, L.; Sturm, M.; Maslanik, J.A.; Heinrichs, J.F.; Gasiewski, A.J.; Leuschen, C.; et al. A comparison of snow depth on sea ice retrievals using airborne altimeters and an AMSR-E simulator. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3027–3040. [Google Scholar] [CrossRef]
Parameter | ASCAT | SSMIS |
---|---|---|
Organization | European Organization for the | Defense Meteorological |
Exploitation of Meteorological | Satellite | |
Satellites (EUMETSAT) | Program (DMSP) | |
Frequency Channels | 5.255 GHz (V-pol) | 37 GHz (V-pol) * |
Orbital Period | 101 min | 102 min (F-17) |
Orbital Inclination | 98.7 | 98.8 |
Ascending Node Local Time | 9:30 p.m. | 5:31 p.m. |
Satellite Altitude | 817 km | 850 km |
Start Date | 19 October 2006 | 4 November 2006 |
Incidence Angle | Various | 53.1 degrees |
Swath Width | Two 500 km-wide | 1707 km |
swaths separated by a 360 km-wide | ||
nadir gap | ||
Footprint Size | ≈ 19–35 km × 500 km | 70 × 45 km (19.35 GHz) |
38 × 30 km (37 GHz) | ||
Image Resolution | 4.45 km per pixel | 25 km per pixel |
Frequency | Polarization | Ice Type | Brightness Temperature |
---|---|---|---|
19 GHz | V | FY | 258.2 K |
MY | 223.2 K | ||
H | FY | 242.8 K | |
MY | 203.9 K | ||
37 GHz | V | FY | 252.8 K |
MY | 186.3 K |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindell, D.B.; Long, D.G. Multiyear Arctic Ice Classification Using ASCAT and SSMIS. Remote Sens. 2016, 8, 294. https://doi.org/10.3390/rs8040294
Lindell DB, Long DG. Multiyear Arctic Ice Classification Using ASCAT and SSMIS. Remote Sensing. 2016; 8(4):294. https://doi.org/10.3390/rs8040294
Chicago/Turabian StyleLindell, David B., and David G. Long. 2016. "Multiyear Arctic Ice Classification Using ASCAT and SSMIS" Remote Sensing 8, no. 4: 294. https://doi.org/10.3390/rs8040294