Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset—Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China
Abstract
:1. Introduction
2. Site Selection and Methods
2.1. Site Selection
2.1.1. Study Area 1: Shendong Coalfield
2.1.2. Study Area 2: 22201-1/2 Working Face
2.1.3. Data used
2.2. Methods
2.2.1. Multi-Temporal InSAR Technology
2.2.2. Brief Description of SBAS-InSAR
3. Results
3.1. DInSAR Data Processing
3.1.1. Spatio-Temporal Baselines of Two Interferometric Strategies
3.1.2. Results of Consecutive and Cumulative DInSAR Interferometries
3.2. SBAS-InSAR Data Processing
3.2.1. Spatiotemporal Baseline Optimization of SBAS
3.2.2. Interferometry Results of SBAS
4. Discussions
4.1. The Reliability Validation of the Interferometry
4.2. Mining Subsidence Status in Shendong Coalfield
4.2.1. Interpretation based on the consecutive DInSAR interferometry
4.2.2. Interpretation Based on the cumulative DInSAR Interferometry
4.3. Mining Subsidence Characteristics in Shendong Coalfield
4.4. Mining Subsidence Characteristics in Working Face 22201-1/2 in Bu’ertai Mine
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, G.; Liu, Y.; Shan, X. Application of PS-InSAR technique in the deformation monitoring in mining collapse areas in Beijing. Chin. J. Geol. Hazard Control 2010, 21, 59–63. [Google Scholar]
- Wang, Z.; Zhang, J.; Huang, G. Precise monitoring and analysis of the land subsidence in Jining coal mining area based on InSAR technique. J. China Univ. Min. Technol. 2014, 43, 169–174. [Google Scholar]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. Displacement field of the Landers earthquake mapped by Radar Interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Ma, C.; Shan, X.J. A multi-segment analytic modeling of hypocentral geometric characteristic parameters of the Ms 8.1 earthquake at the Kunlun Mountains. Chin. J. Geophys. 2006, 49, 428–437. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P.J. Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR-C radar correlation measurements. Geology 1996. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Zhong, L.; Oommen, T. Post-eruption deformation processes measured using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Muskett, R.R.; Lingle, C.S.; Sauber, J.M.; Rabus, B.T.; Tangborn, W.V. Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, U.S.A. from InSAR DEMs and ICESat altimetry. Earth Planet. Sci. Lett. 2008, 265, 345–359. [Google Scholar] [CrossRef]
- Necsoiu, M.; Onaca, A.; Wigginton, S.; Urdea, P. Rock glacier dynamics in Southern Carpathian Mountains from high-resolution optical and multi-temporal SAR satellite imagery. Remote Sens. Environ. 2016, 177, 21–36. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, L.; Wang, H.; Sun, Q. Spatiotemporal characterization of land subsidence and uplift (2009–2010) over Wuhan in central China revealed by TerraSAR-X InSAR analysis. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Liu, P.; Li, Q.; Li, Z.; Hoey, T.; Liu, G.; Wang, C.; Hu, Z.; Zhou, Z.; Andrew, S. Anatomy of subsidence in Tianjin from time series InSAR. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Perski, Z. Applicability of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian coal mining region, Poland. Int. Arch. Photogramm. Remote Sens. 1998, 32, 555–558. [Google Scholar]
- Fan, H.D.; Gao, X.X.; Yang, J.K.; Deng, K.Z.; Yu, Y. Monitoring mining subsidence using a combination of phase-stacking and offset-tracking methods. Remote Sens. 2015, 7, 9166–9183. [Google Scholar] [CrossRef]
- Achache, J.; Fruneau, B.; Delacourt, C. Applicability of SAR interferometry for operational monitoring of landslides. In Proceedings of the Second ERS Applications Workshop, London, UK, 6–8 December 1995.
- Francesca, C.; Luke, B.B.; Colm, J.J.; Claire, D. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [Google Scholar]
- Wegmuller, U.; Strozzi, T.; Wiesmann, A.; Werner, C. Land subsidence mapping with ERS interferometry: Evaluation of maturity and operational readiness. In Proceedings of the 2nd Int. Workshop on ERS SAR Interferometry Fringe’99, Liège, Belgium, 10–12 November 1999.
- Perski, Z.; Hanssen, R.; Wojcik, A.; Wojciechowski, T. InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Eng. Geol. 2009, 106, 58–67. [Google Scholar] [CrossRef]
- Ge, L.L.; Chang, H.C.; Qin, L.; Chen, M.; Rizos, C. Differential radar interferometry for mine subsidence monitoring. In Proceedings of the 11th International (FIG) Symposium on Deformation Measurements, Santorini, Greece, 25–28 May 2003.
- Raucoules, D.; Colesanti, C.; Carnec, C. Use of SAR interferometry for detecting and assessing ground subsidence. C. R. Geosci. 2007, 339, 289–302. [Google Scholar] [CrossRef]
- Ng Hay-Man, A.; Chang, H.C.; Ge, L.L.; Chris, R.; Makoto, O. Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining. Earth Planet. Space 2009, 61, 733–745. [Google Scholar]
- Liu, D.L.; Shao, Y.F.; Liu, Z.G.; Björn, R.; Andrew, S.; Wolfgang, N.; Bian, Z.F. Evaluation of InSAR and TomoSAR for Monitoring deformations caused by mining in a mountainous area with high resolution satellite-based SAR. Remote Sens. 2014, 6, 1476–1495. [Google Scholar] [CrossRef]
- Wu, L.; Gao, J.; Ge, D.; Liao, M. Experimental study on surface subsidence monitoring with DInSAR in mining area. J. Northeast. Univ. Nat. Sci. 2005, 26, 778–781. [Google Scholar]
- Ge, D.; Wang, Y.; Fan, J.; Liu, S.; Guo, X.; Wang, Y. A study of surface deformation monitoring using differential SAR interferometry technique and an analysis of its key problems. Remote Sens. Land Resour. 2007, 74, 15–22. [Google Scholar]
- Zhang, J.F.; Guo, Q.; Gong, L. Measuring mining induced subsidence by using InSAR technique—Taking Wuan mining area in Hebei as an example. Geoinform. Sci. 2008, 10, 652–657. [Google Scholar]
- Deng, K.Z.; Yao, N.; Lu, Z.; Fan, H. Experimental research on monitoring mining subsidence by DInSAR technique. Met. Min. 2009, 402, 25–27. [Google Scholar]
- Gong, Y.; Yao, W.; Tang, F. New way of mining damage dynamic monitoring in mining area of West China. J. Xi’an Univ. Sci. Technol. 2010, 30, 693–696. [Google Scholar]
- Yang, C.S.; Zhang, Q.; Zhao, C.Y.; Ji, L.; Zhu, W. Monitoring mine collapse by D-InSAR. Min. Sci. Technol. 2010, 20, 696–700. [Google Scholar] [CrossRef]
- Zhu, J.; Xing, X.; Hu, J.; Li, Z. Monitoring of ground surface deformation in mining area with InSAR technique. Chin. J. Nonferr. Met. 2011, 21, 2564–2576. [Google Scholar]
- Fan, H.; Deng, K.; Xue, J.; Zhu, C. An experimental research on using time series SAR Images to monitor mining subsidence. Saf. Coal Min. 2011, 42, 15–18. [Google Scholar]
- Ma, C.; Meng, X.; Pan, J.; Lu, L. Optimizing DInSAR processing strategies for time series mining subsidence observation data. J. Henan Polytech. Univ. Nat. Sci. 2012, 31, 311–316. [Google Scholar]
- Usai, S. A least squares database approach for SAR Interferometric data. IEEE Trans Geosci Remote Sens. 2003, 41, 753–760. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on Small Baseline Differential SAR Interferograms. IEEE Trans Geosci Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Sergey, S.; Nicolas, D.; Benoît, S. Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 142–154. [Google Scholar]
- Bateson, L.; Cigna, F.; Boon, D.; Sowter, A. The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 249–257. [Google Scholar] [CrossRef]
- Yin, H.; Zhu, J.; Li, Z.; Ding, X.; Wang, C. Ground subsidence monitoring in mining area using DInSAR SBAS algorithm. Acta Geodaetica et Cartographica Sinica 2011, 40, 37–42. [Google Scholar]
- Li, G.; Xue, J. Monitoring the surface subsidence of mining areas based on SBAS method. Geomat. Spat. Infor. Technol. 2013, 36, 191–196. [Google Scholar]
- Zhou, L.F.; Zhang, D.R.; Wang, J.; Huang, Z.Q.; Pan, D.L. Mapping Land subsidence related to underground coal fires in the Wuda Coalfield (Northern China) using a small stack of ALOS PALSAR differential interferograms. Remote Sens. 2013, 5, 1152–1176. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lu, Z.; Zhang, Q. Time-series deformation monitoring over mining regions with SAR intensity-based offset measurements. Remote Sens. Lett. 2013, 4, 436–445. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Zhang, Q.; Yang, C.S.; Zou, W.B. Integration of MODIS data and Short Baseline Subset (SBAS) technique for land subsidence monitoring in Datong, China. J. Geodyn. 2011, 52, 16–23. [Google Scholar] [CrossRef]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manuta, M.; Pepe, A. An overview of the small baseline subset algorithm: A DInSAR technique for surface deformation analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, J.; Xin, D. Integrated innovation to design world No. 1 coal mine—Bu’ertai Mine. Coal Eng. 2011, 3, 4–7. (In Chinese) [Google Scholar]
- Atanu, B.; Manoj, K.A.; Mukat, L.S.; Malte, V.; Raginder, B. Surface displacement estimation using space-borne SAR interferometry in a small portion along Himalayan Frontal Fault. Opt. Lasers Eng. 2014, 53, 164–178. [Google Scholar]
- Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of conventional and advanced DInSAR to monitor very fast mining subsidence with TerraSAR-X data: Bytom City (Poland). Remote Sens. 2015, 7, 5300–5328. [Google Scholar] [CrossRef]
- He, G.; Yang, L.; Ling, G.; Jia, F.; Hong, D. Mining Subsidence, 1st ed.; China University of Mining and Technology Press: Xuzhou, China, 1991; pp. 31–52. (In Chinese) [Google Scholar]
- Ng Hay-Man, A.; Ge, L.L.; Yan, Y.G.; Li, X.J.; Chang, H.C.; Zhang, K.; Chris, R. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia. Eng. Geol. 2010, 115, 1–15. [Google Scholar]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite multi temporal interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
No. | Orbit | Frame | Acquisition Date (yyyymmdd) | Cumulative Pattern | Consecutive Pattern | ||
---|---|---|---|---|---|---|---|
Time Baseline (Days) | Perp. 1 Baseline (m) | Time Baseline (Days) | Perp. 1 Baseline (m) | ||||
1 | 53987 | 513409 | 20120120 | 0 | 0 | - | - |
2 | 53987 | 513410 | 20120213 | 24 | 406.3809 | 24 | 406.3809 |
3 | 53987 | 513411 | 20120308 | 48 | 483.7567 | 24 | 58.5609 |
4 | 53987 | 513412 | 20120401 | 72 | 566.6843 | 24 | 91.5228 |
5 | 53987 | 513413 | 20120425 | 96 | 431.9236 | 24 | −140.4887 |
6 | 53987 | 513414 | 20120519 | 120 | 169.2050 | 24 | −271.0147 |
7 | 53987 | 513415 | 20120612 | 144 | 399.0324 | 24 | 226.9379 |
8 | 53987 | 513416 | 20120706 | 168 | 518.7924 | 24 | 116.9807 |
9 | 53987 | 513417 | 20120730 | 192 | 480.6470 | 24 | −35.4784 |
10 | 53987 | 513418 | 20120823 | 216 | 216.5596 | 24 | −261.8938 |
11 | 53987 | 513419 | 20121010 | 264 | 242.0272 | 48 | 25.1972 |
12 | 53987 | 513420 | 20121127 | 312 | 461.3537 | 48 | 216.3279 |
13 | 53987 | 513421 | 20121221 | 336 | 470.9812 | 24 | 14.7253 |
14 | 45789 | 439762 | 20130207 | 384 | 94.9292 | 48 | −376.3826 |
15 | 45791 | 439765 | 20130303 | 408 | 226.1092 | 24 | 131.7180 |
16 | 57396 | 539004 | 20130327 | 432 | 463.3215 | 24 | 229.4834 |
17 | 57396 | 539005 | 20130420 | 456 | 489.2963 | 24 | 26.8207 |
18 | 57396 | 539006 | 20130607 | 504 | 593.3395 | 48 | 107.6413 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Cheng, X.; Yang, Y.; Zhang, X.; Guo, Z.; Zou, Y. Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset—Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China. Remote Sens. 2016, 8, 951. https://doi.org/10.3390/rs8110951
Ma C, Cheng X, Yang Y, Zhang X, Guo Z, Zou Y. Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset—Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China. Remote Sensing. 2016; 8(11):951. https://doi.org/10.3390/rs8110951
Chicago/Turabian StyleMa, Chao, Xiaoqian Cheng, Yali Yang, Xiaoke Zhang, Zengzhang Guo, and Youfeng Zou. 2016. "Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset—Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China" Remote Sensing 8, no. 11: 951. https://doi.org/10.3390/rs8110951
APA StyleMa, C., Cheng, X., Yang, Y., Zhang, X., Guo, Z., & Zou, Y. (2016). Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset—Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China. Remote Sensing, 8(11), 951. https://doi.org/10.3390/rs8110951