Estimating Soil Attributes for Yield Gap Reduction in Africa Using Hyperspectral Remote Sensing Data with Artificial Intelligence Methods: An Extensive Review and Synthesis
Abstract
:1. Introduction
2. Synthesis of Previous Published Reviews
3. Overview of Remote Sensing Techniques and Quantitative Methods Used for Soil Properties Estimation
3.1. Remote Sensing Sensors Used for Soil Properties Estimation
3.1.1. Spectroscopy-Based Proximal Soil Sensing
3.1.2. Imaging Spectroscopy
Spaceborne
Airborne and Unnamed Arial Vehicles (UAV’s) Data
3.2. AI Methods for Soil Property Estimation
3.2.1. Traditional Machine Learning
3.2.2. Advanced Machine Learning Models and Learning Techniques
Convolutional Neural Networks (CNNs)
Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)
Attention Mechanism and Transformer-Based Models
Foundational Models
Common Learning Paradigms Behind Advanced AI Models: Transfer Learning and Self-Supervised Learning
Comparative Analysis of AI Techniques: Summary of Strengths and Limitations
4. Methodology for Collection and Filtering of Papers
5. Results, Discussion and Recommendations
5.1. Remote Sensing Sensors Used for Soil Properties Estimation in Africa
5.2. AI Models
5.3. Most Predicted Soil Properties
5.4. Advances in Soil Mapping in Africa Through the Integration of Hyperspectral Remote Sensing and AI
5.5. Challenges and Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Situation Mondiale de l’Alimentation et de l’Agriculture 2023; FAO: Rome, Italy, 2023; ISBN 978-92-5-138418-3.
- Gono, O.P. Sustainable Land Management and Smallholder Farmers in Zimbabwe. Ph.D. Thesis, Walden University, Minneapolis, MN, USA, 1999. [Google Scholar]
- Khechba, K.; Laamrani, A.; Dhiba, D.; Misbah, K.; Chehbouni, A. Monitoring and Analyzing Yield Gap in Africa through Soil Attribute Best Management Using Remote Sensing Approaches: A Review. Remote Sens. 2021, 13, 4602. [Google Scholar] [CrossRef]
- Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield Gap Analysis with Local to Global Relevance—A Review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Amede, T.; Bationo, A.; Bindraban, P.; Breman, H.; Couedel, A.; Chivenge, P.; Corbeels, M.; Dobermann, A.; Fatunbi, W.; et al. Fertilizer and Soil Health in Africa: The Role of Fertilizer in Building Soil Health to Sustain Farming and Address Climate Change; International Fertilizer Development Center: Muscle Shoals, AL, USA, 2023. [Google Scholar]
- Silveira, M.L.; Kohmann, M.M. Maintaining Soil Fertility and Health for Sustainable Pastures. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Elsevier: Amsterdam, The Netherlands, 2020; pp. 35–58. ISBN 978-0-12-814474-9. [Google Scholar]
- Barra, I.; Haefele, S.M.; Sakrabani, R.; Kebede, F. Soil Spectroscopy with the Use of Chemometrics, Machine Learning and Pre-Processing Techniques in Soil Diagnosis: Recent Advances—A Review. TrAC Trends Anal. Chem. 2021, 135, 116166. [Google Scholar] [CrossRef]
- Dworak, V.; Mahns, B.; Selbeck, J.; Gebbers, R.; Weltzien, C. Hyperspectral Imaging Tera Hertz System for Soil Analysis: Initial Results. Sensors 2020, 20, 5660. [Google Scholar] [CrossRef]
- Misbah, K.; Laamrani, A.; Khechba, K.; Dhiba, D.; Chehbouni, A. Multi-Sensors Remote Sensing Applications for Assessing, Monitoring, and Mapping NPK Content in Soil and Crops in African Agricultural Land. Remote Sens. 2021, 14, 81. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review. Sustainability 2023, 15, 15444. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, L.; Zhuang, Q.; Chen, D.; Sun, T. Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning. Agriculture 2023, 13, 1592. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.; Wang, X.; Yao, H.; Zhang, L. Estimating Soil Organic Matter Content Using Sentinel-2 Imagery by Machine Learning in Shanghai. IEEE Access 2021, 9, 78215–78225. [Google Scholar] [CrossRef]
- Mulder, V.L.; De Bruin, S.; Schaepman, M.E.; Mayr, T.R. The Use of Remote Sensing in Soil and Terrain Mapping—A Review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Lagacherie, P.; Sneep, A.-R.; Gomez, C.; Bacha, S.; Coulouma, G.; Hamrouni, M.H.; Mekki, I. Combining Vis–NIR Hyperspectral Imagery and Legacy Measured Soil Profiles to Map Subsurface Soil Properties in a Mediterranean Area (Cap-Bon, Tunisia). Geoderma 2013, 209–210, 168–176. [Google Scholar] [CrossRef]
- Riese, F.M.; Keller, S. Fusion of Hyperspectral and Ground Penetrating Radar to Estimate Soil Moisture. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018; pp. 1–5. [Google Scholar]
- Ge, Y.; Thomasson, J.A.; Sui, R. Remote Sensing of Soil Properties in Precision Agriculture: A Review. Front. Earth Sci. 2011, 5, 229–238. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Proximal Soil Sensing: An Effective Approach for Soil Measurements in Space and Time. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 113, pp. 243–291. ISBN 978-0-12-386473-4. [Google Scholar]
- Janga, B.; Asamani, G.; Sun, Z.; Cristea, N. A Review of Practical AI for Remote Sensing in Earth Sciences. Remote Sens. 2023, 15, 4112. [Google Scholar] [CrossRef]
- Veronesi, F.; Schillaci, C. Comparison between Geostatistical and Machine Learning Models as Predictors of Topsoil Organic Carbon with a Focus on Local Uncertainty Estimation. Ecol. Indic. 2019, 101, 1032–1044. [Google Scholar] [CrossRef]
- Vibhute, A.D.; Kale, K.V. Mapping Several Soil Types Using Hyperspectral Datasets and Advanced Machine Learning Methods. Results Opt. 2023, 12, 100503. [Google Scholar] [CrossRef]
- Divya, A.; Josphineleela, R.; Jaba Sheela, L. A Machine Learning Based Approach for Prediction and Interpretation of Soil Properties from Soil Spectral Data. J. Environ. Biol. 2024, 45, 96–105. [Google Scholar] [CrossRef]
- Zhong, L.; Guo, X.; Xu, Z.; Ding, M. Soil Properties: Their Prediction and Feature Extraction from the LUCAS Spectral Library Using Deep Convolutional Neural Networks. Geoderma 2021, 402, 115366. [Google Scholar] [CrossRef]
- Cao, L.; Sun, M.; Yang, Z.; Jiang, D.; Yin, D.; Duan, Y. A Novel Transformer-CNN Approach for Predicting Soil Properties from LUCAS Vis-NIR Spectral Data. Agronomy 2024, 14, 1998. [Google Scholar] [CrossRef]
- Ghasemi, N.; Justo, J.A.; Celesti, M.; Despoisse, L.; Nieke, J. Onboard Processing of Hyperspectral Imagery: Deep Learning Advancements, Methodologies, Challenges, and Emerging Trends. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2025, 18, 4780–4790. [Google Scholar] [CrossRef]
- Haut, J.M.; Franco-Valiente, J.M.; Paoletti, M.E.; Moreno-Álvarez, S.; Pardo-Diaz, A. Hyperspectral Image Analysis Using Cloud-Based Support Vector Machines. SN Comput. Sci. 2024, 5, 719. [Google Scholar] [CrossRef]
- Misbah, K.; Laamrani, A.; Voroney, P.; Khechba, K.; Casa, R.; Chehbouni, A. Ensemble Band Selection for Quantification of Soil Total Nitrogen Levels from Hyperspectral Imagery. Remote Sens. 2024, 16, 2549. [Google Scholar] [CrossRef]
- Gasmi, A.; Gomez, C.; Chehbouni, A.; Dhiba, D.; El Gharous, M. Using PRISMA Hyperspectral Satellite Imagery and GIS Approaches for Soil Fertility Mapping (FertiMap) in Northern Morocco. Remote Sens. 2022, 14, 4080. [Google Scholar] [CrossRef]
- Misbah, K.; Laamrani, A.; Casa, R.; Voroney, P.; Dhiba, D.; Ezzahar, J.; Chehbouni, A. Spatial Prediction of Soil Attributes from PRISMA Hyperspectral Imagery Using Wrapper Feature Selection and Ensemble Modeling. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2024, 93, 197–215. [Google Scholar] [CrossRef]
- Kakhani, N.; Rangzan, M.; Jamali, A.; Attarchi, S.; Kazem Alavipanah, S.; Mommert, M.; Tziolas, N.; Scholten, T. SSL-SoilNet: A Hybrid Transformer-Based Framework With Self-Supervised Learning for Large-Scale Soil Organic Carbon Prediction. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Piccini, C.; Metzger, K.; Debaene, G.; Stenberg, B.; Götzinger, S.; Borůvka, L.; Sandén, T.; Bragazza, L.; Liebisch, F. In-field Soil Spectroscopy in Vis–NIR Range for Fast and Reliable Soil Analysis: A Review. Eur. J. Soil Sci. 2024, 75, e13481. [Google Scholar] [CrossRef]
- Mokere, R.; Ghassan, M.; Barra, I. Soil Spectroscopy Evolution: A Review of Homemade Sensors, Benchtop Systems, and Mobile Instruments Coupled with Machine Learning Algorithms in Soil Diagnosis for Precision Agriculture. Crit. Rev. Anal. Chem. 2024, 1–20. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; Van Wesemael, B. Imaging Spectroscopy for Soil Mapping and Monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Richer-de-Forges, A.C.; Chen, Q.; Baghdadi, N.; Chen, S.; Gomez, C.; Jacquemoud, S.; Martelet, G.; Mulder, V.L.; Urbina-Salazar, D.; Vaudour, E.; et al. Remote Sensing Data for Digital Soil Mapping in French Research—A Review. Remote Sens. 2023, 15, 3070. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Naicker, R. Modelling Soil Organic Carbon Stock Distribution across Different Land-Uses in South Africa: A Remote Sensing and Deep Learning Approach. ISPRS J. Photogramm. Remote Sens. 2022, 188, 351–362. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Minasny, B.; McBratney, A.B. Machine Learning for Digital Soil Mapping: Applications, Challenges and Suggested Solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Guerri, M.F.; Distante, C.; Spagnolo, P.; Bougourzi, F.; Taleb-Ahmed, A. Deep Learning Techniques for Hyperspectral Image Analysis in Agriculture: A Review. ISPRS Open J. Photogramm. Remote Sens. 2024, 12, 100062. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson New International; Pearson: Harlow, UK, 2014; ISBN 978-1-292-02170-6. [Google Scholar]
- Sahoo, R.N.; Ray, S.S.; Manjunath, K.R. Hyperspectral Remote Sensing of Agriculture. Curr. Sci. 2015, 108, 848–859. [Google Scholar]
- Adamchuk, V.; Ji, W.; Rossel, R.V.; Gebbers, R.; Tremblay, N. Proximal Soil and Plant Sensing. In ASA, CSSA, and SSSA Books; Kent Shannon, D., Clay, D.E., Kitchen, N.R., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2018; pp. 119–140. ISBN 978-0-89118-367-9. [Google Scholar]
- Rizzo, R.; De Souza Mendes, W.; Silvero, N.E.Q.; Da Silva Terra, F.; Dotto, A.C.; Dos Santos, N.V.; Bonfatti, B.R.; Poppiel, R.R.; Demattê, J.A.M. Point and Imaging Spectroscopy in Geospatial Analysis of Soils. In Geospatial Technologies for Crops and Soils; Mitran, T., Meena, R.S., Chakraborty, A., Eds.; Springer: Singapore, 2021; pp. 277–317. ISBN 9789811568633. [Google Scholar]
- Carra, J.B.; Fabris, M.; Dieckow, J.; Brito, O.R.; Vendrame, P.R.S.; Macedo Dos Santos Tonial, L. Near-Infrared Spectroscopy Coupled with Chemometrics Tools: A Rapid and Non-Destructive Alternative on Soil Evaluation. Commun. Soil Sci. Plant Anal. 2019, 50, 421–434. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Ben Dor, E.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; Volume 132, pp. 139–159. ISBN 978-0-12-802135-4. [Google Scholar]
- Bellinaso, H.; Silvero, N.E.Q.; Ruiz, L.F.C.; Accorsi Amorim, M.T.; Rosin, N.A.; Mendes, W.D.S.; Sousa, G.P.B.D.; Sepulveda, L.M.A.; Queiroz, L.G.D.; Nanni, M.R.; et al. Clay Content Prediction Using Spectra Data Collected from the Ground to Space Platforms in a Smallholder Tropical Area. Geoderma 2021, 399, 115116. [Google Scholar] [CrossRef]
- Hati, K.M.; Sinha, N.K.; Mohanty, M.; Jha, P.; Londhe, S.; Sila, A.; Towett, E.; Chaudhary, R.S.; Jayaraman, S.; Vassanda Coumar, M.; et al. Mid-Infrared Reflectance Spectroscopy for Estimation of Soil Properties of Alfisols from Eastern India. Sustainability 2022, 14, 4883. [Google Scholar] [CrossRef]
- Sorenson, P.T.; Small, C.; Tappert, M.C.; Quideau, S.A.; Drozdowski, B.; Underwood, A.; Janz, A. Monitoring Organic Carbon, Total Nitrogen, and pH for Reclaimed Soils Using Field Reflectance Spectroscopy. Can. J. Soil. Sci. 2017, 97, 241–248. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, X.; Chen, S.; Lu, R.; Wang, Z.; Wang, N.; Hong, Y.; Chen, X.; Xiao, Y.; Ma, Y.; et al. The Validity Domain of Sensor Fusion in Sensing Soil Quality Indicators. Geoderma 2023, 438, 116657. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, G.; Sun, L.; Wang, R.; Liu, Y. Prediction of Soil Salinity Using Near-Infrared Reflectance Spectroscopy with Nonnegative Matrix Factorization. Appl. Spectrosc. 2016, 70, 1589–1597. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Q.; Wang, X.; Wu, Y.; Yang, X.; Liu, F. Estimation of Soil Organic Carbon and Total Nitrogen in Different Soil Layers Using VNIR Spectroscopy: Effects of Spiking on Model Applicability. Geoderma 2017, 293, 54–63. [Google Scholar] [CrossRef]
- Li, X.; Pan, W.; Li, D.; Gao, W.; Zeng, R.; Zheng, G.; Cai, K.; Zeng, Y.; Jiang, C. Can Fusion of Vis-NIR and MIR Spectra at Three Levels Improve the Prediction Accuracy of Soil Nutrients? Geoderma 2024, 441, 116754. [Google Scholar] [CrossRef]
- Debaene, G.; Bartmiński, P.; Siłuch, M. In Situ VIS-NIR Spectroscopy for a Basic and Rapid Soil Investigation. Sensors 2023, 23, 5495. [Google Scholar] [CrossRef]
- Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; Van Henten, E.J. Sensing Soil Properties in the Laboratory, In Situ, and On-Line. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2012; Volume 114, pp. 155–223. ISBN 978-0-12-394275-3. [Google Scholar]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; Macdonald, L.M.; McLaughlin, M.J. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Sharififar, A.; Singh, K.; Jones, E.; Ginting, F.I.; Minasny, B. Evaluating a Low-cost Portable NIR Spectrometer for the Prediction of Soil Organic and Total Carbon Using Different Calibration Models. Soil Use Manag. 2019, 35, 607–616. [Google Scholar] [CrossRef]
- Tang, Y.; Jones, E.; Minasny, B. Evaluating Low-Cost Portable near Infrared Sensors for Rapid Analysis of Soils from South Eastern Australia. Geoderma Reg. 2020, 20, e00240. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, X.; Zheng, D.; Song, H.; Han, P.; Yuen, P. Prediction of the Soil Organic Matter (SOM) Content from Moist Soil Using Synchronous Two-Dimensional Correlation Spectroscopy (2D-COS) Analysis. Sensors 2020, 20, 4822. [Google Scholar] [CrossRef]
- Une Introduction à l’Analyse des sols par Spectroscopie dans le Visible et le Proche Infrarouge (vis-NIR) Ainsi que Dans le Moyen Infrarouge (MIR); FAO: Rome, Italy, 2024.
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A Global Spectral Library to Characterize the World’s Soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Wan, M.; Hu, W.; Qu, M.; Li, W.; Zhang, C.; Kang, J.; Hong, Y.; Chen, Y.; Huang, B. Rapid Estimation of Soil Cation Exchange Capacity through Sensor Data Fusion of Portable XRF Spectrometry and Vis-NIR Spectroscopy. Geoderma 2020, 363, 114163. [Google Scholar] [CrossRef]
- Wangeci, A.; Adén, D.; Nikolajsen, T.; Greve, M.H.; Knadel, M. Comparing Laser-Induced Breakdown Spectroscopy and Visible near-Infrared Spectroscopy for Predicting Soil Properties: A Pan-European Study. Geoderma 2024, 444, 116865. [Google Scholar] [CrossRef]
- Dadi, M.; Yasir, M. Spectroscopy and Spectrophotometry: Principles and Applications for Colorimetric and Related Other Analysis. In Colorimetry; Kumar Samanta, A., Ed.; IntechOpen: London, UK, 2022; ISBN 978-1-83962-940-2. [Google Scholar]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using Imaging Spectroscopy to Study Soil Properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Advanced Applications of Hyperspectral Imaging Technology for Food Quality and Safety Analysis and Assessment: A Review—Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 1–14. [Google Scholar] [CrossRef]
- Sharma, N.A.; Kumar, K.; Chand, R.R.; Kabir, M.A. Utilizing Hyperspectral Imaging with Machine Learning Techniques for Soil Analysis. In Computational Intelligence Based Hyperspectral Image Analysis; Springer: Cham, Switzerland, 2024. [Google Scholar]
- October 1, 2008—Landsat 7 ETM+ Data Now Available at No Charge—U.S. Geological Survey. Available online: https://www.usgs.gov/landsat-missions/october-1-2008-landsat-7-etm-data-now-available-no-charge (accessed on 28 December 2024).
- Nalepa, J. Recent Advances in Multi- and Hyperspectral Image Analysis. Sensors 2021, 21, 6002. [Google Scholar] [CrossRef]
- Guo, L.; Sun, X.; Fu, P.; Shi, T.; Dang, L.; Chen, Y.; Linderman, M.; Zhang, G.; Zhang, Y.; Jiang, Q.; et al. Mapping Soil Organic Carbon Stock by Hyperspectral and Time-Series Multispectral Remote Sensing Images in Low-Relief Agricultural Areas. Geoderma 2021, 398, 115118. [Google Scholar] [CrossRef]
- Gelsleichter, Y.A.; Costa, E.M.; Anjos, L.H.C.D.; Marcondes, R.A.T. Enhancing Soil Mapping with Hyperspectral Subsurface Images Generated from Soil Lab Vis-SWIR Spectra Tested in Southern Brazil. Geoderma Reg. 2023, 33, e00641. [Google Scholar] [CrossRef]
- Lu, P.; Wang, L.; Niu, Z.; Li, L.; Zhang, W. Prediction of Soil Properties Using Laboratory VIS–NIR Spectroscopy and Hyperion Imagery. J. Geochem. Explor. 2013, 132, 26–33. [Google Scholar] [CrossRef]
- Anne, N.J.P.; Abd-Elrahman, A.H.; Lewis, D.B.; Hewitt, N.A. Modeling Soil Parameters Using Hyperspectral Image Reflectance in Subtropical Coastal Wetlands. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 47–56. [Google Scholar] [CrossRef]
- Castaldi, F.; Casa, R.; Castrignanò, A.; Pascucci, S.; Palombo, A.; Pignatti, S. Estimation of Soil Properties at the Field Scale from Satellite Data: A Comparison between Spatial and Non-spatial Techniques. Eur. J. Soil Sci. 2014, 65, 842–851. [Google Scholar] [CrossRef]
- Rosero-Vlasova, O.A.; Vlassova, L.; Pérez-Cabello, F.; Montorio, R.; Nadal-Romero, E. Modeling Soil Organic Matter and Texture from Satellite Data in Areas Affected by Wildfires and Cropland Abandonment in Aragón, Northern Spain. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef]
- Gomez, C.; Oltra-Carrio, R.; Bacha, S.; Lagacherie, P.; Briottet, X. Clay Contents Predicted from Hyperspectral VNIR/SWIR Imagery, under Different Atmospheric Conditions and Spatial Resolutions. In Proceedings of the 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014; IEEE: Lausanne, Switzerland, 2014; pp. 1–4. [Google Scholar]
- Piccoli, F.; Rossini, M.; Colombo, R.; Schettini, R.; Napoletano, P. A Deep Scalable Neural Architecture for Soil Properties Estimation from Spectral Information. Comput. Geosci. 2023, 180, 105433. [Google Scholar] [CrossRef]
- Steinberg, A.; Chabrillat, S.; Stevens, A.; Segl, K.; Foerster, S. Prediction of Common Surface Soil Properties Based on Vis-NIR Airborne and Simulated EnMAP Imaging Spectroscopy Data: Prediction Accuracy and Influence of Spatial Resolution. Remote Sens. 2016, 8, 613. [Google Scholar] [CrossRef]
- HySIS (HyperSpectral Imaging Satellite)—eoPortal. Available online: https://www.eoportal.org/satellite-missions/hysis (accessed on 28 December 2024).
- ISS Utilization: HISUI (Hyperspectral Imager Suite)—eoPortal. Available online: https://www.eoportal.org/satellite-missions/iss-hisui (accessed on 28 December 2024).
- ZY-1 02D. Available online: https://space.skyrocket.de/doc_sdat/zy-1-02d.htm (accessed on 26 March 2025).
- AVIRIS—Airborne Visible/Infrared Imaging Spectrometer. Available online: https://aviris.jpl.nasa.gov/ (accessed on 28 December 2024).
- Home|Catalog of Archived Suborbital Earth Science Investigations. Available online: https://impact.earthdata.nasa.gov/casei/ (accessed on 28 December 2024).
- APEX|APEX—Airborne Prism EXperiment. Available online: https://apex-esa.org/en/apex (accessed on 28 December 2024).
- Aisa Systems—Specim. Available online: https://www.specim.com/aisa/ (accessed on 28 December 2024).
- Angelopoulou, T.; Chabrillat, S.; Pignatti, S.; Milewski, R.; Karyotis, K.; Brell, M.; Ruhtz, T.; Bochtis, D.; Zalidis, G. Evaluation of Airborne HySpex and Spaceborne PRISMA Hyperspectral Remote Sensing Data for Soil Organic Matter and Carbonates Estimation. Remote Sens. 2023, 15, 1106. [Google Scholar] [CrossRef]
- Gomez, C.; Adeline, K.; Bacha, S.; Driessen, B.; Gorretta, N.; Lagacherie, P.; Roger, J.M.; Briottet, X. Sensitivity of Clay Content Prediction to Spectral Configuration of VNIR/SWIR Imaging Data, from Multispectral to Hyperspectral Scenarios. Remote Sens. Environ. 2018, 204, 18–30. [Google Scholar] [CrossRef]
- Matarrese, R.; Ancona, V.; Salvatori, R.; Muolo, M.R.; Uricchio, V.F.; Vurro, M. Detecting Soil Organic Carbon by CASI Hyperspectral Images. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3284–3287. [Google Scholar]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; Van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Pechanec, V.; Mráz, A.; Rozkošný, L.; Vyvlečka, P. Usage of Airborne Hyperspectral Imaging Data for Identifying Spatial Variability of Soil Nitrogen Content. ISPRS Int. J. Geo-Inf. 2021, 10, 355. [Google Scholar] [CrossRef]
- Yang, X.; Bao, N.; Li, W.; Liu, S.; Fu, Y.; Mao, Y. Soil Nutrient Estimation and Mapping in Farmland Based on UAV Imaging Spectrometry. Sensors 2021, 21, 3919. [Google Scholar] [CrossRef]
- Song, Q.; Gao, X.; Song, Y.; Li, Q.; Chen, Z.; Li, R.; Zhang, H.; Cai, S. Estimation and Mapping of Soil Texture Content Based on Unmanned Aerial Vehicle Hyperspectral Imaging. Sci. Rep. 2023, 13, 14097. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, Y.; Gu, X.; Chen, T.; Sun, Q.; Zhang, S.; Pan, Y. High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms. Drones 2023, 7, 290. [Google Scholar] [CrossRef]
- Menzies Pluer, E.G.; Robinson, D.T.; Meinen, B.U.; Macrae, M.L. Pairing Soil Sampling with Very-High Resolution UAV Imagery: An Examination of Drivers of Soil and Nutrient Movement and Agricultural Productivity in Southern Ontario. Geoderma 2020, 379, 114630. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned Aerial Vehicles (UAVs): Practical Aspects, Applications, Open Challenges, Security Issues, and Future Trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef]
- Mohsen, F.; Ali, H.; Hajj, N.E.; Shah, Z. Artificial Intelligence-Based Methods for Fusion of Electronic Health Records and Imaging Data. Sci. Rep. 2022, 12, 17981. [Google Scholar] [CrossRef]
- Elyoussfi, H.; Boudhar, A.; Belaqziz, S.; Bousbaa, M.; Nifa, K.; Bargam, B.; Chehbouni, A. Leveraging Advanced Deep Learning and Machine Learning Approaches for Snow Depth Prediction Using Remote Sensing and Ground Data. J. Hydrol. Reg. Stud. 2025, 57, 102085. [Google Scholar] [CrossRef]
- Bousbaa, M.; Boudhar, A.; Kinnard, C.; Elyoussfi, H.; Karaoui, I.; Eljabiri, Y.; Bouamri, H.; Chehbouni, A. An Accurate Snow Cover Product for the Moroccan Atlas Mountains: Optimization of the MODIS NDSI Index Threshold and Development of Snow Fraction Estimation Models. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103851. [Google Scholar] [CrossRef]
- Khechba, K.; Laamrani, A.; Belgiu, M.; Stein, A.; Dong, Q.; Chehbouni, A. Design and Use of a Stratum-Based Yield Predictions to Address Challenges Associated with Spatial Heterogeneity and Sample Clustering in Agricultural Fields Using Remote Sensing Data. Sustainability 2024, 16, 9196. [Google Scholar] [CrossRef]
- Choukri, M.; Laamrani, A.; Chehbouni, A. Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review. Sensors 2024, 24, 3618. [Google Scholar] [CrossRef]
- Bourriz, M.; Laamrani, A.; El-Battay, A.; Hajji, H.; Elbouanani, N.; Ait Abdelali, H.; Bourzeix, F.; Amazirh, A.; Chehbouni, A. An Intercomparison of Two Satellite-Based Hyperspectral Imagery (PRISMA & EnMAP) for Agricultural Mapping: Potential of These Sensors to Produce Hyperspectral Time-Series Essential for Tracking Crop Phenology and Enhancing Crop Type Mapping. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025. [Google Scholar]
- Kaissi, O.; Belaqziz, S.; Kharrou, M.H.; Erraki, S.; El Hachimi, C.; Amazirh, A.; Chehbouni, A. Advanced Learning Models for Estimating the Spatio-Temporal Variability of Reference Evapotranspiration Using in-Situ and ERA5-Land Reanalysis Data. Model. Earth Syst. Environ. 2024, 10, 1915–1939. [Google Scholar] [CrossRef]
- Uddin, M.P.; Mamun, M.A.; Hossain, M.A. PCA-Based Feature Reduction for Hyperspectral Remote Sensing Image Classification. IETE Tech. Rev. 2021, 38, 377–396. [Google Scholar] [CrossRef]
- Garcia-Salgado, B.P.; Ponomaryov, V.I.; Sadovnychiy, S.; Reyes-Reyes, R. Efficient Dimension Reduction of Hyperspectral Images for Big Data Remote Sensing Applications. J. Appl. Rem. Sens. 2020, 14, 1. [Google Scholar] [CrossRef]
- Bruce, L.M.; Koger, C.H.; Li, J. Dimensionality Reduction of Hyperspectral Data Using Discrete Wavelet Transform Feature Extraction. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2331–2338. [Google Scholar] [CrossRef]
- Chen, X.; Jeong, J.C. Enhanced Recursive Feature Elimination. In Proceedings of the Sixth International Conference on Machine Learning and Applications (ICMLA 2007), Cincinnati, OH, USA, 13–15 December 2007; pp. 429–435. [Google Scholar]
- Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Quantification of Soil Properties with Hyperspectral Data: Selecting Spectral Variables with Different Methods to Improve Accuracies and Analyze Prediction Mechanisms. Remote Sens. 2017, 9, 1103. [Google Scholar] [CrossRef]
- Elbouanani, N.; Laamrani, A.; El-Battay, A.; Hajji, H.; Bourriz, M.; Bourzeix, F.; Ait Abdelali, H.; Amazirh, A.; Chehbouni, A. Enhancing Soil Fertility Mapping with Hyperspectral Remote Sensing and Advanced AI: A Comparative Study of Dimensionality Reduction Techniques in Morocco. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025. [Google Scholar]
- Laamrani, A.; Berg, A.A.; Voroney, P.; Feilhauer, H.; Blackburn, L.; March, M.; Dao, P.D.; He, Y.; Martin, R.C. Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario, Canada. Remote Sens. 2019, 11, 1298. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A Review of Variable Selection Methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Leone, A.P.; Viscarra-Rossel, R.A.; Amenta, P.; Buondonno, A. Prediction of Soil Properties with PLSR and Vis-NIR Spectroscopy: Application to Mediterranean Soils from Southern Italy. Curr. Anal. Chem. 2012, 8, 283–299. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Fidler, M.; Lubben, R.; Becker, N. Capacity–Delay–Error Boundaries: A Composable Model of Sources and Systems. IEEE Trans. Wirel. Commun. 2015, 14, 1280–1294. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine Learning in Geosciences and Remote Sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
- Random Forest Algorithm in Machine Learning—GeeksforGeeks. Available online: https://www.geeksforgeeks.org/random-forest-algorithm-in-machine-learning/ (accessed on 28 December 2024).
- Iranzad, R.; Liu, X. A Review of Random Forest-Based Feature Selection Methods for Data Science Education and Applications. Int. J. Data Sci. Anal. 2024. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Niang Gadiaga, A.; Linard, C.; Lennert, M.; Vanhuysse, S.; Mboga, N.; Wolff, E.; Kalogirou, S. Geographical Random Forests: A Spatial Extension of the Random Forest Algorithm to Address Spatial Heterogeneity in Remote Sensing and Population Modelling. Geocarto Int. 2021, 36, 121–136. [Google Scholar] [CrossRef]
- Al Masmoudi, Y.; Bouslihim, Y.; Doumali, K.; Hssaini, L.; Ibno Namr, K. Use of Machine Learning in Moroccan Soil Fertility Prediction as an Alternative to Laborious Analyses. Model. Earth Syst. Environ. 2022, 8, 3707–3717. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Divyanth, L.G.; Chakraborty, S. Land Use/Land Cover Classification Using Hyperspectral Soil Reflectance Features in the Eastern Himalayas, India. Catena 2023, 229, 107200. [Google Scholar] [CrossRef]
- Wu, W.; Li, A.-D.; He, X.-H.; Ma, R.; Liu, H.-B.; Lv, J.-K. A Comparison of Support Vector Machines, Artificial Neural Network and Classification Tree for Identifying Soil Texture Classes in Southwest China. Comput. Electron. Agric. 2018, 144, 86–93. [Google Scholar] [CrossRef]
- Meliho, M.; Boulmane, M.; Khattabi, A.; Dansou, C.E.; Orlando, C.A.; Mhammdi, N.; Noumonvi, K.D. Spatial Prediction of Soil Organic Carbon Stock in the Moroccan High Atlas Using Machine Learning. Remote Sens. 2023, 15, 2494. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Ronaldo, A.D. Effective Soil Type Classification Using Convolutional Neural Network. Int. J. Inform. Comput. 2021, 3, 20. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Pan, K.; Guo, Z.; Liu, J.; Xu, A.; Ma, H.; Pan, X. The Simultaneous Prediction of Soil Properties and Vegetation Coverage from Vis-NIR Hyperspectral Data with a One-Dimensional Convolutional Neural Network: A Laboratory Simulation Study. Remote Sens. 2022, 14, 397. [Google Scholar] [CrossRef]
- Hosseinpour-Zarnaq, M.; Omid, M.; Sarmadian, F.; Ghasemi-Mobtaker, H. A CNN Model for Predicting Soil Properties Using VIS–NIR Spectral Data. Environ. Earth Sci. 2023, 82, 382. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using Deep Learning to Predict Soil Properties from Regional Spectral Data. Geoderma Reg. 2019, 16, e00198. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A.B. Convolutional Neural Network for Simultaneous Prediction of Several Soil Properties Using Visible/near-Infrared, Mid-Infrared, and Their Combined Spectra. Geoderma 2019, 352, 251–267. [Google Scholar] [CrossRef]
- Xu, Z.; Guan, K.; Casler, N.; Peng, B.; Wang, S. A 3D Convolutional Neural Network Method for Land Cover Classification Using LiDAR and Multi-Temporal Landsat Imagery. ISPRS J. Photogramm. Remote Sens. 2018, 144, 423–434. [Google Scholar] [CrossRef]
- Tan, M.; Zhang, X.; Luo, W.; Hao, M. Deep Learning Based Spatial Distribution Estimation of Soil Pb Using Multi-Phase Multispectral Remote Sensing Images in a Mining Area. Land 2023, 12, 1789. [Google Scholar] [CrossRef]
- Miao, S.; Ni, G.; Kong, G.; Yuan, X.; Liu, C.; Shen, X.; Gao, W. A Spatial Interpolation Method Based on 3D-CNN for Soil Petroleum Hydrocarbon Pollution. PLoS ONE 2025, 20, e0316940. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Singh, S.; Kasana, S.S. Estimation of Soil Properties from the EU Spectral Library Using Long Short-Term Memory Networks. Geoderma Reg. 2019, 18, e00233. [Google Scholar] [CrossRef]
- Singh, S.; Kasana, S.S. Quantitative Estimation of Soil Properties Using Hybrid Features and RNN Variants. Chemosphere 2022, 287, 131889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wu, S.; Liu, J.; Wang, C.; Guo, Z.; Xu, A.; Pan, K.; Pan, X. Predicting Soil Moisture Content over Partially Vegetation Covered Surfaces from Hyperspectral Data with Deep Learning. Soil Sci. Soc. Am. J. 2021, 85, 989–1001. [Google Scholar] [CrossRef]
- Malik, V.; Mittal, R.; Kaur, A.; Singla, G.; Mittal, A.; Singh, M. Enhancement and Analysis of Hyperspectral Satellite Images for Soil Study and Behavior. Multimed. Tools Appl. 2023, 83, 33879–33902. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Wang, R.; Wang, H. Combination of Convolutional Neural Networks and Recurrent Neural Networks for Predicting Soil Properties Using Vis–NIR Spectroscopy. Geoderma 2020, 380, 114616. [Google Scholar] [CrossRef]
- Han, J.M.; Ang, Y.Q.; Malkawi, A.; Samuelson, H.W. Using Recurrent Neural Networks for Localized Weather Prediction with Combined Use of Public Airport Data and On-Site Measurements. Build. Environ. 2021, 192, 107601. [Google Scholar] [CrossRef]
- Zhao, X.; Xiong, Z.; Karlshoefer, P.; Tziolas, N.; Wiesmeier, M.; Heiden, U.; Zhu, X. Soil Organic Carbon Estimation Using Spaceborne Hyperspectral Composites on a Large Scale. 2025. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5096068 (accessed on 20 November 2024).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2023. [Google Scholar]
- Li, W.; Xin, Q.; Sun, Y.; Zhou, Y.; Li, J.; Wang, Y.; Sun, Y.; Wang, G.; Xu, R.; Gong, L.; et al. An Attention-Enhanced Spatial–Temporal High-Resolution Network for Irrigated Area Mapping Using Multitemporal Sentinel-2 Images. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104040. [Google Scholar] [CrossRef]
- Lv, Q.; Wang, Q.; Song, X.; Ge, B.; Guan, H.; Lu, T.; Tao, Z. Research on Coastline Extraction and Dynamic Change from Remote Sensing Images Based on Deep Learning. Front. Environ. Sci. 2024, 12, 1443512. [Google Scholar] [CrossRef]
- Feng, G.; Li, Z.; Zhang, J.; Wang, M. Multi-Scale Spatial Attention-Based Multi-Channel 2D Convolutional Network for Soil Property Prediction. Sensors 2024, 24, 4728. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, Z.; Yin, Z.; Li, D. Attention-Based CNN Ensemble for Soil Organic Carbon Content Estimation With Spectral Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, L.; Zhu, X.; Xie, Y.; He, S. Spectral Data-Driven Prediction of Soil Properties Using LSTM-CNN-Attention Model. Appl. Sci. 2024, 14, 11687. [Google Scholar] [CrossRef]
- Kakhani, N.; Rangzan, M.; Jamali, A.; Attarchi, S.; Alavipanah, S.K.; Scholten, T. SoilNet: An Attention-Based Spatio-Temporal Deep Learning Framework for Soil Organic Carbon Prediction with Digital Soil Mapping in Europe. Available online: https://www.researchgate.net/publication/372961545_SoilNet_An_Attention-based_Spatio-temporal_Deep_Learning_Framework_for_Soil_Organic_Carbon_Prediction_with_Digital_Soil_Mapping_in_Europe (accessed on 20 November 2024).
- Wang, R.; Ma, L.; He, G.; Johnson, B.; Yan, Z.; Chang, M.; Liang, Y. Transformers for Remote Sensing: A Systematic Review and Analysis. Sensors 2024, 24, 3495. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zheng, K.; Gao, L.; Zhangzhong, L.; Lan, R.; Xu, L.; Yu, J. GRU–Transformer: A Novel Hybrid Model for Predicting Soil Moisture Content in Root Zones. Agronomy 2024, 14, 432. [Google Scholar] [CrossRef]
- Tresson, P.; Dumont, M.; Jaeger, M.; Borne, F.; Boivin, S.; Marie-Louise, L.; François, J.; Boukcim, H.; Goëau, H. Self-Supervised Learning of Vision Transformers for Digital Soil Mapping Using Visual Data. Geoderma 2024, 450, 117056. [Google Scholar] [CrossRef]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the Opportunities and Risks of Foundation Models. arXiv 2022, arXiv:2108.07258. [Google Scholar]
- Huo, C.; Chen, K.; Zhang, S.; Wang, Z.; Yan, H.; Shen, J.; Hong, Y.; Qi, G.; Fang, H.; Wang, Z. When Remote Sensing Meets Foundation Model: A Survey and Beyond. Remote Sens. 2025, 17, 179. [Google Scholar] [CrossRef]
- Wang, D.; Hu, M.; Jin, Y.; Miao, Y.; Yang, J.; Xu, Y.; Qin, X.; Ma, J.; Sun, L.; Li, C.; et al. HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model. IEEE Trans. Pattern Anal. Mach. Intell. 2025. [Google Scholar] [CrossRef]
- Zheng, L.; Jing, B.; Li, Z.; Tong, H.; He, J. Heterogeneous Contrastive Learning for Foundation Models and Beyond. In Proceedings of the KDD’24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain 25–29 August 2024. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning Transferable Visual Models From Natural Language Supervision. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Bao, H.; Dong, L.; Piao, S.; Wei, F. BEiT: BERT Pre-Training of Image Transformers. arXiv 2022, arXiv:2106.08254. [Google Scholar]
- Jia, C.; Yang, Y.; Xia, Y.; Chen, Y.-T.; Parekh, Z.; Pham, H.; Le, Q.V.; Sung, Y.; Li, Z.; Duerig, T. Scaling Up Visual and Vision-Language Representation Learning with Noisy Text Supervision. arXiv 2021, arXiv:2102.05918. [Google Scholar]
- Li, L.H.; Yatskar, M.; Yin, D.; Hsieh, C.-J.; Chang, K.-W. VisualBERT: A Simple and Performant Baseline for Vision and Language. arXiv 2019, arXiv:1908.03557, 03557. [Google Scholar]
- Lu, S.; Guo, J.; Zimmer-Dauphinee, J.R.; Nieusma, J.M.; Wang, X.; VanValkenburgh, P.; Wernke, S.A.; Huo, Y. Vision Foundation Models in Remote Sensing: A Survey. IEEE Geosci. Remote Sens. Mag. 2025, 2–27. [Google Scholar] [CrossRef]
- Zhang, G.; Tan, P.; Fang, X.; Zhou, X.; Zhao, L. A Unified Self-Supervised Learning Framework for Hyperspectral Image Classification. IEEE Access 2025, 13, 49874–49890. [Google Scholar] [CrossRef]
- Scheibenreif, L.; Mommert, M.; Borth, D. Masked Vision Transformers for Hyperspectral Image Classification. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 17–24 June 2024; pp. 2166–2176. [Google Scholar]
- Viscarra Rossel, R.A.; Shen, Z.; Ramirez Lopez, L.; Behrens, T.; Shi, Z.; Wetterlind, J.; Sudduth, K.A.; Stenberg, B.; Guerrero, C.; Gholizadeh, A.; et al. An Imperative for Soil Spectroscopic Modelling Is to Think Global but Fit Local with Transfer Learning. Earth-Sci. Rev. 2024, 254, 104797. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Transfer Learning to Localise a Continental Soil Vis-NIR Calibration Model. Geoderma 2019, 340, 279–288. [Google Scholar] [CrossRef]
- Liu, L.; Ji, M.; Buchroithner, M. Transfer Learning for Soil Spectroscopy Based on Convolutional Neural Networks and Its Application in Soil Clay Content Mapping Using Hyperspectral Imagery. Sensors 2018, 18, 3169. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Yang, S. Improving Soil Organic Matter Mapping Using Transfer Learning and Satellite-Simulated Samples From Bare Soil Hyperspectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 1706–1717. [Google Scholar] [CrossRef]
- Qin, Y.; Ye, Y.; Zhao, Y.; Wu, J.; Zhang, H.; Cheng, K.; Li, K. Nearest Neighboring Self-Supervised Learning for Hyperspectral Image Classification. Remote Sens. 2023, 15, 1713. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A.S.; Al-dabbagh, B.S.N.; Fadhel, M.A.; Manoufali, M.; Zhang, J.; Al-Timemy, A.H.; et al. A Survey on Deep Learning Tools Dealing with Data Scarcity: Definitions, Challenges, Solutions, Tips, and Applications. J. Big Data 2023, 10, 46. [Google Scholar] [CrossRef]
- What Is the Computational Complexity of Common AI Algorithms?—Klu. Available online: https://klu.ai/glossary/computational-complexity-theory (accessed on 30 March 2025).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; pp. 1–745. [Google Scholar]
- Ciampalini, R.; Lagacherie, P.; Monestiez, P.; Waler, E.; Gomez, C. Co-Kriging of Soil Properties with Vis-NIR Hyperspectral Covariates in the Cap Bon Region (Tunisia); McBratney, A., Ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Gomez, C.; Lagacherie, P.; Bachae, S. Using Vis-NIR Hyperspectral Data to Map Topsoil Properties over Bare Soils in the Cap Bon Region, Tunisia; McBratney, A., Ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-0-415-62155-7. [Google Scholar]
- Gasmi, A.; Gomez, C.; Lagacherie, P.; Zouari, H. Surface Soil Clay Content Mapping at Large Scales Using Multispectral (VNIR–SWIR) ASTER Data. Int. J. Remote Sens. 2019, 40, 1506–1533. [Google Scholar] [CrossRef]
- Gasmi, A.; Gomez, C.; Lagacherie, P.; Zouari, H.; Laamrani, A.; Chehbouni, A. Mean Spectral Reflectance from Bare Soil Pixels along a Landsat-TM Time Series to Increase Both the Prediction Accuracy of Soil Clay Content and Mapping Coverage. Geoderma 2021, 388, 114864. [Google Scholar] [CrossRef]
- Gadal, S.; Oukhattar, M.; Keller, C.; Houmma, I. Spatio-Temporal Modelling of Relationship Between Organic Carbon Content and Land Use Using Deep Learning Approach and Several Co-Variables: Application to the Soils of the Beni Mellal in Morocco. In Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management, Prague, Czech Republic, 25–27 April 2023; SCITEPRESS—Science and Technology Publications: Prague, Czech Republic, 2023; pp. 15–26. [Google Scholar]
- Bouasria, A.; Namr, K.I.; Rahimi, A.; Ettachfini, E.M. Estimate Soil Organic Matter from Remote Sensing Data by Using Statistical Predictive Models. In Advanced Intelligent Systems for Sustainable Development (AI2SD’2020); Kacprzyk, J., Balas, V.E., Ezziyyani, M., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2022; Volume 1417, pp. 1106–1115. ISBN 978-3-030-90632-0. [Google Scholar]
- Reda, R.; Saffaj, T.; Itqiq, S.E.; Bouzida, I.; Saidi, O.; Yaakoubi, K.; Lakssir, B.; El Mernissi, N.; El Hadrami, E.M. Predicting Soil Phosphorus and Studying the Effect of Texture on the Prediction Accuracy Using Machine Learning Combined with Near-Infrared Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118736. [Google Scholar] [CrossRef]
- Bayad, M.; Gerard, B.; Hamma, A.; Hawkesford, M.J.; Ben-Dor, E.; Chau, H.W. High-Resolution Mapping of Long-Term Soil Organic Carbon Stocks and Changes in Morocco. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4576754 (accessed on 20 November 2024).
- Bouasria, A.; Namr, K.I.; Rahimi, A.; Ettachfini, E.M. Soil Organic Matter Estimation by Using Landsat-8 Pansharpened Image and Machine Learning. In Proceedings of the 2020 Fourth International Conference on Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 21–23 October 2020; pp. 1–8. [Google Scholar]
- Bouasria, A.; Ibno Namr, K.; Rahimi, A.; Ettachfini, E.M.; Rerhou, B. Evaluation of Landsat 8 Image Pansharpening in Estimating Soil Organic Matter Using Multiple Linear Regression and Artificial Neural Networks. Geo-Spat. Inf. Sci. 2022, 25, 353–364. [Google Scholar] [CrossRef]
- Bouslihim, Y.; John, K.; Miftah, A.; Azmi, R.; Aboutayeb, R.; Bouasria, A.; Razouk, R.; Hssaini, L. The Effect of Covariates on Soil Organic Matter and pH Variability: A Digital Soil Mapping Approach Using Random Forest Model. Ann. GIS 2024, 30, 215–232. [Google Scholar] [CrossRef]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L.; El Hadrami, E.M. A Comparative Study between a New Method and Other Machine Learning Algorithms for Soil Organic Carbon and Total Nitrogen Prediction Using near Infrared Spectroscopy. Chemom. Intell. Lab. Syst. 2019, 195, 103873. [Google Scholar] [CrossRef]
- Lazaar, A.; Mouazen, A.M.; El Hammouti, K.; Fullen, M.; Pradhan, B.; Memon, M.S.; Andich, K.; Monir, A. The Application of Proximal Visible and Near-Infrared Spectroscopy to Estimate Soil Organic Matter on the Triffa Plain of Morocco. Int. Soil Water Conserv. Res. 2020, 8, 195–204. [Google Scholar] [CrossRef]
- John, K.; Bouslihim, Y.; Bouasria, A.; Razouk, R.; Hssaini, L.; Isong, I.A.; Ait M’barek, S.; Ayito, E.O.; Ambrose-Igho, G. Assessing the Impact of Sampling Strategy in Random Forest-Based Predicting of Soil Nutrients: A Study Case from Northern Morocco. Geocarto Int. 2022, 37, 11209–11222. [Google Scholar] [CrossRef]
- Bel-Lahbib, S.; Ibno Namr, K.; El Hafyani, M.; Al Masmoudi, Y.; Essahlaoui, A. Modelling and Mapping of Soil Organic Matter in Doukkala Plain, Moroccan Semi-Arid Region. Ecol. Eng. Environ. Technol. 2022, 23, 188–197. [Google Scholar] [CrossRef]
- Lazaar, A.; Mahyou, H.; Gholizadeh, A.; Elhammouti, K.; Bilal, M.; Andich, K.; Roger, J.M.; Monir, A.; Kouotou, D. Potential of VIS-NIR Spectroscopy to Characterize and Discriminate Topsoils of Different Soil Types in the Triffa Plain (Morocco). Soil Sci. Annu. 2019, 70, 54–63. [Google Scholar] [CrossRef]
- Bangelesa, F.; Adam, E.; Knight, J.; Dhau, I.; Ramudzuli, M.; Mokotjomela, T.M. Predicting Soil Organic Carbon Content Using Hyperspectral Remote Sensing in a Degraded Mountain Landscape in Lesotho. Appl. Environ. Soil Sci. 2020, 2020, 2158573. [Google Scholar] [CrossRef]
- Bayer, A.D.; Bachmann, M.; Rogge, D.; Muller, A.; Kaufmann, H. Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3997–4010. [Google Scholar] [CrossRef]
- Nocita, M.; Kooistra, L.; Bachmann, M.; Müller, A.; Powell, M.; Weel, S. Predictions of Soil Surface and Topsoil Organic Carbon Content through the Use of Laboratory and Field Spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa. Geoderma 2011, 167–168, 295–302. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Peerbhay, K.; Dovey, S. Predicting Soil Organic Carbon Stocks under Commercial Forest Plantations in KwaZulu-Natal Province, South Africa Using Remotely Sensed Data. GIScience Remote Sens. 2020, 57, 450–463. [Google Scholar] [CrossRef]
- Mashao, F.M.; Thaba, S.J.; Muyambo, N.P.; Tjale, C.R.; Zwane, P.S.M.; Munjonji, L.; Nkuna, D.; Ayisi, K.K.; Thamaga, K.H. Exploring Laboratory-Based Spectroscopy for Estimating NPK Content in the Hutton Soils of Syferkuil Farmlands, South Africa. Geocarto Int. 2024, 39, 2339289. [Google Scholar] [CrossRef]
- Bayer, A.; Bachmann, M.; Müller, A. Delineation of Soil Parameters to Assess Ecosystem Degradation Using Spectral Mixture Analysis. In Proceedings of the ESA Hyperspectral Workshop, Frascati, Italy, 17–19 March 2010. [Google Scholar]
- Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef] [PubMed]
- Winowiecki, L.; Vågen, T.-G.; Massawe, B.; Jelinski, N.A.; Lyamchai, C.; Sayula, G.; Msoka, E. Landscape-Scale Variability of Soil Health Indicators: Effects of Cultivation on Soil Organic Carbon in the Usambara Mountains of Tanzania. Nutr. Cycl. Agroecosyst. 2016, 105, 263–274. [Google Scholar] [CrossRef]
- Winowiecki, L.; Vågen, T.-G.; Huising, J. Effects of Land Cover on Ecosystem Services in Tanzania: A Spatial Assessment of Soil Organic Carbon. Geoderma 2016, 263, 274–283. [Google Scholar] [CrossRef]
- Silatsa, F.B.T.; Yemefack, M.; Tabi, F.O.; Heuvelink, G.B.M.; Leenaars, J.G.B. Assessing Countrywide Soil Organic Carbon Stock Using Hybrid Machine Learning Modelling and Legacy Soil Data in Cameroon. Geoderma 2020, 367, 114260. [Google Scholar] [CrossRef]
- Takoutsing, B.; Weber, J.; Aynekulu, E.; Rodríguez Martín, J.A.; Shepherd, K.; Sila, A.; Tchoundjeu, Z.; Diby, L. Assessment of Soil Health Indicators for Sustainable Production of Maize in Smallholder Farming Systems in the Highlands of Cameroon. Geoderma 2016, 276, 64–73. [Google Scholar] [CrossRef]
- Komolafe, A.A.; Olorunfemi, I.E.; Oloruntoba, C.; Akinluyi, F.O. Spatial Prediction of Soil Nutrients from Soil, Topography and Environmental Attributes in the Northern Part of Ekiti State, Nigeria. Remote Sens. Appl. Soc. Environ. 2021, 21, 100450. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks across an Afromontane Landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Mponela, P.; Snapp, S.; Villamor, G.B.; Tamene, L.; Le, Q.B.; Borgemeister, C. Digital Soil Mapping of Nitrogen, Phosphorus, Potassium, Organic Carbon and Their Crop Response Thresholds in Smallholder Managed Escarpments of Malawi. Appl. Geogr. 2020, 124, 102299. [Google Scholar] [CrossRef]
- Dahhani, S.; Raji, M.; Bouslihim, Y. Synergistic Use of Multi-Temporal Radar and Optical Remote Sensing for Soil Organic Carbon Prediction. Remote Sens. 2024, 16, 1871. [Google Scholar] [CrossRef]
- McCarty, G.W.; Iii, J.B.R.; Yost, R.; Doraiswamy, P.C.; Doumbia, M. Evaluation of Methods for Measuring Soil Organic Carbon in West African Soils. Afr. J. Agric. Res. 2010, 5, 2169–2177. [Google Scholar]
- Zurqani, H.A. (Ed.) Environmental Applications of Remote Sensing and GIS in Libya; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-97809-9. [Google Scholar]
- Mohamed, E.S.; Baroudy, A.A.E.; El-beshbeshy, T.; Emam, M.; Belal, A.A.; Elfadaly, A.; Aldosari, A.A.; Ali Abdelraouf, M.; Lasaponara, R. Vis-NIR Spectroscopy and Satellite Landsat-8 OLI Data to Map Soil Nutrients in Arid Conditions: A Case Study of the Northwest Coast of Egypt. Remote Sens. 2020, 12, 3716. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J. Digital Mapping of Soil Properties Using Multivariate Statistical Analysis and ASTER Data in an Arid Region. Remote Sens. 2015, 7, 1181–1205. [Google Scholar] [CrossRef]
- Kawamura, K.; Nishigaki, T.; Andriamananjara, A.; Rakotonindrina, H.; Tsujimoto, Y.; Moritsuka, N.; Rabenarivo, M.; Razafimbelo, T. Using a One-Dimensional Convolutional Neural Network on Visible and Near-Infrared Spectroscopy to Improve Soil Phosphorus Prediction in Madagascar. Remote Sens. 2021, 13, 1519. [Google Scholar] [CrossRef]
- Kawamura, K.; Tsujimoto, Y.; Rabenarivo, M.; Asai, H.; Andriamananjara, A.; Rakotoson, T. Vis-NIR Spectroscopy and PLS Regression with Waveband Selection for Estimating the Total C and N of Paddy Soils in Madagascar. Remote Sens. 2017, 9, 1081. [Google Scholar] [CrossRef]
- Hengl, T.; Leenaars, J.G.B.; Shepherd, K.D.; Walsh, M.G.; Heuvelink, G.B.M.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus, E.; et al. Soil Nutrient Maps of Sub-Saharan Africa: Assessment of Soil Nutrient Content at 250 m Spatial Resolution Using Machine Learning. Nutr. Cycl. Agroecosyst. 2017, 109, 77–102. [Google Scholar] [CrossRef]
- Hengl, T.; Miller, M.A.E.; Križan, J.; Shepherd, K.D.; Sila, A.; Kilibarda, M.; Antonijević, O.; Glušica, L.; Dobermann, A.; Haefele, S.M.; et al. African Soil Properties and Nutrients Mapped at 30 m Spatial Resolution Using Two-Scale Ensemble Machine Learning. Sci. Rep. 2021, 11, 6130. [Google Scholar] [CrossRef]
- Munialo, S.; Dahlin, A.S.; Onyango, M.C.; Oluoch-Kosura, W.; Marstorp, H.; Öborn, I. Soil and Management-related Factors Contributing to Maize Yield Gaps in Western Kenya. Food Energy Secur. 2020, 9, e189. [Google Scholar] [CrossRef]
- Kwesiga, J.; Grotelüschen, K.; Senthilkumar, K.; Neuhoff, D.; Döring, T.F.; Becker, M. Rice Yield Gaps in Smallholder Systems of the Kilombero Floodplain in Tanzania. Agronomy 2020, 10, 1135. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the Potential of the Current and Forthcoming Multispectral and Hyperspectral Imagers to Estimate Soil Texture and Organic Carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Padarian, J.; Minasny, B. Multi-Source Data Integration for Soil Mapping Using Deep Learning. Soil 2019, 5, 107–119. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Tan, X.; Guo, P.-T.; Wu, W.; Li, M.-F.; Liu, H.-B. Prediction of Soil Properties by Using Geographically Weighted Regression at a Regional Scale. Soil Res. 2017, 55, 318. [Google Scholar] [CrossRef]
- Ye, H.; Huang, W.; Huang, S.; Huang, Y.; Zhang, S.; Dong, Y.; Chen, P. Effects of Different Sampling Densities on Geographically Weighted Regression Kriging for Predicting Soil Organic Carbon. Spat. Stat. 2017, 20, 76–91. [Google Scholar] [CrossRef]
- Song, Y.; Shen, Z.; Wu, P.; Viscarra Rossel, R.A. Wavelet Geographically Weighted Regression for Spectroscopic Modelling of Soil Properties. Sci. Rep. 2021, 11, 17503. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, L.; Zhu, A.-X.; Rossiter, D.G.; Liu, J.; Liu, J.; Qin, C.; Wang, D. Mapping Soil Organic Matter Concentration at Different Scales Using a Mixed Geographically Weighted Regression Method. Geoderma 2016, 281, 69–82. [Google Scholar] [CrossRef]
- Lin, X.; Su, Y.-C.; Shang, J.; Sha, J.; Li, X.; Sun, Y.-Y.; Ji, J.; Jin, B. Geographically Weighted Regression Effects on Soil Zinc Content Hyperspectral Modeling by Applying the Fractional-Order Differential. Remote Sens. 2019, 11, 636. [Google Scholar] [CrossRef]
- Kakhani, N.; Taghizadeh-Mehrjardi, R.; Omarzadeh, D.; Ryo, M.; Heiden, U.; Scholten, T. Towards Explainable AI: Interpreting Soil Organic Carbon Prediction Models Using a Learning-Based Explanation Method. Eur. J. Soil Sci. 2025, 76, e70071. [Google Scholar] [CrossRef]
- Yahqub, M.; Jimoh, A.I.; Owonubi, A. Evaluation of Land Use Impact on Soil Quality in Samaru College of Agriculture, Northern Guinea Savanna, Nigeria. Agric. Trop. Subtrop. 2024, 57, 35–44. [Google Scholar] [CrossRef]
- Anderson, A.; Khaleel, A.; Dutter, C.; Blauwet, M.; Flores, A.; Miller, B.; Burras, C.L.; Fidel, R. Introduction to Soil Science; Iowa State University Digital Press: Ames, IA, USA, 2023; pp. 1–165. [Google Scholar]
- Dexter, A.R. Soil Physical Quality Part I. Theory, Effects of Soissl Texture, Density, and Organic Matter, and Effects on Root Growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; McGlynn, R.N.; McBratney, A.B. Determining the Composition of Mineral-Organic Mixes Using UV–Vis–NIR Diffuse Reflectance Spectroscopy. Geoderma 2006, 137, 70–82. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.P.; Dale, V.H.; Doering, O.C.; Hamburg, S.P.; Melillo, J.M.; Wander, M.M.; Parton, W.J.; Adler, P.R.; Barney, J.N.; Cruse, R.M.; et al. Sustainable Biofuels Redux. Science 2008, 322, 49–50. [Google Scholar] [CrossRef] [PubMed]
- Fertimap: Carte de Fertilité Des Sols Cultivés Au Maroc|Fertimap. Available online: http://www.fertimap.ma/index.html (accessed on 28 March 2025).
- iSDA—ISDAsoil. Available online: https://www.isda-africa.com/isdasoil/ (accessed on 28 March 2025).
- Chen, Z.; Zhang, S.; Geng, W.; Ding, Y.; Jiang, X. Use of Geographically Weighted Regression (GWR) to Reveal Spatially Varying Relationships between Cd Accumulation and Soil Properties at Field Scale. Land 2022, 11, 635. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, C.; Zhang, H.; Chen, Y.; Linderman, M.; Zhang, Q.; Liu, Y. Comparisons of Spatial and Non-Spatial Models for Predicting Soil Carbon Content Based on Visible and near-Infrared Spectral Technology. Geoderma 2017, 285, 280–292. [Google Scholar] [CrossRef]
- Radočaj, D.; Jug, I.; Vukadinović, V.; Jurišić, M.; Gašparović, M. The Effect of Soil Sampling Density and Spatial Autocorrelation on Interpolation Accuracy of Chemical Soil Properties in Arable Cropland. Agronomy 2021, 11, 2430. [Google Scholar] [CrossRef]
- Stumpf, F.; Schmidt, K.; Goebes, P.; Behrens, T.; Schönbrodt-Stitt, S.; Wadoux, A.; Xiang, W.; Scholten, T. Uncertainty-Guided Sampling to Improve Digital Soil Maps. Catena 2017, 153, 30–38. [Google Scholar] [CrossRef]
Purpose of Satellite | Satellite Name | Spectral Range (nm) | Number of Spectral Bands | Spectral Sampling (nm) | Spatial Resolution (m) | Temporal Resolution (Days) | Launch Date –Finish Date | Agency |
---|---|---|---|---|---|---|---|---|
Research satellites | EO-1 Hyperion | 357–2576 | 220 | 10 | 30 | 16–30 | 2000–2017 | NASA, USA |
PROBA-CHRIS | 415–1050 | 19 63 | 34 17 | 17 36 | 8 | 2001–2014 | ESA, UE | |
PRISMA | 400–2505 | 239 | 12 | 30 | 29 | 2019–Present | ASI, Italy | |
EnMAP | 420–2450 | 230 | 6.5–10 | 30 | 27 | 2022–Present | DLR, Germany | |
HISUI | 400–2500 | 185 | 10 | 30 | - | 2019–Present | JAXA, Japan | |
HysIS | 400–2500 | 55 | 10 | 30 | - | 2018–Present | ISRO, India | |
HyspIRI | 380–2500 | 210 | 10 | 60 | 19 | Planned | NASA, USA | |
CHIME | 400–2500 | 200+ | ≤10 | 30 | ~12 | Planned | ESA, UE | |
Commercial Satellites | GHOST | 400–2500 | 400+ | - | 8 | Daily | 2023–Present | OSK, USA |
PIXXEL | 400–2500 | 250 | - | 5 | Daily | Planned | Pixxel, India | |
TANAGER 1 | 400–2500 | 420+ | 5 | 30 | 7 | 2024–Present | Planet Labs, USA | |
SHALOM | 400–1010 | 240 | 10 | 10 | 4 | Planned | ISA, Israel and ASI, Italy | |
Dragonette-001 | 500–800 | 23 | 5.3 | 5.30 | 2 | 2023–Present | Wyvern, Canada | |
DESIS | 400–1000 | 235 | 2.55 | 30 | 3–5 | 2018–Present | DLR, Germany | |
ZY-1 02D | 400–2500 | 166 | 10–20 | 30 | 3 | 2019–Present | CNSA, China |
Sensor Name | Platform | Spectral Range (nm) | Spectral Bands | Spatial Resolution |
---|---|---|---|---|
Hyspex VNIR-1600 | Drone/Airborne | 400–1000 | 160 | 0.4–1.0 m (drone-based) |
HySpex SWIR-384 | Drone/Airborne | 950–2500 | 288 | 0.4–1.0 m (drone-based) |
Headwall Nano-Hyperspec | Drone | 400–1000 | ~270 | Up to 2 cm (low altitude) |
Specim AisaFENIX | Drone/Airborne | 380–2500 | ~488 | 1–2 m (airborne) |
APEX | Airborne | 400–2500 | ~312 | 2–4 m |
Spcim AisaDUAL | Airborne | 400–2500 | VNIR: 400, SWIR: 288 | 1–5 m |
Hymap | Airborne | 450–2480 | 128 | 2–5 m |
AVIRIS | Airborne | 380–2500 | 224 | 20 m |
Estimation Methods | Advantages | Limitations | Computational Demands | Temporal Complexity |
---|---|---|---|---|
PLSR | -Simple, interpretable, and effective with small datasets; -Computationally efficient for linear relationships. | -Struggles with non-linear relationships; -Sensitive to noise and outliers; -Assumes linearity, limiting utility in complex soil systems. | Low (CPU-efficient) | (approximate, solver-dependent) |
SVM | -Handles non-linear data well. | -Parameter tuning is complex and dataset-specific; -Poor regression performance for continuous soil variables. | Moderate to high | (with kernel) |
RF | -Robust, non-parametric, handles high-dimensional data, gives feature importance. | -Overfitting on noisy data, limited extrapolation; -Feature selection may underperform when faced with high spectral redundancy. | Low (CPU-efficient) | |
1D-CNN | -Excellent at capturing local spectral patterns, with no need for manual feature engineering. | -Requires more data and limited capacity to model spatial context unless combined with other architectures. | High | |
2D/3D-CNN | -Good for spatial structure learning, useful for imaging spectroscopy. | -High data and computing requirements. | High (GPU-accelerated) | |
LSTM/RNN | -Captures temporal/spectral dependencies, and handles sequential data. | -Difficult to train, less effective for long sequences, and not ideal for images. | Moderate to High | |
Transformers | -Uses self-attention to model long-range dependencies; -Captures global spectral patterns, scalable, highly accurate. | -Needs large datasets and compute power, risk of overfitting in small data; -Require careful architecture tuning (e.g., attention heads) for optimal performance. | Very High | |
Foundational Models | -Generalizable, robust across regions, minimal labeled data required. | -Not widely used yet in soil science and requires expertise. | Extremely High (depends on use: inference vs. fine-tuning vs. training) | (scales with model depth/size) |
Publication Year | Country | Studies Soil Property (ies) | Soil Sample Depth | Soil Sample Size (cm) | Remote Sensing Source | Modeling Approach | References |
---|---|---|---|---|---|---|---|
2012 | Tunisia | Clay, Sand, Iron content, CEC | 262 | 5 | HSIS airb | PLSR | [175] |
2018 | Tunisia | Clay Content | 129 | 5 | HSIS airb | PLSR | [85] |
2012 | Tunisia | Clay Content, Sand Content, iron, CEC, Silt, CaCO3, pH, organic carbon | 129 | 5 | HSIS airb | PLSR | [176] |
2018 | Tunisia | Clay Content | 150 | 5 | MS | MLR | [177] |
2013 | Tunisia | Clay Content, Sand Content, CEC | 152 | 0–15 15–30 30–60 60–100 | HSIS airb | RF | [14] |
2021 | Tunisia | Clay content | 262 | 5 | MS | MLR | [178] |
2024 | Morocco | Total Nitrogen (TN) | 803 | - | HSIS-PRISMA | GPR, SVM, PLSR (ELM) | [26] |
2023 | Morocco | SOC Stock | 40 | 15 | MS | MLP | [179] |
2023 | Morocco | SOC stock | 420 | 0–10 10–20 20–30 | MS | RF, Cubist, SVM, GBM | [126] |
2022 | Morocco | SOM, P, K | 107 | 0–20 | HSIS-PRISMA | RF, OK | [27] |
2022 | Morocco | SOM | 368 | 30 | MS | MLR, KNN, DT, ANN | [180] |
2020 | Morocco | TP, P-Olsen | 660 | 30 | HSS | PLSR, SVM, BPNN | [181] |
2024 | Morocco | SOC Stock | 52,000 | 30 | MS | RF | [182] |
2020 | Morocco | SOM | 369 | 30 | MS | DT, KNN, ANN | [183] |
2022 | Morocco | SOM | 368 | 30 | MS | MLR, ANN | [184] |
2024 | Morocco | SOM, pH | 191 | 30 | MS | RF | [185] |
2019 | Morocco | SOC, TN | 400 | - | HSS | PLSR, BPNN, ELM | [186] |
2020 | Morocco | SOM | 115 | 20 | HSS | PLSR | [187] |
2022 | Morocco | P, K | 1470 | 40 | MS | RF | [188] |
2022 | Morocco | SOM | 52 | 20 | MS | MRSA | [189] |
2019 | Morocco | SOM, CaCO3, Soil Texture | 26 | 30 | HSS | LDA | [190] |
2024 | Morocco | SOM, P, K | 1217 | 30 | HSIS-PRISMA | PLSR, SVM, GPR (ELM) | [28] |
2020 | Lesotho | SOC Content | 109 | 5 | HSS | RF, PLSR | [191] |
2016 | South Africa | SOC | 163 | - | HSIS airb | MLR | [192] |
2011 | South Africa | SOC | 113 | 0–200 mm 0–5 mm | HSS | PLSR | [193] |
2020 | South Africa | SOC | 81 | 30 | MS | RF | [194] |
2024 | South Africa | N, P, K | 74 | 20 | HSS | SMLR, PLSR | [195] |
2015 | South Africa | SOC, Iron, clay content | 164 | - | HSIS airb | MESMA | [196] |
2017 | Burkina Faso | SOC, Soil Texture, CEC, N | 1104 | 30 | MS | MLR, RF, SVM, SGB | [197] |
2016 | Tanzania | SOC | 320 | 0–20 20–50 | MS, (MIR) Spectroscopy | Linear Mixed-Effects Model (LME), RF | [198] |
2015 | Tanzania | SOC | 2052 | 0–20 20–50 | MS, (MIR) Spectroscopy | RF, LME | [199] |
2020 | Cameroon | SOC STOCK | 1432 | 0–15 15–30 30–100 0–30 0–100 | Covariates resampled to 100 m | RF, GBR | [200] |
2016 | Cameroon | MSP | 317 | 0–20 20–50 | MIR Spectroscopy | RF | [201] |
2021 | Nigeria | N, P, K, SOM | 66 | - | MS | MLR | [202] |
2015 | Kenya | SOC stock | 320 | 0–15 15–30 | MS | SVM, ANN, RF | [203] |
2020 | Malawi | MSP | 219 | 20 | MS | RF | [204] |
2024 | Senegal | SOC | 952 | 20 | MS | XGBOOST, RF, SVM | [205] |
2010 | Mali | SOC, Soil texture | 116 | 0–20 20–40 | NIR and MIR spectroscopy | PLSR | [206] |
2022 | Libya | MSP | 147 | 30 | MS | DT | [207] |
2020 | Egypt | MSP | 100 | 25 | MS, HSS | PLSR | [208] |
2015 | Egypt | EC, Clay Content, SOM | 118 | 20 | MS | Multivariate Adaptive Regression Splines (MARS) | [209] |
2021 | Madagascar | Oxalate-Extractable Phosphorus (Pox) | 318 | 15 | HSS | PLSR, RF, 1D-CNN | [210] |
2017 | Madagascar | TC, TN | 62 | 10 | HSS | PLSR | [211] |
2017 | Africa | MSP | 59,000 | 0–20 20–50 | MS | RF, GBM | [212] |
2021 | Africa | MSP | 150,000 | 0 20 50 | MS | ELM | [213] |
Challenge | Key Issue | Targeted Recommendation |
---|---|---|
Data availability | -Limited access to high-resolution hyperspectral data (e.g., PRISMA, EnMAP); -Scarce African-specific spectral libraries; -High costs of field sampling; -Standardized sampling procedures. | -Partner with ESA/NASA to prioritize African coverage; -Build open-access African soil spectral libraries (UAV + crowdsourced data); -Validate ISDA maps through localized campaigns; -The need for investment in national soil sampling campaigns across Africa. |
Model Generalization | -Poor transferability of global models to African soils; -Sensitivity to variable field conditions (moisture, vegetation); -Lack of spatially aware validation and uncertainty assessment. | -Adopt self-supervised learning (SSL) for pre-training on unlabeled African data; -Develop robust and hybrid architectures (e.g., attention-based models, transformers with CNN…); -Integrate multi-modal data (SAR, climate indices, remote sensing covariates…); -Use spatial cross-validation techniques (e.g., spatial k-fold, leave-location-out); -Apply spatially balanced sampling (e.g., conditioned Latin Hypercube Sampling); -Quantify and map uncertainty to guide model improvement and sampling efforts. |
Computational Costs | -High processing demands for hyperspectral data; -Limited access to HPC resources. | -Use cloud platforms (Google Earth Engine, AWS) for scalability; -Optimize models with lightweight architectures; -Establish regional HPC hubs. |
Spectral Complexity | -Traditional models struggle with hyperspectral dimensionality; -Redundant spectral bands reduce interpretability; -Mixed pixels due to coarse spatial resolution (~30 m) from PRISMA/EnMAP. | -Transition to attention-based models for dynamic band prioritization; -Leverage spectral unmixing algorithms (e.g., MESMA, non-linear unmixing), foundational models (e.g., HyperSIGMA), and bare soil composite imagery to enhance spatial accuracy and temporal consistency in soil property estimation. |
Infrastructure and Policy Gaps | -Fragmented technical capacity; -Lack of standardized protocols/policies. | -Launch pan-African training programs (workshops, MOOCs); -Advocate for open-data policies; -Develop continent-wide validation benchmarks. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Bouanani, N.; Laamrani, A.; Hajji, H.; Bourriz, M.; Bourzeix, F.; Ait Abdelali, H.; El-Battay, A.; Amazirh, A.; Chehbouni, A. Estimating Soil Attributes for Yield Gap Reduction in Africa Using Hyperspectral Remote Sensing Data with Artificial Intelligence Methods: An Extensive Review and Synthesis. Remote Sens. 2025, 17, 1597. https://doi.org/10.3390/rs17091597
El Bouanani N, Laamrani A, Hajji H, Bourriz M, Bourzeix F, Ait Abdelali H, El-Battay A, Amazirh A, Chehbouni A. Estimating Soil Attributes for Yield Gap Reduction in Africa Using Hyperspectral Remote Sensing Data with Artificial Intelligence Methods: An Extensive Review and Synthesis. Remote Sensing. 2025; 17(9):1597. https://doi.org/10.3390/rs17091597
Chicago/Turabian StyleEl Bouanani, Nadir, Ahmed Laamrani, Hicham Hajji, Mohamed Bourriz, Francois Bourzeix, Hamd Ait Abdelali, Ali El-Battay, Abdelhakim Amazirh, and Abdelghani Chehbouni. 2025. "Estimating Soil Attributes for Yield Gap Reduction in Africa Using Hyperspectral Remote Sensing Data with Artificial Intelligence Methods: An Extensive Review and Synthesis" Remote Sensing 17, no. 9: 1597. https://doi.org/10.3390/rs17091597
APA StyleEl Bouanani, N., Laamrani, A., Hajji, H., Bourriz, M., Bourzeix, F., Ait Abdelali, H., El-Battay, A., Amazirh, A., & Chehbouni, A. (2025). Estimating Soil Attributes for Yield Gap Reduction in Africa Using Hyperspectral Remote Sensing Data with Artificial Intelligence Methods: An Extensive Review and Synthesis. Remote Sensing, 17(9), 1597. https://doi.org/10.3390/rs17091597