Simulation of the Carbon Cycle’s Spatiotemporal Dynamics in the Hangzhou Forest Ecosystem and How It Responds to Phenology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Processing
2.2.1. Meteorological Data
2.2.2. Soil Data
2.2.3. Forest Distribution Map
2.2.4. Phenology Data
2.3. Analysis of Spatiotemporal Trends in the Carbon Cycle
2.4. Coefficient of Variation
2.5. InTEC Model for Incorporating Phenology
2.5.1. Introduction to the InTEC Model
2.5.2. InTEC Model Input Parameters
2.6. Structural Equation Modeling
3. Results
3.1. Spatiotemporal Simulation of Forest Carbon Cycle
3.2. Spatial Change Trends of Carbon Cycle in Forest Ecosystems of Hangzhou
3.3. Influence of Phenology on the Carbon Cycle
3.3.1. Influence of Phenology on GPP
3.3.2. Influence of Phenology on NPP
3.3.3. Influence of Phenology on NEP
3.4. Influence of Phenology and Climate on Carbon Cycle Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Broich, M.; Huete, A.; Tulbure, M.G.; Ma, X.; Xin, Q.; Paget, M.; Restrepo-Coupe, N.; Davies, K.; Devadas, R.; Held, A. Land Surface Phenological Response to Decadal Climate Variability across Australia Using Satellite Remote Sensing. Biogeosciences 2014, 11, 5181–5198. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- White, M.A.; Nemani, R.R.; Thornton, P.E.; Running, S.W. Satellite Evidence of Phenological Differences between Urbanized and Rural Areas of the Eastern United States Deciduous Broadleaf Forest. Ecosystems 2002, 5, 260–273. [Google Scholar] [CrossRef]
- Ren, P.; Liu, Z.; Zhou, X.; Peng, C.; Xiao, J.; Wang, S.; Li, X.; Li, P. Strong Controls of Daily Minimum Temperature on the Autumn Photosynthetic Phenology of Subtropical Vegetation in China. For. Ecosyst. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Tang, J.; Körner, C.; Muraoka, H.; Piao, S.; Shen, M.; Thackeray, S.J.; Yang, X. Emerging Opportunities and Challenges in Phenology: A Review. Ecosphere 2016, 7, e01436. [Google Scholar] [CrossRef]
- Mascolo, L.; Martinez-Marin, T.; Lopez-Sanchez, J.M. Optimal Grid-Based Filtering for Crop Phenology Estimation with Sentinel-1 SAR Data. Remote Sens. 2021, 13, 4332. [Google Scholar] [CrossRef]
- Berra, E.F.; Gaulton, R. Remote Sensing of Temperate and Boreal Forest Phenology: A Review of Progress, Challenges and Opportunities in the Intercomparison of in-Situ and Satellite Phenological Metrics. For. Ecol. Manag. 2021, 480, 118663. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Ahas, R.; Aasa, A. Onset of Spring Starting Earlier across the Northern Hemisphere. Glob. Change Biol. 2006, 12, 343–351. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Li, L.Z.X.; Li, Y.; Huntingford, C.; Ciais, P.; Cescatti, A.; Janssens, I.A.; Peñuelas, J.; Buermann, W. Summer Soil Drying Exacerbated by Earlier Spring Greening of Northern Vegetation. Sci. Adv. 2020, 6, eaax0255. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, G.; Du, H.; Mao, F.; Xu, L.; Li, X.; Liu, L. Combined MODIS Land Surface Temperature and Greenness Data for Modeling Vegetation Phenology, Physiology, and Gross Primary Production in Terrestrial Ecosystems. Sci. Total Environ. 2020, 726, 137948. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.U.; Shen, M.; Zhu, X. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Dragoni, D.; Schmid, H.P.; Wayson, C.A.; Potter, H.; Grimmond, C.S.B.; Randolph, J.C. Evidence of Increased Net Ecosystem Productivity Associated with a Longer Vegetated Season in a Deciduous Forest in South-Central Indiana, USA. Glob. Change Biol. 2011, 17, 886–897. [Google Scholar] [CrossRef]
- Schwartz, M.D. Phenology: An Integrative Environmental Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 132. [Google Scholar]
- Richardson, A.D.; Andy Black, T.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S. Influence of Spring and Autumn Phenological Transitions on Forest Ecosystem Productivity. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3227–3246. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Zhou, G.; Mao, F.; Zheng, J.; Liu, H.; Huang, Z.; He, S. Spatiotemporal Dynamics in Assimilated-LAI Phenology and Its Impact on Subtropical Bamboo Forest Productivity. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102267. [Google Scholar] [CrossRef]
- Han, Q.; Wang, T.; Jiang, Y.; Fischer, R.; Li, C. Phenological Variation Decreased Carbon Uptake in European Forests during 1999–2013. For. Ecol. Manag. 2018, 427, 45–51. [Google Scholar] [CrossRef]
- Black, T.A.; Chen, W.J.; Barr, A.G.; Arain, M.A.; Chen, Z.; Nesic, Z.; Hogg, E.H.; Neumann, H.H.; Yang, P.C. Increased Carbon Sequestration by a Boreal Deciduous Forest in Years with a Warm Spring. Geophys. Res. Lett. 2000, 27, 1271–1274. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Liu, J.; Cihlar, J.; Gray, S. Annual Carbon Balance of Canada’s Forests during 1895–1996. Glob. Biogeochem. Cycles 2000, 14, 839–849. [Google Scholar] [CrossRef]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F. Remote Sensing of the Terrestrial Carbon Cycle: A Review of Advances over 50 Years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Chapin, F.S.; Woodwell, G.M.; Randerson, J.T.; Rastetter, E.B.; Lovett, G.M.; Baldocchi, D.D.; Clark, D.A.; Harmon, M.E.; Schimel, D.S.; Valentini, R. Reconciling Carbon-Cycle Concepts, Terminology, and Methods. Ecosystems 2006, 9, 1041–1050. [Google Scholar] [CrossRef]
- Wang, Z.; He, Y.; Niu, B.; Wu, J.; Zhang, X.; Zu, J.; Huang, K.; Li, M.; Cao, Y.; Zhang, Y. Sensitivity of Terrestrial Carbon Cycle to Changes in Precipitation Regimes. Ecol. Indic. 2020, 113, 106223. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S. Net Carbon Uptake Has Increased through Warming-Induced Changes in Temperate Forest Phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing Season Extension and Its Impact on Terrestrial Carbon Cycle in the Northern Hemisphere over the Past 2 Decades. Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Cramer, W.; Bondeau, A.; Schaphoff, S.; Lucht, W.; Smith, B.; Sitch, S. Tropical Forests and the Global Carbon Cycle: Impacts of Atmospheric Carbon Dioxide, Climate Change and Rate of Deforestation. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2004, 359, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Houghton, R.A. Interactions between Land-Use Change and Climate-Carbon Cycle Feedbacks. Curr. Clim. Chang. Rep. 2018, 4, 115–127. [Google Scholar] [CrossRef]
- Li, Y.; Brando, P.M.; Morton, D.C.; Lawrence, D.M.; Yang, H.; Randerson, J.T. Deforestation-Induced Climate Change Reduces Carbon Storage in Remaining Tropical Forests. Nat. Commun. 2022, 13, 1964. [Google Scholar] [CrossRef]
- Huang, C.; Weishu, G.; Yong, P. Remote Sensing and Forest Carbon Monitoring--a Review of Recent Progress, Challenges and Opportunities. J. Geod. Geoinf. Sci. 2022, 5, 124. [Google Scholar]
- Turner, D.P.; Guzy, M.; Lefsky, M.A.; Ritts, W.D.; Van Tuyl, S.; Law, B.E. Monitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling. Environ. Manag. 2004, 33, 457–466. [Google Scholar] [CrossRef]
- Xie, X.; Li, A.; Jin, H. The Simulation Models of the Forest Carbon Cycle on a Large Scale: A Review. Acta Ecol. Sin. 2018, 38, 41–54. [Google Scholar]
- Zheng, J.; Mao, F.; Du, H.; Li, X.; Zhou, G.; Dong, L.; Zhang, M.; Han, N.; Liu, T.; Xing, L. Spatiotemporal Simulation of Net Ecosystem Productivity and Its Response to Climate Change in Subtropical Forests. Forests 2019, 10, 708. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.M.; Pan, Y.; Birdsey, R.A.; Shen, S.; Ju, W.; He, L. Attributing Carbon Changes in Conterminous US Forests to Disturbance and Non-disturbance Factors from 1901 to 2010. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar]
- He, L.; Chen, J.M.; Pan, Y.; Birdsey, R.; Kattge, J. Relationships between Net Primary Productivity and Forest Stand Age in US Forests. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Govind, A.; Chen, J.M.; Bernier, P.; Margolis, H.; Guindon, L.; Beaudoin, A. Spatially Distributed Modeling of the Long-Term Carbon Balance of a Boreal Landscape. Ecol. Model. 2011, 222, 2780–2795. [Google Scholar] [CrossRef]
- Hu, M.; Li, X.; Xu, Y.; Huang, Z.; Chen, C.; Chen, J.; Du, H. Remote Sensing Monitoring of the Spatiotemporal Dynamics of Urban Forest Phenology and Its Response to Climate and Urbanization. Urban Clim. 2024, 53, 101810. [Google Scholar] [CrossRef]
- Cao, B.; Gruber, S.; Zhang, T. REDCAPP (v1. 0): Parameterizing Valley Inversions in Air Temperature Data Downscaled from Reanalyses. Geosci. Model Dev. 2017, 10, 2905–2923. [Google Scholar] [CrossRef]
- Ju, W.; Chen, J.M.; Black, T.A.; Barr, A.G.; Liu, J.; Chen, B. Modelling Multi-Year Coupled Carbon and Water Fluxes in a Boreal Aspen Forest. Agric. For. Meteorol. 2006, 140, 136–151. [Google Scholar] [CrossRef]
- Guber, A.K.; Pachepsky, Y.A.; Van Genuchten, M.T.; Rawls, W.J.; Simunek, J.; Jacques, D.; Nicholson, T.J.; Cady, R.E. Field-Scale Water Flow Simulations Using Ensembles of Pedotransfer Functions for Soil Water Retention. Vadose Zone J. 2006, 5, 234–247. [Google Scholar] [CrossRef]
- Koren, V.; Smith, M.; Duan, Q. Use of a Priori Parameter Estimates in the Derivation of Spatially Consistent Parameter Sets of Rainfall-Runoff Models. Calibration Watershed Models 2003, 6, 239–254. [Google Scholar]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Li, L.; Lu, D.; Kuang, W. Examining Urban Impervious Surface Distribution and Its Dynamic Change in Hangzhou Metropolis. Remote Sens. 2016, 8, 265. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Chen, L.; Xing, L.; Fan, W.; Xu, X.; Liu, Y.; Cui, L. Estimating Bamboo Forest Aboveground Biomass Using EnKF-Assimilated MODIS LAI Spatiotemporal Data and Machine Learning Algorithms. Agric. For. Meteorol. 2018, 256, 445–457. [Google Scholar] [CrossRef]
- Mao, F.; Du, H.; Zhou, G.; Li, X.; Xu, X.; Li, P.; Sun, S. Coupled LAI Assimilation and BEPS Model for Analyzing the Spatiotemporal Pattern and Heterogeneity of Carbon Fluxes of the Bamboo Forest in Zhejiang Province, China. Agric. For. Meteorol. 2017, 242, 96–108. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Liu, H.; Liu, S.; Wang, F.; Liu, Y.; Yu, L.; Wang, Q.; Sun, Y.; Li, M.; Sun, J.; Han, Z. Management Practices Should Be Strengthened in High Potential Vegetation Productivity Areas Based on Vegetation Phenology Assessment on the Qinghai-Tibet Plateau. Ecol. Indic. 2022, 140, 108991. [Google Scholar] [CrossRef]
- Zhang, R.; Qi, J.; Leng, S.; Wang, Q. Long-Term Vegetation Phenology Changes and Responses to Preseason Temperature and Precipitation in Northern China. Remote Sens. 2022, 14, 1396. [Google Scholar] [CrossRef]
- Parmesan, C. Influences of Species, Latitudes and Methodologies on Estimates of Phenological Response to Global Warming. Glob. Change Biol. 2007, 13, 1860–1872. [Google Scholar] [CrossRef]
- Shang, L.; Liao, J.; Xie, S.; Tu, Z.; Liao, H.; Zhong, K. Dynamic Changes in the Thermal Growing Season and Their Association with Atmospheric Circulation in China. Int. J. Biometeorol. 2022, 66, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Hamed, K.H. Trend Detection in Hydrologic Data: The Mann–Kendall Trend Test under the Scaling Hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Springer: Berlin/Heidelberg, Germany, 1948. [Google Scholar]
- Liu, J.; Zhan, P. The Impacts of Smoothing Methods for Time-Series Remote Sensing Data on Crop Phenology Extraction. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2296–2299. [Google Scholar]
- Chen, W.; Chen, J.; Cihlar, J. An Integrated Terrestrial Ecosystem Carbon-Budget Model Based on Changes in Disturbance, Climate, and Atmospheric Chemistry. Ecol. Model. 2000, 135, 55–79. [Google Scholar] [CrossRef]
- Chen, W.; Chen, J.; Liu, J.; Cihlar, J. Approaches for Reducing Uncertainties in Regional Forest Carbon Balance. Glob. Biogeochem. Cycles 2000, 14, 827–838. [Google Scholar] [CrossRef]
- Wang, B.; Li, M.; Fan, W.; Yu, Y.; Chen, J.M. Relationship between Net Primary Productivity and Forest Stand Age under Different Site Conditions and Its Implications for Regional Carbon Cycle Study. Forests 2018, 9, 5. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.M.; Ju, W.M.; Feng, X.; Chen, M.; Chen, P.; Yu, G. Carbon Sinks and Sources in China’s Forests during 1901–2001. J. Environ. Manag. 2007, 85, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mao, F.; Du, H.; Zhou, G.; Xu, X.; Li, P.; Liu, Y.; Cui, L. Simulating of Carbon Fluxes in Bamboo Forest Ecosystem Using BEPS Model Based on the LAI Assimilated with Dual Ensemble Kalman Filter. Chin. J. Appl. Ecol. 2016, 27, 3797–3806. [Google Scholar]
- Li, X.; Mao, F.; Du, H.; Zhou, G.; Xu, X.; Han, N.; Sun, S.; Gao, G.; Chen, L. Assimilating Leaf Area Index of Three Typical Types of Subtropical Forest in China from MODIS Time Series Data Based on the Integrated Ensemble Kalman Filter and PROSAIL Model. ISPRS J. Photogramm. Remote Sens. 2017, 126, 68–78. [Google Scholar] [CrossRef]
- Ge, H.; Zhou, G.; Liu, E.; Liu, A.; Ye, G. Diameter-Age Bivariate Weibull Distribution Model for Moso Bamboo Forests in Zhejiang Province. Sci. Silvae Sin. 2008, 44, 15–20. [Google Scholar]
- Jeuken, A.; Veefkind, J.P.; Dentener, F.; Metzger, S.; Gonzalez, C.R. Simulation of the Aerosol Optical Depth over Europe for August 1997 and a Comparison with Observations. J. Geophys. Res. Atmos. 2001, 106, 28295–28311. [Google Scholar] [CrossRef]
- Lelieveld, J.; Dentener, F.J. What Controls Tropospheric Ozone? J. Geophys. Res. Atmos. 2000, 105, 3531–3551. [Google Scholar] [CrossRef]
- Collalti, A.; Ibrom, A.; Stockmarr, A.; Cescatti, A.; Alkama, R.; Fernández-Martínez, M.; Matteucci, G.; Sitch, S.; Friedlingstein, P.; Ciais, P. Forest Production Efficiency Increases with Growth Temperature. Nat. Commun. 2020, 11, 5322. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of Agricultural Transitions and Urbanization for Ecosystem Services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Li, R.-Q.; Dong, M.; Cui, J.-Y.; Zhang, L.-L.; Cui, Q.-G.; He, W.-M. Quantification of the Impact of Land-Use Changes on Ecosystem Services: A Case Study in Pingbian County, China. Environ. Monit. Assess. 2007, 128, 503–510. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, J.; Li, S.; Zhao, Y.; Guo, C.; Yang, X.; Xu, Y.; Yue, F.; Zhang, Z.; Yang, S. Decoding Carbon Pathways of Shanghai Megacity through Historical Land Use Patterns and Urban Ecosystem Transitions. Sci. Rep. 2025, 15, 6326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, L. Effects of Phenological Change on Ecosystem Productivity of Temperate Deciduous Broadleaved Forests in North America. Chin. J. Plant Ecol. 2012, 36, 363–371. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.M.; Gonsamo, A.; Price, D.T.; Black, T.A.; Kurz, W.A. Interannual Variability of Carbon Sequestration Is Determined by the Lag between Ends of Net Uptake and Photosynthesis: Evidence from Long Records of Two Contrasting Forest Stands. Agric. For. Meteorol. 2012, 164, 29–38. [Google Scholar] [CrossRef]
- Coursolle, C.; Margolis, H.A.; Barr, A.G.; Black, T.A.; Amiro, B.D.; McCaughey, J.H.; Flanagan, L.B.; Lafleur, P.M.; Roulet, N.T.; Bourque, C.P.-A. Late-Summer Carbon Fluxes from Canadian Forests and Peatlands along an East West Continental Transect. Can. J. For. Res. 2006, 36, 783–800. [Google Scholar] [CrossRef]
- Zipper, S.C.; Schatz, J.; Singh, A.; Kucharik, C.J.; Townsend, P.A.; Loheide, S.P. Urban Heat Island Impacts on Plant Phenology: Intra-Urban Variability and Response to Land Cover. Environ. Res. Lett. 2016, 11, 54023. [Google Scholar] [CrossRef]
Input Data Sets | Description | Year | Original Resolution | References/Sources |
---|---|---|---|---|
Forest distribution map | Using Chinese province-by-province year-by-year land cover dataset | 2004 | 30 m | Li et al. [41], Mao et al. [42] |
Meteorological data | Temperature, precipitation, sunshine duration, and relative humidity | 2001–2020 | 1000 m | http://data.cma.cn/ |
Phenology data | Using MODIS NDVI time series data and the dynamic thresholding | 2001–2020 | 250 m | Hu et al. [34] |
Soil data | Silt and clay, fraction, soil depth, soil water holding, capacity, wilt point, and soil bulk | 2014 | 250 m | Zheng et al. [30] |
Annual average LAI | Produced using MODIS LAI and particle filter assimilation algorithm | 2004 | 500 m | Li et al. [56,57] |
Forest age data | From the Zhejiang Forest Resources Inventory’s 5th rechecking data | 2004 | - | Ge et al. [58], Zheng et al. [30] |
Nitrogen deposition data | Global gridded estimates of atmospheric deposition of total inorganic nitrogen, NHX and NOy deposition. The original data were modeled by the three-dimensional chemistry transport model(TM3). | 1860, 1993 and 2050 | 5° × 3.75° | Jeuken et al., 2001 [59], Lelieveld and Dentener [60] |
Reference annual NPP | The BEPS model was optimized and applied to forest NPP simulation for Hangzhou. To correct the initial NPP for the InTEC model. | 2004 | 250 m | Mao et al. [42] |
CO2 concentration data | The CO2 concentration data was downloaded from Global Monitoring Earth System Research Laboratory. | 2001–2020 | - | https://gml.noaa.gov/ccgg/trends/ accessed on 10 January 2023 |
Latent Variable | Explicit Variable | Unit |
---|---|---|
Climatic factors | Pre | mm |
Tmin | ℃ | |
Tmax | ℃ | |
Rad | W M−2 | |
Phenology | SOS | day |
EOS | day | |
LOS | day | |
Carbon cycle | GPP | g C m−2 yr−1 |
NPP | g C m−2 yr−1 | |
NEP | g C m−2 yr−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Du, H.; Li, X.; Zhou, G.; Mao, F.; Huang, Z.; Xuan, J.; Zhao, Y. Simulation of the Carbon Cycle’s Spatiotemporal Dynamics in the Hangzhou Forest Ecosystem and How It Responds to Phenology. Remote Sens. 2025, 17, 1531. https://doi.org/10.3390/rs17091531
Hu M, Du H, Li X, Zhou G, Mao F, Huang Z, Xuan J, Zhao Y. Simulation of the Carbon Cycle’s Spatiotemporal Dynamics in the Hangzhou Forest Ecosystem and How It Responds to Phenology. Remote Sensing. 2025; 17(9):1531. https://doi.org/10.3390/rs17091531
Chicago/Turabian StyleHu, Mengchen, Huaqiang Du, Xuejian Li, Guomo Zhou, Fangjie Mao, Zihao Huang, Jie Xuan, and Yinyin Zhao. 2025. "Simulation of the Carbon Cycle’s Spatiotemporal Dynamics in the Hangzhou Forest Ecosystem and How It Responds to Phenology" Remote Sensing 17, no. 9: 1531. https://doi.org/10.3390/rs17091531
APA StyleHu, M., Du, H., Li, X., Zhou, G., Mao, F., Huang, Z., Xuan, J., & Zhao, Y. (2025). Simulation of the Carbon Cycle’s Spatiotemporal Dynamics in the Hangzhou Forest Ecosystem and How It Responds to Phenology. Remote Sensing, 17(9), 1531. https://doi.org/10.3390/rs17091531