Machine-Learning-Based Monitoring of Night Sky Brightness Using Sky Quality Meters and Multi-Source Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sky Quality Meter Data
2.2. Remote Sensing Data
2.3. Methodology
2.3.1. Baseline Models
- Tree-based models
- Support Vector Machines (SVM)
- Linear models
- Polynomial regression
2.3.2. Ensemble Methods
- Optimized Weighted Averaging:
- Stacking Model:
- Voting Ensemble:
- Boosting-Bagging Hybrid Model:
3. Results
3.1. Model Evaluation Results
3.2. Model Application Results
4. Discussion
4.1. SHAP Analysis
4.2. Characteristics of NSB Distribution Maps
4.2.1. Comparison with Remote Sensing Imagery
- Broader influence range of light sources:
- Higher completeness of affected sky regions:
- Enhanced depiction of secondary effects of artificial light sources:
- Broad dynamic range and distinct peaks in distribution:
4.2.2. Comparison with Existing NSB Map
- Measurement Units:
- Modeling Methodology:
- Spatial Resolution and Detail:
- Data Currency:
4.2.3. Advantages of the NSB Distribution Map
- Accurate depiction of the actual extent of light pollution:
- Effective reflection of the integrated effects of environmental factors:
4.3. Spatial and Temporal Distribution of NSB
- Highly urbanized regions with intense light pollution
- Transitional belts of moderate NSB
- Extensive dark-sky regions
- Latitudinal and climatic influences
- Temporal variability
4.4. Comparison of Differences in Spatial and Temporal Distribution of NSB
4.4.1. Comparison Across Different Months in Guangdong Area
- Differences in meteorological conditions:
- Aerosol concentrations:
- Human activities:
4.4.2. Comparison Across Different Months in Urumqi Area
4.4.3. Comparison Across Different Regions in the Same Month
5. Conclusions
- (1)
- Optimize data collection strategies to select observation windows that align more closely with satellite imaging times and include data from multiple time periods and seasons to better capture the spatiotemporal dynamics of NSB.
- (2)
- Enhance observational accuracy and consistency by using higher-precision equipment and refined measurement protocols to reduce external interferences.
- (3)
- Expand geographical coverage to include diverse geographical conditions, climate types, and levels of human activity, thereby improving the model’s generalization and applicability.
- (4)
- Refine methods by incorporating high-resolution remote sensing imagery, multi-source data fusion techniques, and advanced big data analysis and dynamic modeling methods to further enhance model performance and scalability.
- (5)
- Explore more complex interaction mechanisms between NSB and environmental factors, investigating the combined effects of surface characteristics, climatic conditions, and human activities on light pollution, thereby providing a more comprehensive scientific basis for precise monitoring and management.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SQM | Sky Quality Meters |
NSB | Night Sky Brightness |
LED | Light-emitting Diode |
VIIRS | Visible Infrared Imaging Radiometer Suit |
DNB | Day and Night Band |
EOG | Earth Observation Group |
ESA | European Space Agency |
UV | Ultraviolet |
NASA | National Aeronautics and Space Administration |
DEM | Digital Elevation Model |
RF | Random Forest |
GB | Gradient Boost |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
RBF | Radial Basis Function |
MSE | Mean Squared Error |
RMSE | Root Mean Squared Error |
MAE | Mean Absolute Error |
MRE | Mean Relative Error |
CV | Cross-validation |
SHAP | SHapley Additive exPlanations |
Appendix A
Model | Train MSE | Test MSE | Train RMSE | Test RMSE | Train MAE | Test MAE | Train MRE | Test MRE | Train R2 | Test R2 | CV MSE | CV RMSE | CV MAE | CV R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gradient Boosting | 0.039 | 0.285 | 0.198 | 0.534 | 0.142 | 0.358 | 0.008 | 0.021 | 0.977 | 0.841 | 0.231 | 0.481 | 0.329 | 0.864 |
Random Forest | 0.038 | 0.228 | 0.196 | 0.478 | 0.123 | 0.313 | 0.007 | 0.018 | 0.978 | 0.873 | 0.223 | 0.472 | 0.319 | 0.872 |
XGBoost | 0.013 | 0.276 | 0.116 | 0.525 | 0.084 | 0.349 | 0.005 | 0.020 | 0.992 | 0.846 | 0.225 | 0.475 | 0.323 | 0.866 |
LightGBM | 0.033 | 0.249 | 0.181 | 0.499 | 0.135 | 0.337 | 0.008 | 0.019 | 0.981 | 0.861 | 0.240 | 0.490 | 0.340 | 0.860 |
CatBoost | 0.047 | 0.273 | 0.217 | 0.523 | 0.164 | 0.351 | 0.009 | 0.020 | 0.973 | 0.848 | 0.239 | 0.489 | 0.335 | 0.859 |
SVM (RBF) | 0.369 | 0.475 | 0.607 | 0.689 | 0.383 | 0.425 | 0.022 | 0.025 | 0.786 | 0.735 | 0.438 | 0.662 | 0.436 | 0.746 |
SVM (Poly) | 0.525 | 0.629 | 0.725 | 0.793 | 0.493 | 0.531 | 0.028 | 0.031 | 0.695 | 0.649 | 0.825 | 0.908 | 0.573 | 0.523 |
SVM (Linear) | 0.671 | 0.713 | 0.819 | 0.845 | 0.577 | 0.544 | 0.033 | 0.032 | 0.610 | 0.602 | 0.689 | 0.830 | 0.589 | 0.599 |
Linear Regression | 0.651 | 0.676 | 0.807 | 0.822 | 0.593 | 0.559 | 0.034 | 0.033 | 0.621 | 0.623 | 0.676 | 0.822 | 0.603 | 0.606 |
Ridge Regression | 0.652 | 0.676 | 0.807 | 0.822 | 0.593 | 0.559 | 0.034 | 0.033 | 0.621 | 0.623 | 0.675 | 0.822 | 0.603 | 0.606 |
Lasso Regression | 0.654 | 0.678 | 0.809 | 0.823 | 0.593 | 0.560 | 0.034 | 0.033 | 0.620 | 0.622 | 0.679 | 0.824 | 0.603 | 0.605 |
Bayesian Ridge | 0.652 | 0.676 | 0.807 | 0.822 | 0.593 | 0.559 | 0.034 | 0.033 | 0.621 | 0.623 | 0.675 | 0.822 | 0.603 | 0.606 |
Polynomial (degree 2) | 0.454 | 0.552 | 0.674 | 0.743 | 0.479 | 0.502 | 0.027 | 0.029 | 0.736 | 0.692 | 0.580 | 0.762 | 0.525 | 0.666 |
Polynomial (degree 3) | 0.299 | 0.474 | 0.547 | 0.689 | 0.388 | 0.429 | 0.022 | 0.025 | 0.826 | 0.735 | 1.257 | 1.121 | 0.580 | 0.261 |
Model | Train MSE | Test MSE | Train RMSE | Test RMSE | Train MAE | Test MAE | Train MRE | Test MRE | Train R2 | Test R2 | CV MSE | CV RMSE | CV MAE | CV R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Optimized Weighted Average | 0.038 | 0.221 | 0.196 | 0.470 | 0.139 | 0.304 | 0.008 | 0.018 | 0.978 | 0.877 | 0.239 | 0.489 | 0.306 | 0.868 |
Stacking Model | 0.091 | 0.247 | 0.302 | 0.497 | 0.146 | 0.319 | 0.009 | 0.019 | 0.947 | 0.862 | 0.389 | 0.624 | 0.384 | 0.785 |
Voting Ensemble | 0.038 | 0.221 | 0.196 | 0.470 | 0.139 | 0.304 | 0.008 | 0.018 | 0.978 | 0.877 | 0.239 | 0.489 | 0.306 | 0.868 |
Boosting-Bagging Combined | 0.021 | 0.226 | 0.143 | 0.475 | 0.103 | 0.306 | 0.006 | 0.018 | 0.988 | 0.874 | 0.237 | 0.486 | 0.301 | 0.870 |
References
- Cinzano, P.; Falchi, F.; Elvidge, C.D.; Baugh, K.E. The artificial night sky brightness mapped from DMSP satellite Operational Linescan System measurements. Mon. Not. R. Astron. Soc. 2000, 318, 641–657. [Google Scholar] [CrossRef]
- Caraveo, P. Saving the Starry Night: Light Pollution and Its Effects on Science, Culture and Nature; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 3-030-85064-1. [Google Scholar]
- Malakoff, D. Faulty Towers Each Year, Millions of Birds Die by Flying into Cell-Phone and TV Towers; Audubon: New York, NY, USA, 2001; Volume 103, pp. 78–83. [Google Scholar]
- Salmon, M. Artificial night lighting and sea turtles. Biologist 2003, 50, 163–168. [Google Scholar]
- Frank, K.D. Impact of Outdoor Lighting on Moths. Int. Astron. Union Colloq. 1991, 112, 51. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Pocock, M.J.O.; Fox, R.; Evans, D.M. Pollination by nocturnal Lepidoptera, and the effects of light pollution: A review. Ecol. Entomol. 2015, 40, 187–198. [Google Scholar] [CrossRef]
- Meravi, N.; Kumar Prajapati, S. Effect street light pollution on the photosynthetic efficiency of different plants. Biol. Rhythm Res. 2020, 51, 67–75. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G. Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition. Int. J. Mol. Sci. 2020, 21, 422. [Google Scholar] [CrossRef]
- Sarmiento, J.; Pulgar, R.; Mandakovic, D.; Porras, O.; Flores, C.A.; Luco, D.; Trujillo, C.A.; Díaz-Esquivel, B.; Alvarez, C.; Acevedo, A.; et al. Nocturnal Light Pollution Induces Weight Gain in Mice and Reshapes the Structure, Functions, and Interactions of Their Colonic Microbiota. Int. J. Mol. Sci. 2022, 23, 1673. [Google Scholar] [CrossRef]
- Moore, M.V.; Pierce, S.M.; Walsh, H.M.; Kvalvik, S.K.; Lim, J.D. Urban light pollution alters the diel vertical migration of Daphnia. Int. Ver. Theor. Angew. Limnol. Verhandlungen 2000, 27, 779–782. [Google Scholar] [CrossRef]
- Hölker, F.; Wolter, C.; Perkin, E.K.; Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 2010, 25, 681–682. [Google Scholar] [CrossRef]
- Gaston, K.J.; Davies, T.W.; Bennie, J.; Hopkins, J. REVIEW: Reducing the ecological consequences of night-time light pollution: Options and developments. J. Appl. Ecol. 2012, 49, 1256–1266. [Google Scholar] [CrossRef]
- Contin, M.A.; Benedetto, M.M.; Quinteros-Quintana, M.L.; Guido, M.E. Light pollution: The possible consequences of excessive illumination on retina. Eye 2016, 30, 255–263. [Google Scholar] [PubMed]
- Davis, S.; Mirick, D.K.; Stevens, R.G. Night shift work, light at night, and risk of breast cancer. J. Natl. Cancer Inst. 2001, 93, 1557–1562. [Google Scholar] [PubMed]
- Burks, S.L. Managing Your Migraine: A Migraine Sufferer’s Practical Guide; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1994; ISBN 0-89603-277-9. [Google Scholar]
- Menculini, G.; Cirimbilli, F.; Raspa, V.; Scopetta, F.; Cinesi, G.; Chieppa, A.G.; Cuzzucoli, L.; Moretti, P.; Balducci, P.M.; Attademo, L. Insights into the Effect of Light Pollution on Mental Health: Focus on Affective Disorders—A Narrative Review. Brain Sci. 2024, 14, 802. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Seeling, S.; Seeger, M.K.; Ries, J.B. Light pollution: A review of the scientific literature. Anthr. Rev. 2021, 10, 367–392. [Google Scholar] [CrossRef]
- Mander, S.; Alam, F.; Lovreglio, R.; Ooi, M. How to measure light pollution—A systematic review of methods and applications. Sustain. Cities Soc. 2023, 92, 104465. [Google Scholar] [CrossRef]
- Deverchère, P.; Vauclair, S.; Bosch, G.; Moulherat, S.; Cornuau, J.H. Towards an absolute light pollution indicator. Sci. Rep. 2022, 12, 17050. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F. Quantifying light pollution. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 13–20. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 2011, 92, 2714–2722. [Google Scholar] [CrossRef]
- Jechow, A.; Kolláth, Z.; Ribas, S.J.; Spoelstra, H.; Hölker, F.; Kyba, C.C.M. Imaging and mapping the impact of clouds on skyglow with all-sky photometry. Sci. Rep. 2017, 7, 6741. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F. Cloud Coverage Acts as an Amplifier for Ecological Light Pollution in Urban Ecosystems. PLoS ONE 2011, 6, e17307. [Google Scholar] [CrossRef]
- Ściężor, T. The impact of clouds on the brightness of the night sky. J. Quant. Spectrosc. Radiat. Transf. 2020, 247, 106962. [Google Scholar] [CrossRef]
- Ściężor, T.; Czaplicka, A. The impact of atmospheric aerosol particles on the brightness of the night sky. J. Quant. Spectrosc. Radiat. Transf. 2020, 254, 107168. [Google Scholar] [CrossRef]
- Jechow, A.; Hölker, F. Snowglow—The Amplification of Skyglow by Snow and Clouds Can Exceed Full Moon Illuminance in Suburban Areas. J. Imaging 2019, 5, 69. [Google Scholar] [CrossRef]
- Krieg, J. Influence of moon and clouds on night illumination in two different spectral ranges. Sci. Rep. 2021, 11, 20642. [Google Scholar] [CrossRef]
- Hughes, J.V. Sky Brightness as a Function of Altitude. Appl. Opt. 1964, 3, 1135. [Google Scholar] [CrossRef]
- Benn, C.R.; Ellison, S.L. Brightness of the night sky over La Palma. New Astron. Rev. 1998, 42, 503–507. [Google Scholar] [CrossRef]
- Gill, A.; Benton, S.J.; Brown, A.M.; Clark, P.; Damaren, C.J.; Eifler, T.; Fraisse, A.A.; Galloway, M.N.; Hartley, J.W.; Holder, B.; et al. Optical Night Sky Brightness Measurements from the Stratosphere. Astron. J. 2020, 160, 266. [Google Scholar] [CrossRef]
- Pun, C.S.J.; So, C.W.; Leung, W.Y.; Wong, C.F. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 90–108. [Google Scholar] [CrossRef]
- Biggs, J.D.; Fouché, T.; Bilki, F.; Zadnik, M.G. Measuring and mapping the night sky brightness of Perth, Western Australia: Night sky brightness of Perth. Mon. Not. R. Astron. Soc. 2012, 421, 1450–1464. [Google Scholar] [CrossRef]
- Puschnig, J.; Schwope, A.; Posch, T.; Schwarz, R. The night sky brightness at Potsdam-Babelsberg including overcast and moonlit conditions. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 76–81. [Google Scholar] [CrossRef]
- Katz, Y.; Levin, N. Quantifying urban light pollution—A comparison between field measurements and EROS-B imagery. Remote Sens. Environ. 2016, 177, 65–77. [Google Scholar] [CrossRef]
- Kolláth, Z. Measuring and modelling light pollution at the Zselic Starry Sky Park. J. Phys. Conf. Ser. 2010, 218, 012001. [Google Scholar] [CrossRef]
- Duriscoe, D.M.; Luginbuhl, C.B.; Moore, C.A. Measuring Night-Sky Brightness with a Wide-Field CCD Camera. Publ. Astron. Soc. Pac. 2007, 119, 192–213. [Google Scholar] [CrossRef]
- Zotti, G. Measuring Light Pollution with a Calibrated High Dynamic Range All-Sky Image Acquisition System; Vienna University of Technology: Vienna, Austria, 2007. [Google Scholar]
- Rabaza, O.; Galadí-Enríquez, D.; Estrella, A.E.; Dols, F.A. All-Sky brightness monitoring of light pollution with astronomical methods. J. Environ. Manag. 2010, 91, 1278–1287. [Google Scholar] [CrossRef]
- Chalkias, C.; Petrakis, M.; Psiloglou, B.; Lianou, M. Modelling of light pollution in suburban areas using remotely sensed imagery and GIS. J. Environ. Manag. 2006, 79, 57–63. [Google Scholar] [CrossRef]
- Kuechly, H.U.; Kyba, C.C.M.; Ruhtz, T.; Lindemann, C.; Wolter, C.; Fischer, J.; Hölker, F. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ. 2012, 126, 39–50. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Wang, C.; Ni, Y.; Ma, R. Assessing Light Pollution in China Based on Nighttime Light Imagery. Remote Sens. 2017, 9, 135. [Google Scholar] [CrossRef]
- Caruana, J.; Vella, R.; Spiteri, D.; Nolle, M.; Fenech, S.; Aquilina, N.J. A photometric mapping of the night sky brightness of the Maltese islands. J. Environ. Manag. 2020, 261, 110196. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef]
- Kolláth, Z.; Száz, D.; Kolláth, K. Measurements and Modelling of Aritificial Sky Brightness: Combining Remote Sensing from Satellites and Ground-Based Observations. Remote Sens. 2021, 13, 3653. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Elvidge, C.; Baugh, K.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Copernicus Sentinel Data Sentinel-5P OFFL AER AI: Offline UV Aerosol Index. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_AER_AI?hl=zh-cn (accessed on 21 March 2025).
- Vermote, E.; Franch, B.; Claverie, M. VIIRS/NPP Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid V002; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2023. [CrossRef]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s black marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- NASA VIIRS Land Science Investigator-Led Processing System. VIIRS/NPP Daily Gridded Day Night Band 500 m Linear Lat Lon Grid Night; NASA Level 1 and Atmosphere Archive and Distribution System Distributed Active Archive Center: Greenbelt, MD, USA, 2019. [CrossRef]
- Copernicus Data Space Copernicus DEM–Global and European Digital Elevation Model. Available online: https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM (accessed on 8 January 2025).
- Baum, C.F. An Introduction to Modern Econometrics Using Stata; Stata Press: College Station, TX, USA, 2006; ISBN 978-1-59718-013-9. [Google Scholar]
- Agresti, A. Categorical Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-71094-4. [Google Scholar]
- Von Winterfeldt, D.; Edwards, W. Decision Analysis and Behavioral Research; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support Vector Machines for Classification. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Awad, M., Khanna, R., Eds.; Apress: Berkeley, CA, USA, 2015; pp. 39–66. ISBN 978-1-4302-5990-9. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Freedman, D. Statistical Models: Theory and Practice; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-74385-3. [Google Scholar]
- Roth, A.E. (Ed.) The Shapley Value: Essays in Honor of Lloyd S. Shapley; Cambridge University Press: Cambridge, UK, 1988; ISBN 978-0-521-36177-4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Chen, Y.; Eziz, A.; Kurban, A.; Van de Voorde, T.; De Maeyer, P. Machine-Learning-Based Monitoring of Night Sky Brightness Using Sky Quality Meters and Multi-Source Remote Sensing. Remote Sens. 2025, 17, 1332. https://doi.org/10.3390/rs17081332
Zheng S, Chen Y, Eziz A, Kurban A, Van de Voorde T, De Maeyer P. Machine-Learning-Based Monitoring of Night Sky Brightness Using Sky Quality Meters and Multi-Source Remote Sensing. Remote Sensing. 2025; 17(8):1332. https://doi.org/10.3390/rs17081332
Chicago/Turabian StyleZheng, Siyue, Yanrong Chen, Anwar Eziz, Alishir Kurban, Tim Van de Voorde, and Philippe De Maeyer. 2025. "Machine-Learning-Based Monitoring of Night Sky Brightness Using Sky Quality Meters and Multi-Source Remote Sensing" Remote Sensing 17, no. 8: 1332. https://doi.org/10.3390/rs17081332
APA StyleZheng, S., Chen, Y., Eziz, A., Kurban, A., Van de Voorde, T., & De Maeyer, P. (2025). Machine-Learning-Based Monitoring of Night Sky Brightness Using Sky Quality Meters and Multi-Source Remote Sensing. Remote Sensing, 17(8), 1332. https://doi.org/10.3390/rs17081332