Geospatial Robust Wheat Yield Prediction Using Machine Learning and Integrated Crop Growth Model and Time-Series Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geo-Tagged Ground Data
2.3. Calibration of APSIM NG
- (1)
- Parameterization: inputting site-specific management practices (sowing dates and irrigation/fertilizer schedules) and meteorological data;
- (2)
- Sensitivity analysis: identifying key drivers of LAI variability under local agronomic conditions;
- (3)
- Validation: comparing simulated LAI against ground-truth measurements to refine physiological coefficients.
2.3.1. Data Collection for LAI
2.3.2. Leaf Area Index Measurement
2.3.3. APSIM NG Simulation and Validation
2.3.4. Derivation of Other Crop Traits
2.4. Reflectance Data
2.5. Vegetation Indices
2.6. Machine Learning Models
2.6.1. Model Parameters
2.6.2. Model Optimization and Performance Analysis
2.7. Wheat Yield Forecasting and Mapping
3. Results
3.1. Model Accuracy Assessment
3.2. Wheat Yield Forecasting and Mapping
4. Discussion
4.1. Machine Learning Model Performance Comparison
4.2. Wheat Yield Variability Factor
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.L.; Mouazen, A.M. Wheat Yield Prediction Using Machine Learning and Advanced Sensing Techniques. Comput. Electron. Agric. 2016, 121, 57–65. [Google Scholar] [CrossRef]
- Holzman, M.E.; Carmona, F.; Rivas, R.; Niclòs, R. Early Assessment of Crop Yield from Remotely Sensed Water Stress and Solar Radiation Data. ISPRS J. Photogramm. Remote Sens. 2018, 145, 297–308. [Google Scholar] [CrossRef]
- Whetton, R.; Zhao, Y.; Shaddad, S.; Mouazen, A.M. Nonlinear Parametric Modelling to Study How Soil Properties Affect Crop Yields and NDVI. Comput. Electron. Agric. 2017, 138, 127–136. [Google Scholar] [CrossRef]
- Dash, Y.; Mishra, S.K.; Panigrahi, B.K. Rainfall Prediction for the Kerala State of India Using Artificial Intelligence Approaches. Comput. Electr. Eng. 2018, 70, 66–73. [Google Scholar] [CrossRef]
- Lek, S.; Delacoste, M.; Baran, P.; Dimopoulos, I.; Lauga, J.; Aulagnier, S. Application of Neural Networks to Modelling Nonlinear Relationships in Ecology. Ecol. Modell. 1996, 90, 39–52. [Google Scholar] [CrossRef]
- Neetu, R.; Bamel, K.; Abhinav, S.; Singh, N. Analysis of Five Mathematical Models for Crop Yield Prediction. South Asian J. Exp. Biol. 2022, 12, 46–54. [Google Scholar] [CrossRef]
- Bandaru, V.; Yaramasu, R.; Jones, C.; César Izaurralde, R.; Reddy, A.; Sedano, F.; Daughtry, C.S.T.; Becker-Reshef, I.; Justice, C. Geo-CropSim: A Geo-Spatial Crop Simulation Modeling Framework for Regional Scale Crop Yield and Water Use Assessment. ISPRS J. Photogramm. Remote Sens. 2022, 183, 34–53. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Peng, Z.; Huang, J.; Wang, C.; Jiang, H.; Zheng, Q.; Li, D. Phenology Effects on Physically Based Estimation of Paddy Rice Canopy Traits from UAV Hyperspectral Imagery. Remote Sens. 2021, 13, 1792. [Google Scholar] [CrossRef]
- Arakeri, M.P.; Vijaya Kumar, B.P.; Barsaiya, S.; Sairam, H.V. Computer Vision Based Robotic Weed Control System for Precision Agriculture. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; IEEE: New York, NY, USA; pp. 1201–1205. [Google Scholar]
- Phuoc, L.H.; Suliansyah, I.; Arlius, F.; Chaniago, I.; Xuan, N.T.T.; Quang, P. Van Literature Review Crop Modeling and Introduction a Simple Crop Model. J. Appl. Agric. Sci. Technol. 2023, 7, 197–216. [Google Scholar] [CrossRef]
- Chang, Y.; Latham, J.; Licht, M.; Wang, L. A Data-Driven Crop Model for Maize Yield Prediction. Commun. Biol. 2023, 6, 439. [Google Scholar] [CrossRef]
- Harbinson, J.; Yin, X. Modelling the Impact of Improved Photosynthetic Properties on Crop Performance in Europe. Food Energy Secur. 2023, 12, e402. [Google Scholar] [CrossRef]
- Gorooei, A.; Gaiser, T.; Aynehband, A.; Rahnama, A.; Kamali, B. The Effect of Farming Management and Crop Rotation Systems on Chlorophyll Content, Dry Matter Translocation, and Grain Quantity and Quality of Wheat (Triticum aestivum L.) Grown in a Semi-Arid Region of Iran. Agronomy 2023, 13, 1007. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, P.; Bai, X.; Khan, J.; Zhang, S.; Li, L.; Wang, L. Assimilation of the Leaf Area Index and Vegetation Temperature Condition Index for Winter Wheat Yield Estimation Using Landsat Imagery and the CERES-Wheat Model. Agric. For. Meteorol. 2017, 246, 194–206. [Google Scholar] [CrossRef]
- Lambert, M.-J.; Traoré, P.C.S.; Blaes, X.; Baret, P.; Defourny, P. Estimating Smallholder Crops Production at Village Level from Sentinel-2 Time Series in Mali’s Cotton Belt. Remote Sens. Environ. 2018, 216, 647–657. [Google Scholar] [CrossRef]
- Singh, R.; Krishnan, P.; Singh, V.K.; Sah, S.; Das, B. Combining Biophysical Parameters with Thermal and RGB Indices Using Machine Learning Models for Predicting Yield in Yellow Rust Affected Wheat Crop. Sci. Rep. 2023, 13, 18814. [Google Scholar] [CrossRef]
- Choudhary, K.; Shi, W.-Z.J.; Kupriyanov, A.; Boori, M.S. A Brief Overview of Satellite Imagery for Yield Estimation in Agroecosystem. In Proceedings of the 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russian, 23–27 May 2022; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar]
- Pignatti, S.; Casa, R.; Laneve, G.; Li, Z.; Liu, L.; Marzialetti, P.; Mzid, N.; Pascucci, S.; Silvestro, P.C.; Tolomio, M.; et al. Sino–EU Earth Observation Data to Support the Monitoring and Management of Agricultural Resources. Remote Sens. 2021, 13, 2889. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.E.; Pérez-Ruiz, M.; Martínez-Guanter, J.; Egea, G. A Mixed Data-Based Deep Neural Network to Estimate Leaf Area Index in Wheat Breeding Trials. Agronomy 2020, 10, 175. [Google Scholar] [CrossRef]
- Kanning, M.; Kühling, I.; Trautz, D.; Jarmer, T. High-Resolution UAV-Based Hyperspectral Imagery for LAI and Chlorophyll Estimations from Wheat for Yield Prediction. Remote Sens. 2018, 10, 2000. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, Y. Agriculture in Silico: Perspectives on Radiative Transfer Optimization Using Vegetation Modeling. Crop Environ. 2023, 2, 175–183. [Google Scholar] [CrossRef]
- Szabó, É. Relationship between the Physiological Properties and Yield of Winter Wheat Varieties on Chernozem Soil. Acta Agron. Hungarica 2013, 61, 279–292. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and Consequences of Variation in Leaf Mass per Area (LMA): A Meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef] [PubMed]
- Sieling, K.; Böttcher, U.; Kage, H. Dry Matter Partitioning and Canopy Traits in Wheat and Barley under Varying N Supply. Eur. J. Agron. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, B.; Chen, T.; Chapman, S.C. Integrating a Crop Growth Model and Radiative Transfer Model to Improve Estimation of Crop Traits Based on Deep Learning. J. Exp. Bot. 2022, 73, 6558–6574. [Google Scholar] [CrossRef]
- Li, L.; Guo, N.; Feng, Y.; Duan, M.; Li, C. Effect of Piriformospora indica-Induced Systemic Resistance and Basal Immunity Against Rhizoctonia cerealis and Fusarium graminearum in Wheat. Front. Plant Sci. 2022, 13, 836940. [Google Scholar] [CrossRef]
- Song, Y.; Rui, F.; Ji, R.; Wu, J.; Yu, W.; Wang, J.; Wang, Y. Impact Analysis of LAI Parameters on Yield Evaluation of RS-P-YEC Model. In Proceedings of the Second International Conference on Geographic Information and Remote Sensing Technology (GIRST 2023), Qingdao, China, 21–23 July 2023; Bilal, M., Tosti, F., Eds.; SPIE: Bellingham, WA, USA; p. 84. [Google Scholar]
- Shahid, M.R.; Wakeel, A.; Ullah, M.S.; Gaydon, D.S. Identifying Changes to Key APSIM-Wheat Constants to Sensibly Simulate High Temperature Crop Response in Pakistan. Field Crop. Res. 2024, 307, 109265. [Google Scholar] [CrossRef]
- Wajid, A.; Hussain, K.; Ilyas, A.; Habib-Ur-rahman, M.; Shakil, Q.; Hoogenboom, G. Crop Models: Important Tools in Decision Support System to Manage Wheat Production under Vulnerable Environments. Agriculture 2021, 11, 1166. [Google Scholar] [CrossRef]
- Thakkar, M.; Vanzara, R. Enhancing Crop Yield Estimation from Remote Sensing Data: A Comparative Study of the Quartile Clean Image Method and Vision Transformer. Discov. Appl. Sci. 2024, 6, 610. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review. Remote Sens. 2023, 15, 2014. [Google Scholar] [CrossRef]
- Du, X.; Zhu, J.; Xu, J.; Li, Q.; Tao, Z.; Zhang, Y.; Wang, H.; Hu, H. Remote Sensing-Based Winter Wheat Yield Estimation Integrating Machine Learning and Crop Growth Multi-Scenario Simulations. Int. J. Digit. Earth 2025, 18, 2443470. [Google Scholar] [CrossRef]
- Zhang, G.; Roslan, S.N.A.B.; Shafri, H.Z.M.; Zhao, Y.; Wang, C.; Quan, L. Predicting Wheat Yield from 2001 to 2020 in Hebei Province at County and Pixel Levels Based on Synthesized Time Series Images of Landsat and MODIS. Sci. Rep. 2024, 14, 16212. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.H.; Yang, S.S.; Wang, J.W.; Bai, Y.; Zhang, S. Modelling the Crop Yield Gap with a Remote Sensing-Based Process Model: A Case Study of Winter Wheat in the North China Plain. J. Integr. Agric. 2023, 22, 2993–3005. [Google Scholar] [CrossRef]
- Kartal, S.; Iban, M.C.; Sekertekin, A. Next-Level Vegetation Health Index Forecasting: A ConvLSTM Study Using MODIS Time Series. Environ. Sci. Pollut. Res. 2024, 31, 18932–18948. [Google Scholar] [CrossRef]
- Roznik, M.; Boyd, M.; Porth, L. Improving Crop Yield Estimation by Applying Higher Resolution Satellite NDVI Imagery and High-Resolution Cropland Masks. Remote Sens. Appl. Soc. Environ. 2022, 25, 100693. [Google Scholar] [CrossRef]
- Han, X.; Wei, Z.; Chen, H.; Zhang, B.; Li, Y.; Du, T. Inversion of Winter Wheat Growth Parameters and Yield Under Different Water Treatments Based on UAV Multispectral Remote Sensing. Front. Plant Sci. 2021, 12, 609876. [Google Scholar] [CrossRef]
- Jin, X.B.; Yang, N.X.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Kong, J.L. Hybrid Deep Learning Predictor for Smart Agriculture Sensing Based on Empirical Mode Decomposition and Gated Recurrent Unit Group Model. Sensors 2020, 20, 1334. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Kulyal, M.; Saxena, P. Machine Learning Approaches for Crop Yield Prediction: A Review. In Proceedings of the 2022 7th International Conference on Computing, Communication and Security (ICCCS), Seoul, Republic of Korea, 3–5 November 2022. [Google Scholar] [CrossRef]
- Sadenova, M.; Beisekenov, N.; Varbanov, P.S.; Pan, T. Application of Machine Learning and Neural Networks to Predict the Yield of Cereals, Legumes, Oilseeds and Forage Crops in Kazakhstan. Agriculture 2023, 13, 1195. [Google Scholar] [CrossRef]
- Newlands, N.K.; Zamar, D.S.; Kouadio, L.A.; Zhang, Y.; Chipanshi, A.; Potgieter, A.; Toure, S.; Hill, H.S.J. An Integrated, Probabilistic Model for Improved Seasonal Forecasting of Agricultural Crop Yield under Environmental Uncertainty. Front. Environ. Sci. 2014, 2, 17. [Google Scholar] [CrossRef]
- Kouadio, L.; Newlands, N.; Davidson, A.; Zhang, Y.; Chipanshi, A. Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale. Remote Sens. 2014, 6, 10193–10214. [Google Scholar] [CrossRef]
- Qayyum, A. Model Based Wheat Yield; GC University Lahore: Lahore, Pakistan, 2011. [Google Scholar]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Gutman, G.; Skakun, S.; Gitelson, A. Revisiting the Use of Red and Near-Infrared Reflectances in Vegetation Studies and Numerical Climate Models. Sci. Remote Sens. 2021, 4, 100025. [Google Scholar] [CrossRef]
- Ministry of National Food Security and Research (Economic Wing). Government of Pakistan Crops Area & Production (District Wise) 2022–2023; Ministry of National Food Security and Research (Economic Wing): Islamabad, Pakistan, 2024.
- Qayyum, A.; Jamil Shera, H.M.M. Method of Area Frame Sampling Using Probability Proportional to Size Sampling Technique for Crops’ Surveys: A Case Study in Pakistan. J. Exp. Agric. Int. 2019, 41, 1–10. [Google Scholar] [CrossRef]
- Gaydon, D.S.; Balwinder-Singh; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.; et al. Evaluation of the APSIM Model in Cropping Systems of Asia. Field Crops Res. 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Ishaq, R.A.F.; Zhou, G.; Tian, C.; Tan, Y.; Jing, G.; Jiang, H.; Obaid-ur-Rehman. A Systematic Review of Radiative Transfer Models for Crop Yield Prediction and Crop Traits Retrieval. Remote Sens. 2024, 16, 121. [Google Scholar] [CrossRef]
- Martin, T.N.; Fipke, G.M.; Winck, J.E.M.; Marchese, J.A. ImageJ Software as an Alternative Method for Estimating Leaf Area in Oats. Acta Agron. 2020, 69, 162–169. [Google Scholar] [CrossRef]
- Ahmad, R.; Ishaq, F.; Zhou, G.; Ali, A.; Roshaan, S.; Shah, A.; Jiang, C.; Ma, Z.; Sun, K.; Jiang, H. A Synergistic Framework for Coupling Crop Growth, Radiative Transfer, and Machine Learning to Estimate Wheat Crop Traits in Pakistan. Remote Sens. 2024, 16, 4386. [Google Scholar] [CrossRef]
- Koyama, K. Leaf Area Estimation by Photographing Leaves Sandwiched between Transparent Clear File Folder Sheets. Horticulturae 2023, 9, 709. [Google Scholar] [CrossRef]
- Azmat, M.; Ilyas, F.; Sarwar, A.; Huggel, C.; Vaghefi, S.A.; Hui, T.; Qamar, M.U.; Bilal, M.; Ahmed, Z. Impacts of Climate Change on Wheat Phenology and Yield in Indus Basin, Pakistan. Sci. Total Environ. 2021, 790, 148221. [Google Scholar] [CrossRef]
- Hussain, J.; Khaliq, T.; Ahmad, A.; Akhtar, J. Performance of Four Crop Model for Simulations of Wheat Phenology, Leaf Growth, Biomass and Yield across Planting Dates. PLoS ONE 2018, 13, e0197546. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, C.; Pu, R.; Feng, H.; Li, Z.; Li, H.; Sun, C. Leaf Nitrogen Spectral Reflectance Model of Winter Wheat (Triticum aestivum) Based on PROSPECT: Simulation and Inversion. J. Appl. Remote Sens. 2015, 9, 095976. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Jamali, M.; Soufizadeh, S.; Yeganeh, B.; Emam, Y. Wheat Leaf Traits Monitoring Based on Machine Learning Algorithms and High-Resolution Satellite Imagery. Ecol. Inform. 2023, 74, 101967. [Google Scholar] [CrossRef]
- Tiruneh, G.A.; Meshesha, D.T.; Adgo, E.; Tsunekawa, A.; Haregeweyn, N.; Fenta, A.A.; Reichert, J.M. A Leaf Reflectance-Based Crop Yield Modeling in Northwest Ethiopia. PLoS ONE 2022, 17, e0269791. [Google Scholar] [CrossRef]
- Vidican, R.; Mălinaș, A.; Ranta, O.; Moldovan, C.; Marian, O.; Ghețe, A.; Ghișe, C.R.; Popovici, F.; Cătunescu, G.M. Using Remote Sensing Vegetation Indices for the Discrimination and Monitoring of Agricultural Crops: A Critical Review. Agronomy 2023, 13, 3040. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band Model for Noninvasive Estimation of Chlorophyll, Carotenoids, and Anthocyanin Contents in Higher Plant Leaves. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Ji, J.; Wang, X.; Ma, H.; Zheng, F.; Shi, Y.; Cui, H.; Zhao, S. Synchronous Retrieval of Wheat Cab and LAI from UAV Remote Sensing: Application of the Optimized Estimation Inversion Framework. Agronomy 2024, 14, 359. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; Duthoit, S. On the Potentiality of UAV Multispectral Imagery to Detect Flavescence Dorée and Grapevine Trunk Diseases. Remote Sens. 2018, 11, 23. [Google Scholar] [CrossRef]
- Zarcotejada, P.; Berjon, A.; Lopezlozano, R.; Miller, J.; Martin, P.; Cachorro, V.; Gonzalez, M.; Defrutos, A. Assessing Vineyard Condition with Hyperspectral Indices: Leaf and Canopy Reflectance Simulation in a Row-Structured Discontinuous Canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Novello, V.; Lessio, A.; de Palma, L. Describing the Spatio-Temporal Variability of Vines and Soil by Satellite-Based Spectral Indices: A Case Study in Apulia (South Italy). Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 42–50. [Google Scholar] [CrossRef]
- Huete, A. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Nikhil, U.V.; Pandiyan, A.M.; Raja, S.P.; Stamenkovic, Z. Machine Learning-Based Crop Yield Prediction in South India: Performance Analysis of Various Models. Computers 2024, 13, 137. [Google Scholar] [CrossRef]
- Renju, R.S.; Deepthi, P.S.; Chitra, M.T. A Review of Crop Yield Prediction Strategies Based on Machine Learning and Deep Learning. In Proceedings of the 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), Kochi, India, 23–25 June 2022; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar]
- Cheng, E.; Hang, B.; Peng, D.; Zhong, L.; Yu, L.; Liu, Y.; Xiao, C.; Li, C.; Li, X.; Chen, Y.; et al. Wheat Yield Estimation Using Remote Sensing Data Based on Machine Learning Approaches. Front. Plant Sci. 2022, 13, 1090970. [Google Scholar] [CrossRef] [PubMed]
- Caballero, G.; Pezzola, A.; Winschel, C.; Casella, A.; Sanchez Angonova, P.; Rivera-Caicedo, J.P.; Berger, K.; Verrelst, J.; Delegido, J. Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery. Remote Sens. 2022, 14, 4531. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, X.; Ju, W.; Li, J.; Zhu, S.; Zhou, Y. Seasonal Changes of Leaf Chlorophyll Content as a Proxy of Photosynthetic Capacity in Winter Wheat and Paddy Rice. Ecol. Indic. 2022, 140, 109018. [Google Scholar] [CrossRef]
- Perich, G.; Turkoglu, M.O.; Graf, L.V.; Wegner, J.D.; Aasen, H.; Walter, A.; Liebisch, F. Pixel-Based Yield Mapping and Prediction from Sentinel-2 Using Spectral Indices and Neural Networks. Field Crops Res. 2023, 292, 108824. [Google Scholar] [CrossRef]
- Brandt, P.; Beyer, F.; Borrmann, P.; Möller, M.; Gerighausen, H. Ensemble Learning-Based Crop Yield Estimation: A Scalable Approach for Supporting Agricultural Statistics. GIScience Remote Sens. 2024, 61, 2367808. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Zhang, J.; Zhang, S.; Li, H. An LSTM Neural Network for Improving Wheat Yield Estimates by Integrating Remote Sensing Data and Meteorological Data in the Guanzhong Plain, PR China. Agric. For. Meteorol. 2021, 310, 108629. [Google Scholar] [CrossRef]
- Ghosh, D.; Cabrera, J. Enriched Random Forest for High Dimensional Genomic Data. IEEE/ACM Trans. Comput. Biol. Bioinforma. 2022, 19, 2817–2828. [Google Scholar] [CrossRef]
- Shao, Z.; Ahmad, M.N.; Javed, A. Comparison of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR Features for Mapping Urban Impervious Surface. Remote Sens. 2024, 16, 665. [Google Scholar] [CrossRef]
- Myint, M.M.; Chan, A.N.; Win, S.; Aung, M.M. Photosynthesis Rate as Atfected by Chlorophyll Content and Leaf Area Index in Rice (Oryzu sativa L.). Myanmar Agric. Res. J. 2021, 1, 2–11. [Google Scholar]
- Guarin, J.; Martre, P.; Ewert, F.; Webber, H.; Dueri, S.; Calderini, D.; Reynolds, M.; Molero, G.; Miralles, D.; Garcia, G.; et al. A High-Yielding Traits Experiment for Modeling Potential Production of Wheat: Field Experiments and AgMIP-Wheat Multi-Model Simulations. Open Data J. Agric. Res. 2023, 9, 26–33. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, J.; Lou, W.; Sheng, L.; Li, D.; Hu, H. Improving Grain Yield Prediction through Fusion of Multi-Temporal Spectral Features and Agronomic Trait Parameters Derived from UAV Imagery. Front. Plant Sci. 2023, 14, 1217448. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Lešić, V.; Pajač Živković, I.; Lemić, D. Detection and Evaluation of Environmental Stress in Winter Wheat Using Remote and Proximal Sensing Methods and Vegetation Indices—A Review. Diversity 2023, 15, 481. [Google Scholar] [CrossRef]
- Basharat, M.; Umair Ali, S.; Azhar, A.H. Spatial Variation in Irrigation Demand and Supply across Canal Commands in Punjab: A Real Integrated Water Resources Management Challenge. Water Policy 2014, 16, 397–421. [Google Scholar] [CrossRef]
- Irrigation Department Govt of Punjab Entitlments and Deliveries. Available online: https://irrigation.punjab.gov.pk/entitlements-deliveries (accessed on 25 November 2024).
Output Parameter (APSIM) | Variable Transformation | Crop Traits with Range Values | Unit |
---|---|---|---|
LAI | Leaf area index | LAI (0.008 to 4.58) | |
CNC and LAITotal | Cab = 26 × LNC [56] where LNC = CNC/LAITotal | Leaf chlorophyll a and b content (Cab) (15.83 to 83.92) | µg cm−2 |
LDW and LAITotal | Cm = 10−4 × LDW/LAITotal where LDW = 10 × LAITotal/SLA [25] | Leaf dry matter content (Cm) (0.0050 to 0.0074) | g cm−2 |
Zs, LAITotal, and LAIDead | Cw = where fdead = LAIDead/LAITotal [25] | Leaf water content (Cw) (0.0038 to 0.0275) | g cm−2 |
VI Name | Formula | Band Wavelengths (Micrometers) | Impact | Reference |
---|---|---|---|---|
ARVI | (B05 − (2 × B04 − B02))/(B05 + (2 × B04 − B02)) | B02 = 0.45–0.51 B04 = 0.64–0.67 B05 = 0.85–0.88 | Minimizes effects of atmospheric aerosols | [61] |
Clgreen | B05/B03 − 1 | B03 = 0.53–0.59 B05 = 0.85–0.88 | Sensitive to Cab | [62,63] |
EVI | 2.5 × (B05 − B04)/ (B05 + 6 × B04 − 7.5 × B02 + 1) | B02 = 0.45–0.51 B04 = 0.64–0.67 B05 = 0.85–0.88 | Sensitive to high biomass | [64] |
GNDVI | (B05 − B03)/(B05 + B03) | B03 = 0.53–0.59 B05 = 0.85–0.88 | Sensitive to LAI | [63,65] |
NDVI | (B05 − B04)/(B05 + B04) | B04 = 0.64–0.67 B05 = 0.85–0.88 | Density and greenness of vegetation | [66] |
NDWI | (B05 − B06)/(B05 + B06) | B05 = 0.85–0.88 B06 = 1.57–1.65 | Sensitive to water content | [67] |
SAVI | (B05 − B04)/ (B05 + B04 + 0.5) × 1.5 | B04 = 0.64–0.67 B05 = 0.85–0.88 | Minimizes soil brightness effects | [68] |
Layer Index | Layer Type | Units/ Filters | Activation | Input Shape | Output Shape | Additional Configuration |
---|---|---|---|---|---|---|
1 | LSTM | 512 | tanh | (8, features) | (8, 512) | - |
2 | BatchNormalization | N/A | N/A | (8, 512) | (8, 512) | Normalizes outputs of LSTM Layer 1 |
3 | LSTM | 256 | tanh | (8, 512) | (8, 256) | - |
4 | BatchNormalization | N/A | N/A | (8, 256) | (8, 256) | Normalizes outputs of LSTM Layer 2 |
5 | LSTM | 128 | tanh | (8, 256) | (8, 128) | - |
6 | BatchNormalization | N/A | N/A | (8, 128) | (8, 128) | Normalizes outputs of LSTM Layer 3 |
7 | LSTM | 64 | tanh | (8, 128) | (64) | Outputs final state only |
8 | BatchNormalization | N/A | N/A | (64) | (64) | Normalizes outputs of LSTM Layer 4 |
9 | Dropout | N/A | N/A | (64) | (64) | Dropout rate = 0.3 |
10 | Flatten | N/A | N/A | (64) | (64) | Converts output to 1D array |
11 | Dense (Output) | 1 | Linear | (64) | (1) | Regression output |
Loss Function | MSE (Mean_Squared_Error) | |||||
Optimizer | Adam with initial learning rate = 0.001 | |||||
Training Configuration | Batch Size: 32 Epochs: 500 Early Stopping with Patience = 100 and Restore Best Weights: True Shuffle: True |
Hyperparameters | Integrated | Crop Traits | Reflectance | Indices |
---|---|---|---|---|
Random Forest | ||||
Min Sample Leaf | 3 | 3 | 4 | 2 |
Min Sample Split | 10 | 10 | 10 | 10 |
n-estimator | 250 | 100 | 250 | 200 |
OOB Error | 96,739 | 94,658.2 | 276,245.1 | 277,724.5 |
Support Vector Machine | ||||
C | 1 | 1 | 1 | 1 |
Gamma | 0.0069 | 0.0312 | 0.0179 | 0.0179 |
Kernel | radial | radial | radial | radial |
Epsilon | 0.1 | 0.1 | 0.1 | 0.1 |
Extreme Gradient Boost | ||||
Learning Rate | 0.001 | 0.01 | 0.01 | 0.2 |
Max Depth | 3 | 3 | 3 | 3 |
Regular Lambda | 1 | 0.1 | 1 | 0 |
n-estimator | 300 | 300 | 200 | 200 |
Model | Evaluation Criteria | ||
---|---|---|---|
RMSE (kg/ha) | MAE (kg/ha) | R2 | |
Integrated (crop traits + reflectance + indices) | |||
LSTM | 250.68 | 193.76 | 0.84 |
RF | 293.56 | 230.68 | 0.78 |
SVM | 309.8 | 231.45 | 0.75 |
XGB | 303.25 | 239.64 | 0.76 |
Crop traits | |||
LSTM | 278.11 | 214.65 | 0.80 |
RF | 291.73 | 223.17 | 0.78 |
SVM | 317.37 | 236.10 | 0.74 |
XGB | 326.04 | 251.29 | 0.72 |
Reflectance | |||
LSTM | 462.80 | 349.07 | 0.44 |
RF | 501.68 | 396.44 | 0.34 |
SVM | 522.39 | 383.25 | 0.29 |
XGB | 488.87 | 398.15 | 0.38 |
Indices | |||
LSTM | 470.04 | 366.72 | 0.42 |
RF | 513.52 | 406.00 | 0.31 |
SVM | 525.35 | 383.05 | 0.28 |
XGB | 502.59 | 398.65 | 0.34 |
Canal Name | Canal-Wise Irrigation Water Supplies (MAF) Rabi 2023–2024 | ||||
---|---|---|---|---|---|
Proposed | Entitled | Delivered | % Over-Proposed | % Over-Entitled | |
Lower Pakpattan Canal (LPC) | 0.347 | 0.211 | 0.376 | 7.7 | 43.9 |
Lower Mailsi Canal (LMC) | 0.349 | 0.238 | 0.288 | −21.2 | 17.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishaq, R.A.F.; Zhou, G.; Jing, G.; Shah, S.R.A.; Ali, A.; Imran, M.; Jiang, H.; Obaid-ur-Rehman. Geospatial Robust Wheat Yield Prediction Using Machine Learning and Integrated Crop Growth Model and Time-Series Satellite Data. Remote Sens. 2025, 17, 1140. https://doi.org/10.3390/rs17071140
Ishaq RAF, Zhou G, Jing G, Shah SRA, Ali A, Imran M, Jiang H, Obaid-ur-Rehman. Geospatial Robust Wheat Yield Prediction Using Machine Learning and Integrated Crop Growth Model and Time-Series Satellite Data. Remote Sensing. 2025; 17(7):1140. https://doi.org/10.3390/rs17071140
Chicago/Turabian StyleIshaq, Rana Ahmad Faraz, Guanhua Zhou, Guifei Jing, Syed Roshaan Ali Shah, Aamir Ali, Muhammad Imran, Hongzhi Jiang, and Obaid-ur-Rehman. 2025. "Geospatial Robust Wheat Yield Prediction Using Machine Learning and Integrated Crop Growth Model and Time-Series Satellite Data" Remote Sensing 17, no. 7: 1140. https://doi.org/10.3390/rs17071140
APA StyleIshaq, R. A. F., Zhou, G., Jing, G., Shah, S. R. A., Ali, A., Imran, M., Jiang, H., & Obaid-ur-Rehman. (2025). Geospatial Robust Wheat Yield Prediction Using Machine Learning and Integrated Crop Growth Model and Time-Series Satellite Data. Remote Sensing, 17(7), 1140. https://doi.org/10.3390/rs17071140